Log in

The Impact of the Operation of Machines and Mechanisms on the Risks in the Construction and Maintenance of a Logging Road

Number of journal: 9-2023
Autors:

Shtefan Yu.V.,
Bondarev B.A.,
Аgamov R.E.,
Monastyrev P.V.

DOI: https://doi.org/10.31659/0585-430X-2023-817-9-48-56
УДК: 625.711.2

 

AbstractAbout AuthorsReferences
The modern challenges that the current situation in the Russian Federation poses to the builders of logging roads are analyzed. The key factors of the technical operation of forestry machines and timber trucks, which affect the main risks of the two stages of the life cycle of the road – construction and operation, are identified. Using the constructed cause and effect diagram, it is convenient to manage the factors that affect the reliability indicators of both the machines themselves and the work performed by the machines, study quality indicators, identify risks and manage them. The current hazards for two stages of the life cycle – the construction and operation of a logging road – are summarized, a criticality matrix for a qualitative risk analysis is built, a register of risks is drawn up and ways of responding to them by construction organizations and the customer are proposed. Methods for compensation and management of technical risks are proposed through the development of a risk rationing system, reliability-oriented maintenance and the creation of digital twins. The introduction of control by the customer of the execution by the operating organization of preventive maintenance of machines and mechanisms involved in the construction and maintenance of the logging road will make it possible to improve the quality of the work performed.
Yu.V. SHTEFAN1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
B.A. BONDAREV2, Doctor of Sciences (Engineering),
R.E. AGAMOV2, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.);
P.V. MONASTYREV3, Doctor of Sciences (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Moscow Automobile and Road Construction State Technical University (64, Leningradsky Avenue, Moscow, 125319, Russian Federation)
2 Lipetsk State Technical University (30, Moskovskaya Street, Lipetsk, 398000, Russian Federation)
3 Tambov State Technical University (106/5, Sovetskaya Street, Tambov, 392000, Russian Federation)

1. Shtephan Yu.V., Bondarev V.A. Life cycle of a logging road and risk management at the design and survey stages. Stroitel’nye Materialy [Construction Materials]. 2023. No. 4, pp. 80–88. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-812-4-80-88
2. Shtefan Y.V., Bondarev B.A., Yankovskii L.V. On strengthening temporary logging road clay soil by industrial waste and metallurgical slags. Stroitel’nye Materialy [Construction Materials]. 2020. No. 4–5, pp. 80–89. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-780-4-5-80-89
3. Shtefan Y.V., Bondarev B.A. Risk management in requirements of the ISO standards in relation to logging roads. Nauchnyi zhurnal stroitel’stva i arkhitektury. 2020. No. 1 (45), pp. 85–97. (In Russian). DOI: https://doi.org/10.25987/VSTU.2020.45.1.007
4. Gaspar G., Sedivy S., Dudak J., Skovajsa M. Meteorological support in research of forest roads conditions monitoring. 2021 2nd International Conference on Smart Electronics and Communication (ICOSEC). Trichy, India. 2021, pp. 1265–1269. DOI: https://doi.org/10.1109/ICOSEC51865.2021.9591632
5. Catelani M., Ciani L., Galar D., Patrizi G. Optimizing maintenance policies for a yaw system using reliability-centered maintenance and data-driven condition monitoring. IEEE Transactions on Instrumentation and Measurement. 2020. Vol. 69, No. 9, pp. 6241–6249. DOI: https://doi.org/10.1109/TIM.2020.2968160
6. Zorin V. A., Pegachkov A. A. Forecasting the technical condition and risks of construction engineering based on operational monitoring of diagnostic parameters. 2022 Intelligent Technologies and Electronic Devices in Vehicle and Road Transport Complex (TIRVED). 2022, pp. 1–5. DOI: https://doi.org/10.1109/TIRVED56496.2022.9965521
7. Kochetkov A.V., Andronova S.Yu., Shchegoleva N.V., Valiev Sh.N., Talalai V.V. A branch system of risk control in technical regulation of transport construction. Stroitel’nye Materialy [Construction Materials]. 2018. No. 5, pp. 61–67. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2018-759-5-61-67
8. Yakubovich I.A., Yakubovich A.N. Stochastic simulations of reliability constructions of motor transport enterprises. Current issues of technical operation and car service of rolling stock of automotive transport: Collection of scientific papers based on the materials of the 81th scientific-methodical and research conference of MADI. Moscow. 2023, pp. 204–210. (In Russian).
9. Kharchenko A.O., Kharchenko A. A., Vladetskaya E.A. The use of stochastic methods for assessing the reliability of technical objects on the example of technological and automotive systems. Mir transporta i tekhnologicheskikh mashin. 2019. No. 4 (67), pp. 3–10. (In Russian).
10. Ulsen C., Тseng E., Angulo S.C., Landmann M.. Contessotto R., Balbo J.T., Kahn H. Concrete aggregates properties crushed by jaw and impact secondary crushing. Journal of Materials Research and Technology. 2019. Vol. 8. No. 1, pp. 494–502. DOI: https://doi.org/10.1016/j.jmrt.2018.04.008
11. Bykov V.V., Golubev M.I. Renewal of the motor pool in a Forestry Complex by the import logging equipment. Scientific and Information Support for Innovative Development APK: Materials of the XIII International Scientific and Practical Internet-Conference. p. Pravdinskii, Moskovskaya obl. 2021, pp. 505–509. (In Russian).
12. Burak P.I., Golubev I.G. The status and prospects of upgrade the motor pool of agricultural machines. Tekhnika i oborudovanie dlya sela. 2019. No. 10, pp. 2–5. (In Russian).
13. Fuks V.A. Universal remote diagnostics system for vehicles. Molodoi uchenyi. 2019. No. 12, pp. 40–44. (In Russian).
14. Ramazanova G.G., Kulakov K.V., Koreshkova T.V. Digital technologies for the technical service of the agricultural machinery. Modern problems of energy efficiency of agricultural engineering research in the conditions of digital transformation: Materials of the International Scientific and Practical Conference. Balashikha, Moskovskaya obl. 2022, pp. 16–20. (In Russian).
15. Mubarak A., Asmelash M., Azhari A., Alemu T., Mulubrhan F., Saptaji K. Digital twin enabled industry 4.0 predictive maintenance under reliability-centred strategy. 2022 First International conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT). Trichy, India. 2022, pp. 01–06. DOI: https://doi.org/10.1109/ICEEICT53079.2022.976859

For citation: Shtefan Yu.V., Bondarev B.A., Аgamov R.E., Monastyrev P.V. The impact of the operation of machines and mechanisms on the risks in the construction and maintenance of a logging road. Stroitel’nye Materialy [Construction Materials]. 2023. No. 9, pp. 48–56. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-817-9-48-56

Determination of the Long-Term Strength of Geosynthetic Materials on the Basis of the Complex Durability Index Calculation

Number of journal: 9-2023
Autors:

Medvedev D.V.,
Kalgin Yu.I.,
Simchuk E.N.,
Mitrofanova S.A.

DOI: https://doi.org/10.31659/0585-430X-2023-817-9-38-47
УДК: 625.7/.8:691.175

 

AbstractAbout AuthorsReferences
An analysis of modern foreign methods for studying the durability of geosynthetic materials is presented. A mathematical model for calculating the complex durability index for geosynthetic materials used in road construction is proposed. The results of monitoring were analyzed to assess the durability, as well as laboratory and field tests of geosynthetic materials that perform various functions in road structures. A list of coefficients for calculating a complex durability index based on the function of geosynthetic materials in a road structure has been formed. The technical and economic advantages of using a complex durability index of geosynthetic materials in road construction are shown. A method for calculating a complex durability index is presented, taking into account each function of a geosynthetic material. It is presented how the durability coefficients characterize the influence of various factors on the strength characteristics of the material: mechanical damage, elevated temperature, ultraviolet radiation, chemical and biological effects, etc. The results of monitoring the application of the preliminary national standard, field and laboratory tests of geosynthetic materials that perform various functions are presented. The use of research results for the development of normative and technical documentation, currently used to determine the durability of geosynthetic materials in the Russian Federation, is presented.
D.V. MEDVEDEV1, Engineer, First Deputy General Director (This email address is being protected from spambots. You need JavaScript enabled to view it.);
Yu.I. KALGIN2, Doctor of Sciences (Engineering), Professor (This email address is being protected from spambots. You need JavaScript enabled to view it.);
E.N. SIMCHUK1, Candidate of Sciences (Economics) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
S.A. MITROFANOVA1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Autonomous Non-Profit Organization “Scientific Research Institute of Transport and Construction Complex” (73A, Building 16, Aviamotornaya Street, Moscow, 111024, Russian Federation)
2 Voronezh State Technical University (84, 20-letiya Oktyabrya Street, Voronezh, 394006, Russian Federation)

1. Алоян Р.М., Петрухин А.Б., Грузинцева Н.А. Тенденции и перспективы применения геотекс-тильных материалов в дорожном строительстве // Известия высших учебных заведений. Технология текстильной промышленности. 2017. Т. 368. № 2. № 318–321.
1. Aloyan R.M., Petrukhin A.B., Gruzintseva N.A. Trends and prospects of use of geotextiles in road construction. Izvestiya Vysshikh Uchebnykh Zavedenii, Seriya Teknologiya Tekstil’noi Promyshlennosti. 2017. Vol. 368. No. 2, pp. 318–321. (In Russian).
2. Лысова М.А. и др. Установление взаимосвязи выполняемых функций геотекстильного материала в строительном объекте с технологическими воздействиями на него // Известия высших учебных заведений. Технология текстильной промышленности. 2021. Т. 391. № 1. С. 32–37.
2. Lysova M.A. et al. Establishing the relationship between the functions performed geotextile material in a construction object with technological influences on it. Izvestiya Vysshikh Uchebnykh Zavedenii. Seriya Teknologiya Tekstil’noi Promyshlennosti. 2021. Vol. 391. No. 1, pp. 32–37. (In Russian).
3. Баранов А.Ю. Определение долговечности геосинтетических материалов // Известия высших учебных заведений. Технология легкой промышленности. 2018. Т. 41. № 3. № 66–68.
3. Baranov A.Yu. Determination of the durability of geosynthetic materials. Izvestiya Vysshikh Uchebnykh Zavedenii. Seriya Teknologiya Tekstil’noi Promyshlennosti. 2018. Vol. 41. No. 3, pp. 66–68. (In Russian).
4. Koffler A. et al. Geosynthetics in protection against erosion for river and coastal banks and marine and hydraulic construction. Journal of Coastal Conservation. 2008. Vol. 12. No. 1, pp. 11–17. https://doi.org/10.1007/s11852-008-0023-x
5. German geotechnical society recommendations for design and analysis of earth structures using geosynthetic reinforcements. EBGEO. 2011. 338 p.
6. Watanabe K. et al. Accelerated test for evaluating the durability of geosynthetics on coasts. Coastal Engineering Proceedings. 2014. Vol. 1. No. 34. https://doi.org/10.9753/icce.v34.structures.49
7. Almeida M.S.S. et al. Brazilian contributions to geosynthetics engineering. Proceedings of the GeoAmericas 2020 – 4th Pan-American Regional Conference on Geosynthetics. 26–29 April 2020. Rio de Janeiro. Brazil. 122 p.
8. Dias Filho J.L.E., Maia P.C.A. A Non-conventional durability test for simulating creep of geosynthetics under accelerated degradation. International Journal of Geosynthetics and Ground Engineering. 2021. Vol. 7. No. 65. 13 p. https://doi.org/10.1007/s40891-021-00310-w
9. Greenwood J.H., Schroeder H.F., Voskamp W. Durability of geosynthetics. CRC Press. 2016. 352 p.
10. Carlos D.M., Carneiro J.R., Lopes M.D.L. Effect of different aggregates on the mechanical damage suffered by geotextiles. Materials. 2019. Vol. 12. No. 24. 4229. https://doi.org/10.3390/ma12244229
11. Hufenus R. et al. Strength reduction factors due to installation damage of reinforcing geosynthetics. Geotextiles and Geomembranes. 2005. Vol. 23. No. 5, pp. 401–424. https://doi.org/10.1016/j.geotexmem.2005.02.003
12. Lim S.Y., Mccartney J.S. Evaluation of effect of backfill particle size on installation damage reduction factors for geogrids. Geosynthetics International. 2013. Vol. 20. No. 2, pp. 62–72. https://doi.org/10.1680/gein.13.00002
13. Huang C.-C., Wang Z.-H. Installation damage of geogrids: Influence of load intensity. Geosynthetics International. 2007. Vol. 14. No. 2, pp. 65–75. https://doi.org/10.1680/gein.2007.14.2.65
14. Pinho-Lopes M. Experimental analysis of the combined effect of installation damage and creep of geosynthetics. Geosynthetics. 2002. Vol. 4, pp. 1539–1544.
15. Greenwood J.H. The effect of installation damage on the long-term design strength of a reinforcing geosynthetic. Geosynthetics International. 2002. Vol. 9. No. 3, pp. 247–258. https://doi.org/10.1680/gein.9.0217
16. Almeida F., Carlos D.M., Carneiro J.R., Lopes M.D.L. Resistance of geosynthetics against the isolated and combined effect of mechanical damage under repeated loading and abrasion. Materials. 2019. Vol. 21. No. 12. 3558. https://doi.org/10.3390/ma12213558
17. Kongkitkul W., Tatsuoka F., Hirakawa D. Creep rupture curve for simultaneous creep deformation and degradation of geosynthetic reinforcement. Geosynthetics International. 2007. Vol. 14. No. 4, pp. 189–200. https://doi.org/10.1680/gein.2007.14.4.189
18. Dias Filho J.L.E., Maia P.C.A., Xavier G.D.C. Spectrophotometry as a tool for characterizing durability of woven geotextiles. Geotext Geomembr. 2019. Vol. 47. No. 4, pp. 577–585. https://doi.org/10.1016/j.geotexmem.2019.02.002
19. Koerner R.M., Hsuan Y.G., Koerner G.R. Lifetime predictions of exposed geotextiles and geomembranes. Geosynthetics International. 2017. Vol. 24. No. 2, pp.198–212. https://doi.org/10.1680/jgein.16.00026
20. Carneiro J.R., Almeida P.J., Lopes M.L. Some synergisms in the laboratory degradation of a polypropylene geotextile. Construction and Building Materials. 2014. Vol. 73, pp. 586–591. https://doi.org/10.1016/j.conbuildmat.2014.10.0012
21. Carneiro J.R., Morais M., Lopes M.L. Degradation of polypropylene geotextiles with different chemical stabilisations in marine environments. Construction and Building Materials. 2018. Vol. 165, pp. 877–886. https://doi.org/10.1016/jconbuildmat.2018.01.067

For citation: Medvedev D.V., Kalgin Yu.I., Simchuk E.N., Mitrofanova S.A. Determination of the long-term strength of geosynthetic materials on the basis of the complex durability index calculation. Stroitel’nye Materialy [Construction Materials]. 2023. No. 9, pp. 38–47. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-817-9-38-47

Bearing Capacity Reserves of Stone Spacer Structures

Number of journal: 9-2023
Autors:

Orlovich R.B.,
Zimin S.S.

DOI: https://doi.org/10.31659/0585-430X-2023-817-9-32-37
УДК: 693.22

 

AbstractAbout AuthorsReferences
Defects and mechanisms of damage to stone vaults, arches and arched window lintels are analyzed. The shortcomings of the existing methods of their strengthening are noted. The margins of safety of cylindrical and cross vaults with cracks are discussed, as well as the positive effect of sinus filling on their bearing capacity. The results of experimental studies of full-scale samples of passage and decorative stone arches are presented. The unloading effect of the masonry sections located above them was established. It was revealed that as a result of the redistribution of forces between the arches and the areas of masonry mating with them, the mechanism of destruction and a significant increase in the bearing capacity of the arches occur. A similar effect has been established for stone lintels of various curvilinear outlines. The effect of their joint work with the layers of masonry located above them increases with an increase in the curvature of the lintels, as well as the thickness of the masonry located above them. The identified reserves of the bearing capacity of stone spacer structures in many cases make it possible to avoid their costly repair and strengthening.
R.B. ORLOVICH1, Doctor of Sciences (Engineering), Professor (This email address is being protected from spambots. You need JavaScript enabled to view it.);
S.S. ZIMIN2, Candidate of Sciences (Engineering), Associate Professor (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 «Georeconstruction» PI (4, Izmaylovskiy Avenue, Saint Petersburg, 190005, Russian Federation)
2 Peter the Great St. Petersburg Polytechnic University (29, Politekhnicheskaya Street, Saint-Petersburg, 195251, Russian Federation)

1. Bernhard V.R. Arki i svody: Rukovodstvo po ustrojstvu i raschetu arochnyh i svodchatyh perekrytij [Arches and vaults: A guide to the design and calculation of arched and vaulted ceilings]. St. Petersburg: Yu.N. Erlich. 1901. 128 p.
2. Ahnert R., Krause K.H. Typische Baukonstruktionen von 1860 bis 1960 zur Beurteilung der vorhandenen Bausubstanz. Band 1,2. Berlin, 2009.
3. Lakhtin N.K. Raschet arok i svodov [Calculation of arches and vaults]. Moscow. 1911. 468 p.
4. Issledovanie deformacij, raschet nesushchej sposobnosti i konstruktivnoe ukreplenie drevnih raspornyh sistem. Metodicheskie rekomendacii [Study of deformations, calculation of bearing capacity and structural reinforcement of ancient spacer systems. Guidelines]. Moscow. 1989.
5. Grozdov V.T. Kirpichnye svody perekrytij staryh zhilyh i obshchestvennyh zdanij [Brick arches of floors of old residential and public buildings]. Saint Petersburg. 1999.
6. GOST R 59437–2021 Preservation of monuments of stone architecture. General requirements (In Russian).
7. SP 13-102–2003. Rules for the inspection of load-bearing building structures of buildings and structures (In Russian).
8. SP 427.1325800.2018. Stone and reinforced stone structures. Amplification methods (In Russian).
9. SP 15.13330. Stone and reinforced masonry structures (In Russian).
10. Orlovich R.B., Novak R., Derkach V.N. Bearing capacity of masonry flat arches. Promyshlennoe i grazhdanskoe stroitel’stvo. 2017. No. 7, pp. 52–57. (In Russian).

For citation: Orlovich R.B., Zimin S.S. Bearing capacity reserves of stone spacer structures. Stroitel’nye Materialy [Construction Materials]. 2023. No. 9, pp. 32–37. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-817-9-32-37

Ceramic Brick of Semi-dry Pressing Based on a Composition of Aluminosilicate Raw Materials and the Mineral Product of Drilling Waste

Number of journal: 9-2023
Autors:

Gur’eva V.A.,
Dubinetskiy V.V.

DOI: https://doi.org/10.31659/0585-430X-2023-817-9-18-22
УДК: 691.42

 

AbstractAbout AuthorsReferences
The results of scientific studies of the effect of activated carbonate-containing mineral product of drilling waste (ACMPOB) in a composition with low-melting loam on phase and structure formation under conditions of low-temperature synthesis, properties of ceramic bricks intended for the construction of wall structures of buildings and structures are presented. As a result of processing the carbonate-containing drilling waste with a 6% HCl solution, optimizing the compositions of molding masses, technological parameters of semi-dry pressing, drying and firing, the formation of crystalline anorthite- and wollastonite-like neoplasms is achieved, which ensures the production of ceramic bricks that meet the requirements of GOST 530–2012: strength grade M 125–150, density 1.6–1.9 g/cm3, water absorption 12–14%, frost resistance F75.
V.A. GUR’EVA1, Doctor of Sciences (Engineerig) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
V.V. DUBINETSKIY2, senior lecturer

1 Orenburg State University (13, Avenue Pobedy, Orenburg, 460018, Russian Federation)
2 Buzuluk Humanitarian and Technological Institute (BHTI) (branch) of OSU (35, Rabochaya Street, Buzuluk, Orenburg Region, 461040, Russian Federation)

1. Semenov A.A. The state of the Russian market of ceramic wall materials. Stroitel’nye Materialy [Construction Materials]. 2016. No. 8, pp. 9–15. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2016-740-8-9-15
2. Kolyada S.V. Prospects for the development of production of building materials in Russia until 2020. Stroitel’nye Materialy [Construction Materials]. 2008. No. 7, pp. 4–8. (In Russian).
3. Turchaninov V.I. Construction materials from industrial waste and local raw materials of the Orenburg region. Orenburg: OSU, 2006. 150 p.
4. Dubinetsky V.V., Guryeva V.A., Vdovin K.M. Drilling mud in the production of construction ceramics products. Stroitel’nye Materialy [Construction Materials]. 2015. No. 4, pp. 75–76. (In Russian).
5. Guryeva V.A., Dubinetsky V.V., Vdovin K.M., Butrimova N.V. Wall ceramic on the basis of highly calcined raw materials of Orenburzhye. Stroitel’nye Materialy [Construction Materials]. 2016. No. 12, pp. 55–59. (In Russian).
6. Salakhov A.M. Increasing the strength of building ceramic products: from theory to practice. Vestnik of Kazan Technological University. 2012. No. 5, pp. 18–21. (In Russian).
7. Gur’eva V.A., Dubinetckiy V.V. Chemical method for activation of carbonate-containing raw materials in the technology of production of ceramic bricks by semi-dry pressing. Stroitel’nye Materialy [Construction Materials]. 2021. No. 9, pp. 28–31. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-795-9-28-31
8. Yatsenko N.D., Zubekhin A.P. Scientific bases of innovative technologies of ceramic bricks and management of its properties depending on the chemical and mineralogical composition of raw materials. Stroitel’nye Materialy [Construction Materials]. 2014. No. 4, pp. 28–31.
9. Pavlov V.F. Investigation of reactions occurring during the firing of masses based on kaolinite clays with the addition of calcium, sodium, and potassium carbonates. Proceedings of the Institute NIIStroykeramka, 1981. Iss. 46, pp. 53–75. (In Russian).

For citation: Gur’eva V.A., Dubinetskiy V.V. Ceramic brick of semi-dry pressing based on a composition of aluminosilicate raw materials and the mineral product of drilling waste. Stroitel’nye Materialy [Construction Materials]. 2023. No. 9, pp. 18–22. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-817-9-18-22

Prospects for the Production of Wall Clinker in the Siberian Federal District

Number of journal: 9-2023
Autors:

Storozhenko G.I.,
Sebelev I.M.,
Shoeva T.E.,
Sapelkina T.V.

DOI: https://doi.org/10.31659/0585-430X-2023-817-9-13-17
УДК: 691.4:553.61

 

AbstractAbout AuthorsReferences
Based on natural and man-made raw materials from the Republic of Tyva, clinker wall materials were manufactured in laboratory conditions, the physical and mechanical characteristics and structure of which were compared with samples from foreign and domestic manufacturers. The results of the analysis of samples obtained with wall clinker from foreign factories ABC-keramik (Germany), Lode (Lithuania) and those produced in the Siberian Federal District (SFO) (LLC Likolor Brick Plant) are presented. Physical and mechanical tests showed compliance of the performance characteristics of clinker bricks with GOST 530-2012 “Ceramic brick and stone. General technical conditions”. The study of the phase composition and structure of ceramic stone revealed differences that are associated with the features of the raw materials used for the production of products. The chemical composition of clinker stone was determined, microscopic and petrographic studies of the structure were performed. It is shown that the quality and reserves of clay and technogenic raw materials in the Siberian Federal District, in particular the Republic of Tyva, make it possible to develop on a large scale the production of wall clinker products.
G.I. STOROZHENKO1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
I.M. SEBELEV1, Doctor of Sciences (Engineering),
T.E. SHOEVA1, Candidate of Sciences (Engineering);
T.V. SAPELKINA2, junior researcher

1 Novosibirsk State University of Architecture and Civil Engineering (SIBSTRIN) (113, Leningradskaya Street, Novosibirsk, 630008, Russian Federation)
2 Tuvinian Institute for Exploration of Natural Resources of Siberian Branch of the Russian Academy of Sciences (117 A, Internacional’naja Street, Kyzyl, 667007, Republic of Tyva, Russian Federation)

1. Semenov A.A. Some trends in the development of the ceramic wall materials market in Russia. Stroitel’nye Materialy [Construction Materials]. 2022. No. 4, pp. 4–5. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-801-4-4-5
2. Kotlyar V.D., Uzhakhov K.M., Kotlyar A.V., Terekhina Yu.V. Clinker brick: standardization, properties, application. Stroitel’nye Materialy [Construction Materials]. 2023. No. 5, pp. 4–8. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-813-5-4-8
3. We are developing a strategy for the development of the construction industry until 2030. - URL: https://stroystrategy.ru (2017) - Text: electronic.
4. Sapelkina T.V., Storozhenko G.I., Shoeva T.E. Composite ceramic materials from natural and technogenic rocks of the Republic of Tyva. Stroitel’nye Materialy [Construction Materials]. 2023. No. 5, pp. 9–13. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-813-5-9-13
5. Kara-sal B.K., Chyudyuk S.A., Sapelkina T.V. Development of the composition of the charge based on overburden rocks of coal mining for the manufacture of ceramic wall materials. Estestvennye i tehnicheskie nauki. 2019. No. 9 (135), pp. 165–169. (In Russian).
6. Kara-sal B.K., Strelnikov A.A., Sapelkina T.V. Technological properties of ceramic masses based on argillite overburden coal mining, crushed at various grinding plants. Estestvennye i tehnicheskie nauki. 2020. No. 5 (143), pp. 122–127. (In Russian).
7. Kara-sal B.K., Chyudyuk S.A., Sapelkina T.V. Technological properties of clay overburden rocks of coal mining in the production of ceramic wall materials. Estestvennye i tehnicheskie nauki. 2018. No. 1, pp. 165–169. (In Russian).
8. Kotlyar A.V., Lapunova K.A., Lazareva Y.V. Orlova M.E. Effect of argillites reduction ratio on ceramic tile and paving clinker of low-temperature sintering. Materials and Technologies in Construction and Architecture. Material Science Forum Submitted. 2018. Vol. 931, pp. 526–531. https://doi.org/10.4028/www. Scientific.net/MSF.931.526.
9. Kara-sal B.K., Chyudyuk S.A., Irgit B.B. Features of the use of argillite overburden coal mining rocks for the production of ceramic wall materials. Vestnik of Tuva State University. Issue 3. Technical and physical-mathematical sciences. 2020. No. 2 (62), pp. 6–18. (In Russian).
10. Kotlyar V.D., Terekhina Yu.V., Kotlyar A.V., Features of Properties, Application and Requirements for Clinker Brick. Stroitel’nye Materialy [Construction Materials]. 2015. No. 4, pp. С. 72–74. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2015-724-4-72-74

For citation: Storozhenko G.I., Sebelev I.M., Shoeva T.E., Sapelkina T.V. Prospects for the production of wall clinker in the Siberian Federal District. Stroitel’nye Materialy [Construction Materials]. 2023. No. 9, pp. 13–17. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-817-9-13-17

Cement Sector Decarbonization and Development of Environmental and Energy Management Systems

Number of journal: 9-2023
Autors:

Bashmakov I.A.,
Potapova E.N.,
Borisov K.B.,
Lebedev O.V.,
Guseva T.V.

DOI: https://doi.org/10.31659/0585-430X-2023-817-9-4-12
УДК: 666.94:504.7

 

AbstractAbout AuthorsReferences
The article discusses the prospects for decarbonization of technological processes and products of the cement industry. An analysis of international trends is given and the strengthening of the role of carbon prices in regional and national systems of stimulating the decarbonization of the economy is emphasized. Decarbonization methods recommended by “the Cement Sustainability Initiative” and the International Energy Agency are presented. The set of the initial data required for the calculation of specific greenhouse gas emissions in the cement industry is described. The role of benchmarking in setting targets for the carbon intensity of cement and cement clinker is emphasized and a list of the main international and national benchmarking systems is presented. The specific emissions of greenhouse gases in the production of cement in various countries of the world are analyzed. It is noted that in the Russian Federation carbon intensity benchmarking is carried out as part of the updating of sectoral Reference Documents on the Best Available Techniques, during the development of which a system has been formed for collecting and analyzing data characterizing technological processes, resource consumption and the main emissions characteristic for industrial installations. At the same time, the use (implementation) of best available technologies aimed at increasing the production resource efficiency makes it possible to reduce emissions of not only conventional pollutants, but also greenhouse gases. As a result of benchmarking in the Russian Federation, indicative sectoral parameters of specific greenhouse gas emissions of two levels are set: the upper level has a restrictive character while the lower one is designed to stimulate industrial enterprises to develop and implement green projects aimed at deep decarbonization of technological processes and products. Expected that state support instruments will be available for enterprises implementing such projects. Approaches to the calculation of indicative parameters are presented. It is concluded that the results of benchmarking (including indicative parameters) form a system of coordinates to substantiate aims and objectives of enhancing environmental and energy management systems of industrial enterprises, as well as for working out sustainable development (including green) projects in industry seeking preferential loans or governmental economic support measures.
I.A. BASHMAKOV1, Doctor of Science (Economy), Noble Prize Laureate (This email address is being protected from spambots. You need JavaScript enabled to view it.);
E.N. POTAPOVA2, Doctor of Science (Engineering), Professor (This email address is being protected from spambots. You need JavaScript enabled to view it.);
K.B. BORISOV1, Candidate of Science (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
O.V. LEBEDEV1, Candidate of Science (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
T.V. GUSEVA3, Doctor of Science (Engineering), Profeccor (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 LLC Company “Center for Energy Efficiency – XXI” (61, Novocheremushkinskaya Street, Moscow, 117418, Russian Federation)
2 Dmitry Mendeleev University of Chemical Technology of Russia (9, Miusskaya Square, Moscow, 125047, Russian Federation)
3 Federal State Autonomous Institution «Research Institute «Environmental Industrial Policy Center» (42, Olimpiiskii Prospect, Mytishchi, Moscow region, 141006, Russian Federation)

1. Wynn M., Jones P. Industry approaches to the Sustainable Development Goals. International Journal of Environmental Studies. 2022. Vol. 79. Iss. 1, pp. 13–18. DOI: https://doi.org/ 10.1080/00207233.2021.1911101
2. Скобелев Д.О. Промышленная политика повышения ресурсоэффективности и достижение целей устойчивого развития // Journal of New Economy. 2020. Т. 21. № 4. С. 153–173. DOI: https://doi.org/10.29141/2658-5081-2020-21-4-8
2. Skobelev D.O. Industrial policy of increasing resource efficiency and the achievement of the sustainable development goals. Journal of New Economy. 2020. Vol. 21. No. 4, pp. 153-173. (In Russian). DOI: https://doi.org/10.29141/2658-5081-2020-21-4-8
3. Скобелев Д.О., Федосеев С.В. Политика повышения ресурсоэффективности и формирование экономики замкнутого цикла // Компетентность. 2021. № 3. С. 5–13. DOI: https://doi.org/ 10.24412/1993-8780-2021-3-05-14
3. Skobelev D.O., Fedoseev S.V. Resource efficiency policy and circular economy development. Competency (Russia). 2021. No. 3, pp. 5–13. (In Russian). DOI: https://doi.org/ 10.24412/1993-8780-2021-3-05-14
4. Доброхотова М.В., Матушанский А.В. Примене-ние концепции наилучших доступных технологий в целях технологической трансформации промышленности в условиях энергетического перехода // Экономика устойчивого развития. 2022. № 2 (50). С. 63–68.
4. Dobrohotova M.V., Matushanskij A.V. Applying the best available techniques concept for the technological transformation of industry under the energy transition conditions. Economica ystoychivogo razvitiya. 2022. No. 2 (50), pp. 63–68. (In Russian).
5. Никитин Г.С., Скобелев Д.О. Эффективность государственных и корпоративных инвестиций в развитие реального сектора экономики // Вестник Нижегородского университета им. Н.И. Лоба-чевского. Сер.: Социальные науки. 2022. № 4 (68). С. 32–41.
5. Nikitin G.S., Skobelev D.O. Efficiency of state and corporate investments in the development of the real sector of the economy. Vestnik Nizhegorodskogo universiteta imeni N.I. Lobachevskogo. Seriya: Sotsial’nye nauki. 2022. No. 4 (68), pp. 32–41. (In Russian).
6. Скобелев Д.О. Ресурсная эффективность экономики: аспекты стратегического планирования // Менеджмент в России и за рубежом. 2020. № 4. С. 3–13.
6. Skobelev D.O. Resource efficiency of the economy: strategic planning aspects. Management v Rossii i za rubezhom. 2020. No. 4, pp. 3–13. (In Russian).
7. Башмаков И.А., Скобелев Д.О., Борисов К.Б., Гусева Т.В. Системы бенчмаркинга по удельным выбросам парниковых газов в черной металлургии // Черная металлургия. Бюллетень научно-технической и экономической информации. 2021. Т. 77. № 9. С. 1071–1086. DOI: https://doi.org/ 10.32339/0135-5910-2021-9-1071-1086
7. Bashmakov I.A., Skobelev D.O., Borisov K.B., Guseva  T.V. Benchmarking systems for greenhouse gases specific emissions in steel industry. Chernaya metallurgiya. Byulleten’ nauchno-tekhnicheskoi i ekonomicheskoi informatsii. 2021. Vol. 77. Iss. 9, pp. 1071–1086. DOI: https://doi.org/ 10.32339/0135-5910-2021-9-1071-1086 (In Russian).
8. Доброхотова М.В. Особенности перехода российской угольной промышленности к наилучшим доступным технологиям // Уголь. 2022. № 9. С. 34–40. DOI: https://doi.org/ 10.18796/0041-5790-2022-9-34-40
8. Dobrokhotova M.V. Specific features of the russian coal industry’s transition to the best available technologies. Ugol’. 2022. No. 9, pp. 34–40. (In Russian). DOI: https://doi.org/ 10.18796/0041-5790-2022-9-34-40
9. Reimink H., Maciel F. CO2 data collection user guide, Version 10. Partnership for Market Readiness. A Guide to Greenhouse Gas Benchmarking for Climate Policy Instruments. Washington. DC. World Bank. 2021. 120 р.
10. Tudor C., Sova R. Benchmarking GHG emissions: forecasting models for global climate policy. Electronics. 2021. No. 10, pp. 3149. DOI: https://doi.org/ 10.3390/electronics10243149
11. Скобелев Д.О., Волосатова А.А. Разработка научного обоснования системы критериев «зеленого» финансирования проектов, направленных на технологическое обновление российской промышленности // Экономика устойчивого развития. 2021. № 1 (45). С. 181–188.
11. Skobelev D.O., Volosatova A.A. Scientific rationale for the development of the “Green” project financing criteria system designed to achieve technological restoration for the Russian industry. Economica ustoichivogo razvitiya. 2021. No. 1 (45), pp. 181–188. (In Russian).
12. Shchelchkov K.A., Guseva T.V., Tikhonova I.O., Potapova E.N., Rudomazin V.V. The concept of best available techniques as an instrument for increasing industrial resource efficiency and reducing environmental impact in the Arctic. Proceedings of IOP Conference Series: Earth And Environmental Science. International Russian Conference on Ecology and Environmental Engineering (RusEcoCon 2022). P. 012010.13. DOI: https://doi.org/ 10.1088/1755-1315/1061/1/012010
13. Technology Roadmap low-carbon transition in the cement industry. IEA & CSI. 2018. 61 p.
14. Toward net zero: decarbonization roadmap for China’s cement industry. RMI and China Cement Association. Beijing. 2022. 15 p.
15. Existing and potential technologies for carbon emissions reductions in the Indian cement industry. CSI & IFC, 2018. 88 p.
16. Скобелев Д.О., Череповицына А.А., Гусева Т.В. Технологии секвестрации углекислого газа: роль в достижении углеродной нейтральности и подходы к оценке затрат // Записки Горного института. 2023. Т. 259. С. 125–140. DOI: https://doi.org/10.31897/PMI.2023.10
16. Skobelev D.O., Cherepovitsyna A.A., Guseva T.V. Carbon capture and storage: net zero contribution and cost estimation approaches. Zapiski gornogo instituta. 2023. Vol. 259, pp. 125–140. (In Russian). DOI: https://doi.org/10.31897/PMI.2023.10
17. Decarbonizing Building. 2023 Climate Report. URL: https://www.holcim.com/sites/holcim/files/2023-03/31032023-holcim-climate-report-2023-7392605829.pdf (Date of access 08.06.2023).
18. Heidelberg Materials. Annual and Sustainability Report. 2022. URL: https://www.heidelbergmaterials.com/sites/default/files/2023-03/HM_Annual_and_Sustainability_Report_2022.pdf (Date of access 08.06.2023).
19. CEMEX: Building a Better Future. 2021 Integrated Report. URL: https://liferayprod-cdn.cemex.com/documents/20143/57102208/IntegratedReport2021.pdf (Date of access 08.06.2023).
20. Башмаков И. А. Масштаб необходимых усилий по декарбонизации мировой промышленности // Фундаментальная и прикладная климатология. 2022. Т. 8. № 2. С. 151–174. DOI: https://doi.org/10.21513/2410-8758-2022-2-151-174
20. Bashmakov I.A. The scale efforts required to decarbonize global industry. Fundamentalnaya i prikladnaya climatologiya. 2022. Vol. 8. No. 2, pp. 151–174. (In Russian). DOI: https://doi.org/10.21513/2410-8758-2022-2-151-174
21. International Energy Agency. Cement Sector Analysis. URL: https://www.iea.org/reports/cement (Date of access 08.06.2023).
22. Dietz S., Hastreiter N., Jahn V. Carbon performance assessment of cement producers: note on methodology. The Transition Pathway Initiative, London, 2021. URL: https://www.transitionpathwayinitiative.org/publications/104.pdf?type=Publication (Date of access 08.06.2023).
23. Cai B., Wang J., He J., Geng Y. Evaluating CO2 emission performance in China’s cement industry: An enterprise perspective. Applied Energy. 2016. Vol. 166, pp. 191–200. DOI: 10.1016/j.apenergy.2015.11.006
24. Башмаков И.А. Перспективы развития и декарбонизации цементной промышленности мира // Фундаментальная и прикладная климатология. 2023. Т. 9. № 1. С. 33–64. DOI: https://doi.org/ 10.21513/2410-8758-2023-1-33-64
24. Bashmakov I. A. Global cement industry development and decarbonization perspectives. Fundamentalnaya i prikladnaya climatologiya. 2023. Vol. 9. No. 1, pp. 33–64. (In Russian). DOI: https://doi.org/ 10.21513/2410-8758-2023-1-33-64

For citation: Bashmakov I.A., Potapova E.N., Borisov K.B., Lebedev O.V., Guseva T.V. Cement sector decarbonization and development of environmental and energy management systems. Stroitel’nye Materialy [Construction Materials]. 2023. No. 9, pp. 4–12. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-817-9-4-12

Improving the Performance Properties of Cement Composites with Complex Additives

Number of journal: 8-2023
Autors:

Fedortsov V.A.,
Gladkin S.S.,
Fedortsov A.P.,
Erofeev V.T.

DOI: https://doi.org/10.31659/0585-430X-2023-816-8-72-79
УДК: 691.327:666.9

 

AbstractAbout AuthorsReferences
The influence of complex additives on the strength and durability of cement composites under environmental conditions is considered. The PFM-NLK additive of factory manufacture is a mixture of a superplasticizer with the addition of an air-entrapping and hydrophobic complex. The second complex additive contained a superplasticizer, sodium tetraborate and boric acid. The content of the superplasticizer is common for additives. It allows you to reduce the I /C of the mixture and thereby increase the density and strength of the composite, and accordingly its frost resistance and corrosion resistance. Hydrophobic and air-entrapping PFM-NLK complexes additionally contribute to the formation of a material structure with increased frost resistance. Boric acid and sodium tetraborate form a borate buffer system, which leads to a softening of the “chemical shock” and thereby further increase corrosion resistance. As a result of the conducted studies, the effectiveness of complex additives was revealed and the regularity was confirmed that if each factor individually contributes to the improvement of the property, then with their combined action the effect becomes greater. The components of PFM-NLC, when combined, contribute to obtaining a material structure with high frost resistance. An additive containing a hyperplasticizer, boric acid and sodium tetraborate leads to an increase in strength and acid resistance.
V.A. FEDORTSOV1, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.);
S.S. GLADKIN2,3, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.P. FEDORTSOV1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
V.T. EROFEEV2,3, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 National Research Ogarev Mordovia State University (68, Bolshevistskaya Street, Saransk, 430005, Republic of Mordovia, Russian Federation)
2 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)
3 Scientific-Research Institute of Building Physics of the Russian Academy architecture and construction sciences (21, Lokomotivniy Driveway, Moscow,127238, Russian Federation)

1. Kalashnikov V.I., Volodin V.M., Moroz M.N. [et al.] Super and hyperplasticizers. Microsilica. New generation concretes with low specific cement consumption per unit strength. Molodoj Uchenyj. 2014. No. 19 (78), pp. 201–210. (In Russian).
2. Kaprielov S.S., Sheinfeld A.V., Krivoborodov Yu.R. Influence of cement stone structure with additives of micro-silica and superplasticizer on concrete properties. Beton i Zhelezobeton. 1992. No. 7, pp. 4–7. (In Russian).
3. Gulyaev E.V., Erofeeva I.V., Kalashnikov V.I. [et al.] Influence of reaction-active additives on the strength properties of plasticized cement stone. Molodoj Uchenyj. 2014. No. 19, pp. 194–196. (In Russian).
4. Erofeev V., Bobryshev A., Lakhno A., Shafigullin L., Khalilov I., Sibgatullin K., Igtisamov R. Theoretical evaluation of rheological state of sand cement composite systems with polyoxyethylene additive using topological dynamics concept. Solid State Phenomena. 2016. 871, pp. 96–103. DOI: 10.4028/www.scientific.net/MSF.871.96
5. Rusakov K.V., Fedortsov A.P. Development of frost-resistant cement concrete for structures with increased technical requirements. Actual issues of architecture and construction: proceedings of the International Scientific and Technical Conference. Saransk: Publishing House of Mordovian University, 2014, pp. 107–109.
6. Janfeshan Araghi H., Nikbin I.M., Rahimi Reskati S., Rahmani E., Allahyari H. An experimental investigation on the erosion resistance of concrete containing various PET particles percentages against sulfuric acid attack. Construction and Building Materials. 2015. Vol. 77, pp. 461–471. DOI: 10.1016/j.conbuildmat.2014.12.037
7. Vishwakarma V., George R.P., Ramachandran D., Anandkumar B., Mudali U.K. Studies of detailed biofilm characterization on fly ash concrete in comparison with normal and superplasticizer concrete in seawater environments. Environmental Technology. 2014. Vol. 35. Iss. 1, pp. 42–51. DOI: 10.1080/09593330.2013.808249
8. Ramachandran D., George R.P., Vishwakarma V., Kamachi Mudali U. Strength and durability studies of fly ash concrete in sea water environments compared with normal and superplasticizer concrete. KSCE Journal of Civil Engineering. 2017. Vol. 21, Iss. 4, pp. 1282–1290. DOI: 10.1007/s12205-016-0272-4
9. Noeiaghaei T., Dhami N., Mukherjee A. Nanoparticles surface treatment on cemented materials for inhibition of bacterial growth. Construction and Building Materials. 2017. Vol. 150, pp. 880–891. DOI: 10.1016/j.conbuildmat.2017.06.046
10. Volpi E., Foiadelli C., Trasatti S., Koleva D.A. Development of smart corrosion inhibitors for reinforced concrete structures exposed to a microbial environment. Industrial and Engineering Chemistry Research. 2017. Vol. 56. Iss. 20, pp. 5778–5794. DOI: 10.1021/acs.iecr.7b00127.
11. Strigác J., Martauz P Fungistatic properties of granulated blastfurnace slag and related slagcontaining cements. Ceramics–Silikaty. 2016. Vol. 60. Iss. 1, pp. 19–26. DOI: 10.13168/cs.2016.0003
12. Erofeev V.T., Fedortsov A.P., Fedortsov V.A. Increase of corrosion resistance of cement composites by active additives. Stroitel’stvo i Rekonstrukcija. 2020. No. 2 (88), pp. 51–60. (In Russian).
13. Fedortsov A.P. Fiziko-himicheskoe soprotivlenie stroitel’nyh kompozitov i sposoby ego povyshenija [Physico-chemical resistance of building composites and ways to increase it]. Saransk: Publishing House of Mordovian University, 2015. 464 p.
14. Chernyshev E.M., Korotkikh D.N., Artamonova O.V. Nanotechnological conditions for controlling the structure formation of high-strength cement concrete. Trudy central’nogo regional’nogo otdelenija RAASN. 2010, pp. 102–123. (In Russian).
15. Dvorkin L.I., Shabman I.B., Chudnovsky S.M., et al. High-strength concrete with the use of fly ash. Beton i Zhelezobeton. 1993. No. 1, pp. 23–25. (In Russian).
16. Marcos-Meson V., Fischer G., Edvardsen C., Skovhus T.L., Michel A. Durability of Steel Fibre Reinforced Concrete (SFRC) exposed to acid attack – A literature review. Construction and Building Materials. 2019. Vol. 200, pp. 490–501. DOI: 10.1016/j.conbuildmat.2018.12.051
17. Komokhov P.G., Svatovskaya L.B., Shangina N.N., Leikin A.P. Control of properties of cement mixtures by nature of filler. Izvestija Vuzov. Stroitel’stvo. 1997. No. 9, pp. 51–54. (In Russian).
18. Ramachandran V., Feldman R., Baudouin J. Nauka o betone: Fiziko-himicheskoe betonovedenie [Science of concrete: Physico-chemical concrete science] / trans. from Engl. Moscow: Stroyizdat. 1986. 278 p.
19. Batrakov V.G., Kaprielov S.S., Shejnfel’d A.V. Efficiency of using ultrafine wastes of ferroalloy production. Beton i zhelezobeton. 1989. No. 8, pp. 24–26. (In Russian).
20. Malinina L.A., Dovzhag V.G., Leshchinsky M.Y., Entin Z.B. Saving of materials and energy resources in concrete technology. Beton i Zhelezobeton. 1988. No. 9, pp. 25–27. (In Russian).
21. Afanasyev N.F., Tseluiko M.K.. Dobavki v betony i rastvory [Additives in concrete and mortars]. Kiev: Budivelnik. 1989. 128 p.
22. Solomatov V.I., Selyaev V.P., Fedortsov A.P., Borisova E.A. Cement compositions with silica fillers. Izvestija vuzov. Stroitel’stvo i Arhitektura. 1990. No. 6, pp. 53–56. (In Russian).
23. Solomatov V.I., Dudynov S.V., Fedortsov A.P. Povysheniye kislotostoykosti tsementnogo betona / Korroziya stroitel’nykh konstruktsiy i meropriyatiya po ikh effektivnoy zashchite [Increase of acid resistance of cement concrete / Corrosion of building structures and measures for their effective protection]. Saratov: Publishing House of Giproniigaz Institute, 1990, pp. 3–10.
24. Fedortsov A.P., Oshkina L.M., Martynova L.A. et al. Improvement of cement stone properties by introduction of additives forming buffer systems. Vestnik of the Mordovian University. 1998. No. 3–4, pp. 101–105. (In Russian).
25. Fedortsov A.P., Fomchenkov V.V., Erofeev V.T., Mitina E.A. Complex additives for concrete corrosion protection. Actual issues of construction: materials of the International scientific and technical conference. Saransk: Publishing House of Mordovian University, 2004, pp. 301–304.
26. Alekseev S.N., Ivanov F.M., Modry S., Schissl P. Dolgovechnost’ zhelezobetona v agressivnyh sredah [Durability of reinforced concrete in aggressive media]. Moscow: Stroyizdat. 1990. 320 p.
27. Khimicheskiy entsiklopedicheskiy slovar’ [Chemical Encyclopedic Dictionary] / ed. by I.L. Knunyants. Moscow: Soviet Encyclopedic Dictionary. 1983. 792 p.
28. Lazarev A.I., Kharlamov I.P., Yakovlev P.Y., Yakovleva E.F. Spravochnik khimika-analitika [Reference book of analytical chemist]. Moscow: Metallurgy. 1976. 184 p.

For citation: Fedortsov V.A., Gladkin S.S., Fedortsov A.P., Erofeev V.T. Improving the Performance Properties of cement composites to environmental influences with complex additives. Stroitel’nye Materialy [Construction Materials]. 2023. No. 8, pp. 72–79. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-816-8-72-79

Formation of the Physical and Chemical Structure of Paint and Varnish Coatings During Their Nano-Modification

Number of journal: 8-2023
Autors:

Pchelnikov A.V.,
Pichugin A.P.

DOI: https://doi.org/10.31659/0585-430X-2023-816-8-63-71
УДК: 691.17

 

AbstractAbout AuthorsReferences
The issues of the formation of the physicochemical structure of paint and varnish coatings as a result of their modification with various additives are considered. It is indicated that an increase in the operational characteristics of coatings is ensured by cross-linking of polymer macromolecules and the formation of a network structure. The results of studying the structure of nano-modified coatings are presented; it was found that the introduction of carbon nanotubes and bismuth oxide does not change the group bonds in the basis of the binder of the paint-varnish material, while nano-additives contribute to the transition of polymer macromolecules to a stretched (stressed) state due to the occurrence of heterogeneous radical catalysis, which initiates the polymerization of the paint-varnish material, i.e. nano-additives act as structure-forming centers, provoking the elongation of polymer chains, which contributes to the formation of more molecular bonds. When interacting with nano-additives, the surface orientation of the polar groups of polymer molecules occurs, which enhances cohesive and adhesive bonds due to the formation of enhanced electrovalent interaction.
A.V. PCHELNIKOV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.P. PICHUGIN, Doctor of Sciences (Engineering)

Novosibirsk State Agricultural University (160, Dobroliubova Street, Novosibirsk, 630039, Russian Federation)

1. Bagdasaryan Kh.S. Teoriya radikal’noi polimerizatsii [Theory of radical polymerization]. Moscow: Nauka. 1966. 300 p.
2. Pchelnikov A.V., Pichugin A.P., Khritankov V.F., Ilyasov A.P. Influence of nanoadditives on increasing the adhesion strength of protective coatings to steel structures and equipment. Izvestiya VUZov. Stroitel’stvo. 2021. No. 7, pp. 103–113. (In Russian).
3. Kuleznev V.N., Shershnev V.A. Khimiya i fizika polimerov [Chemistry and physics of polymers]. Moscow: Vysshaya shkola. 1988. 312 p.
4. Moskvitin N.I. Skleivanie polimerov [Bonding of polymers]. Moscow: Lesnaya promyshlennost’. 1968. 304 p.
5. Pchelnikov A.V., Pichugin A.P., Khritankov V.F., Smirnova O.E. The role of nano-additives in the formation of a strong contact layer of protective coatings. Stroitel’nye Materialy [Construction Materials]. 2022. No. 7, pp. 45–50. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-804-7-45-50
6. Tager A.A. Physical chemistry of polymers [Fiziko-khimiya polimerov]. Moscow: Nauka. 1968. 320 p.
7. Fedtke M. Khimicheskiye reaktsii polimerov [Chemical reactions of polymers]. Moscow: Khimiya. 1990. 152 p.
8. Fomina L.V., Beznosyuk S.A. Kataliz i katalizatory [Catalysis and catalysts]. Barnaul: AltGU. 2014. 208 p.
9. Fursikov P.V., Tarasov P.V. Catalytic synthesis and properties of carbon nanofibers and nanotubes. Al’ternativnaya energetika i ekologiya. 2004. No. 10, pp. 24–40. (In Russian).
10. Shashok Zh.S., Prokopchuk N.R. Primeneniye uglerodnykh nanomaterialov v polimernykh kompozitsiyakh [Application of carbon nanomaterials in polymer compositions]. Minsk: BSTU. 2014. 232 p.
11. Pchelnikov A.V., Pichugin A.P., Lutsik R.V., Tkachenko S.E. Dielectric analysis of operational characteristics and the aging process of protective coatings. Ekspert: teoriya i praktika. 2022. No. 1 (16), pp. 14–22. (In Russian).
12. Pichugin A.P., Khritankov V.F., Pchelnikov A.V., Romashev D.V. Protective properties of compositions with nanosized and special additives against radiation exposure. Izvestiya VUZov. Stroitel’stvo. 2021. No. 12 (756), pp. 24–33. (In Russian).
13. Pchelnikov A.V., Pichugin A.P., Khritankov V.F., Voloboy E.A. Modeling of the process and methods for assessing the burning of protective coatings of metal structures and equipment. Izvestiya VUZov. Stroitel’stvo. 2020. No. 6 (738), pp. 81–90. (In Russian).
14. Ilyasov A.P., Pchelnikov A.V., Pichugin A.P., Khritankov V.F. Heat-shielding properties of polymer compositions with nanosized and special additives. Izvestiya VUZov. Stroitel’stvo. 2022. No. 3, pp. 15–24. (In Russian).
15. Averko-Antonovich Yu.I. Metody issledovaniya struktury i svoystv polimerov [Methods for studying the structure and properties of polymers]. Kazan: KSTU. 2002. 604 p.
16. Brown D., Floyd A., Sainsbury M. Spektroskopiya organicheskikh veshchestv [Spectroscopy of organic substances]. Mosocw: Mir. 1992. 300 p.
17. Vulfson N.S., Zaikin V.G., Mikaya A.I. Mass-spektrometriya organicheskikh soyedineniy [Mass spectrometry of organic compounds]. Moscow: Khimiya. 1986. 312 p.
18. Poray-Koshits M.A. Osnovy strukturnogo analiza khimicheskikh soyedineniy [Fundamentals of structural analysis of chemical compounds]. Moscow: Vysshaya shkola. 1989. 192 p.
19. Pichugin A.P., Pchelnikov A.V., Khritankov V.F., Tulyaganov A.K. Evaluation of the effectiveness of the use of nano-additives in protective coatings. Stroitel’nye Materialy [Construction Materials]. 2023. No. 3, pp. 20–26. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-811-3-20-26
20. Sutyagin V.M., Bondaletova L.I. Khimiya i fizika polimerov [Chemistry and physics of polymers]. Tomsk: Publishing House of TPU. 2003. 208 p.
21. Zimon A.D. Adgeziya plenok i pokrytiy [Adhesion of films and coatings]. Moscow: Khimiya. 1977. 352 p.

For citation: Pchelnikov A.V., Pichugin A.P. Formation of the physical and chemical structure of paint and varnish coatings during their nano-modification. Stroitel’nye Materialy [Construction Materials]. 2023. No. 8, pp. 63–71. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-816-8-63-71

Evolution of Mathematical Models of Processes of Non-Stationary Heat (Mass) Conduction in Bodies of Canonical Form

Number of journal: 8-2023
Autors:

Fedosov S.V.,
Bakanov M.O

DOI: https://doi.org/10.31659/0585-430X-2023-816-8-54-62
УДК: 001.891.573

 

AbstractAbout AuthorsReferences
Currently, there are a large number of materials that are thermally affected during their production. From the point of view of the principles of geometry, their shape can be reduced to classical bodies of canonical form: a plate, a cylinder, a ball. In the heat treatment of solid materials (heat and moisture treatment, drying, firing), the transfer potentials (temperature, mass content) change critically with respect to the process time. When solving boundary value problems of heat and mass (moisture) conductivity in similar cases, it is proposed to use the zonal method and the method of micro-processes. The main positions of the method of micro-processes, as applied to modeling boundary value problems of heat and mass transfer for canonical bodies under boundary conditions of the first kind (Dirichlet conditions), were outlined in previous articles by the authors. In this paper, a technique based on the method of micro-processes for solving boundary value problems of heat and moisture conduction under more general boundary conditions, conditions of the third kind (Riemann-Newton) is presented. The high adaptability of these conditions lies in the fact that, depending on the values of the Biot number (Bi), they are transformed into a condition of the first kind ((Bi→0) or the second (Bi→∞). The paper shows that for mathematical modeling of heat and mass transfer processes in systems with a solid phase based on the method of micro-processes, it is promising to search for solutions in the field of small Fourier numbers (Fo <0,1). Mathematical calculations for solving the corresponding boundary value problems are given and examples of the results of their numerical implementation are shown. The solution to the problems of heat conduction and diffusion for bodies, including the canonical form, is obtained in the form of Fourier series, which is typical for conditions with an uneven initial distribution of heat and mass transfer potentials, but solutions for small Fourier numbers are not given in the sources. At the same time, as the process time decreases, the numerical values of the Fourier criteria also decrease, and thus there are more members of the infinite series, which entails an increase in the error in further calculations. The paper presents solutions for canonical bodies – plates, cylinders and spheres, also presents nomograms of the dimensionless temperature of the body surface depending on the values of the Biot and Fourier numbers at specific values of the Bi number.
S.V. FEDOSOV1, Academician Russian Academy of Architecture and Construction Sciences (RAACS), Doctor of Sciences (Engineering), Professor (This email address is being protected from spambots. You need JavaScript enabled to view it.),
M.O. BAKANOV2, Adviser of RAACS, Doctor of Sciences (Engineering), Head of the Educational and Scientific Complex "Fire Fighting"(This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)
2 Ivanovo Fire and Rescue Academy of the State Fire Service of the Ministry of Emergency Situations of Russia (33, Stroiteley Prospect, Ivanovo, 153011, Russian Federation)

1. Федосов С.В., Баканов М.О. Применение метода «микропроцессов» для моделирования процессов теплопроводности и диффузии в телах канонической формы // Известия вузов. Химия и химическая технология. 2020. Т. 63. Вып. 10. С. 90–95. DOI: 10.6060/ivkkt.20206310.6275
1. Fedosov S.V., Bakanov M.O. Application of the “microprocesses” method for modeling the processes of heat conduction and diffusion in bodies of canonical form. Izvestiya vuzov. Khimiya i khimicheskaya tekhnologiya. 2020. Vol. 63. Iss. 10, pp. 90–95. (In Russian) DOI:  10.6060/ivkkt.20206310.6275
2. Федосов С.В., Баканов М.О. Моделирование процессов теплопроводности и диффузии в телах канонической формы с применением метода «микропроцессов» для области малых значений числа Фурье // Известия вузов. Химия и химическая технология. 2021. Т. 64. Вып. 10. С. 78–83. DOI: 10.6060/ivkkt.20216410.6387
2. Fedosov S.V., Bakanov M.O. Modeling of processes of heat conduction and diffusion in bodies of canonical form using the method of «microprocesses» for the region of small values of the Fourier number. Izvestiya vuzov. Khimiya i khimicheskaya tekhnologiya. 2021. Vol. 64. Iss. 10, pp. 78–83. (In Russian). DOI: 10.6060/ivkkt.20216410.6387
3. Баканов М.О. Моделирование высокотемпературных процессов в технологии пеностекла. Ч. 1. Формирование динамики циклических нестационарных двумерных температурных полей. Вестник Поволжского государственного технологического университета. Серия: Материалы. Конструкции. Технологии. 2021. № 2. С. 87–102. DOI: 10.25686/2542-114Х.2021.2.87
3. Bakanov M.O. Modeling of high-temperature processes in foam glass technology. Part 1: Formation of the dynamics of cyclic non-stationary two-dimensional temperature fields. Vestnik of the Volga State Technological University. Series: Materials. Constructions. Technologies. 2021. No. 2, pp. 87–102. (In Russian). DOI: 10.25686/2542-114Х.2021.2.87
4. Claesson J. Dynamic thermal networks: a methodology to account for time-dependent heat conduction. In book: Research in Building Physics. 2020. 1st Edition, pp. 407-415.
5. Stankevičius V., Barkauskas V. Pastatų atitvarų šiluminė fizika [Building physics]. Kaunas: Technologija. 2000. 286 p.
6. Pupeikis D., Stankevičius V., Burlingis A. The effect of the Fourier number on calculation of an unsteady heat transfer of building walls. Journal of Civil Engineering and Management. 2010. Vol. 16. No. 2, pp. 298–305. DOI:. No. https://doi.org/10.3846/jcem.2010.34
7. Hensen J.L.M., Nakhi A.E. Fourier and Biot numbers and the accuracy of conduction modelling. Proceedings of BEP’94 Conference. 1994, pp. 247–256.
8. Cuesta F.J., Lamúa M. Fourier series solution to the heat conduction equation with an internal heat source linearly dependent on temperature: application to chilling of fruit and vegetables. Journal of food engineering. 2009. Vol. 90. No. 2, pp. 291–299. https://doi.org/10.1016/j.jfoodeng.2008.06.036
9. Рудобашта С.П., Карташов Э.М. Диффузия в химико-технологических процессах. М.: КолосС, 2013. 478 с.
9. Rudobashta S.P., Kartashov E.M. Diffuziya v khimiko-tekhnologicheskikh protsessakh [Diffusion in chemical-technological processes]. Moscow: Kolos. 2013. 478 p.
10. Федосов С.В. Тепломассоперенос в технологических процессах строительной индустрии. Иваново: ИПК «ПресСто», 2010. 363 с.
10. Fedosov S.V. Teplomassoperenos v tekhnologicheskikh protsessakh stroitel’noy industrii [Heat and mass transfer in technological processes of the construction industry]. Ivanovo: IPK «PresSto». 2010. 363 p.
11. Лыков А.В. Теория теплопроводности. М.: Высшая школа, 1967. 600 с.
11. Lykov A.V. Teoriya teploprovodnosti [Theory of thermal conductivity]. Moscow: Vysshaya shkola. 1967. 600 p.
12. Лыков А.В., Михайлов Ю.А. Теория тепло- и массопереноса. М.; Л.: Госэнергоиздат, 1963. 535 с.
12. Lykov A.V., Mikhailov Yu.A. Theory of heat and mass transfer. Moscow-Leningrad: Gosenergoizdat. 1963. 535 p.
13. Мамонтов А.Е. Методы математической физики: Учебное пособие. Новосибирск: НГПУ, 2016. 129 с.
13. Mamontov A.E. Metody matematicheskoy fiziki: uchebnoye posobiye [Methods of mathematical physics] Novosibirsk: NGPU. 2016. 129 p.
14. Шамин Р.В. Концентрированный курс высшей математики. М.: URSS, 2017. 398 с.
14. Shamin R.V. Kontsentrirovannyy kurs vysshey matematiki [Concentrated course of higher mathematics]. Moscow: URSS. 2017. 398 p.
15. Цой П.В. Методы расчета отдельных задач тепломассопереноса. М.: Энергия, 1971. 384 с.
15. Tsoi P.V. Metody rascheta otdel’nykh zadach teplomassoperenosa [Methods for calculating individual problems of heat and mass transfer]. Moscow: Energiya. 1971. 384 p.
16. Wang C.C. Application of the maximum principle for differential equations in combination with the finite difference method to find transient approximate solutions of heat equations and error analysis. Numerical Heat Transfer. Part B: Fundamentals. 2009. Vol. 55. No. 1, pp. 56–72. https://doi.org/10.1080/10407790802557524
17. Šadauskienė, J., Buska A., Burlingis A., Bliūdžius R., Gailius A. The effect of vertical air gaps to thermal transmittance of horizontal thermal insulating layer. Journal of Civil Engineering and Management. 2009. Vol. 15 (3), pp. 309–315. DOI: 10.3846/1392-3730.2009.15.309-315.
18. Карташов Э.М., Кудинов В.А. Аналитические методы теории теплопроводности и ее приложений. М.: URSS, 2018. 1080 с.
18. Kartashov E.M., Kudinov V.A. Analytical methods of the theory of heat conduction and its applications. Moscow: URSS. 2018. 1080 p. [Analytical methods of the theory of heat conduction and its applications]. Moscow: URSS. 2018. 1080 p.
19. Rudobashta S., Zuev N., Zueva G. Mathematical modeling and numerical simulation of seeds drying under oscillating infrared irradiation. Drying Technology. 2014. Vol. 32. No. 11, pp. 1352–1359. DOI: No. 10.1080 / 07373937.2014.892508
20. Rudobashta S., Zueva G. Drying of seeds through oscillating infrared heating. Drying Technology. 2016. Vol. 34. No. 5, pp. 505–515. DOI: No. 10.1080/07373937.2015.1060997
21. Рудобашта С.П., Зуева Г.А., Дмитриев В.М. Исследование массопроводных свойств слоя семян // Известия вузов. Химия и химическая технология. 2017. № 60 (7). С. 72–77. DOI: 10.6060/tcct.2017607.5556
21. Rudobashta S.P., Zueva G.A., Dmitriev V.M. Study of the mass-conducting properties of the seed layer. Izvestiya vuzov. Chemistry and chemical technology. 2017. No. 60 (7), pp. 72–77. DOI: 10.6060/tcct.2017607.5556
22. Румянцева В.Е., Смельцов В.Л., Федосова Н.Л., Хрунов В.А., Костерин А.Я. Экспериментальные исследования процессов массопереноса при жидкостной коррозии цементных бетонов // Приволжский научный журнал. 2010. № 1 (13). С. 39–46.
22. Rumyantseva V.E., Smeltsov V.L., Fedosova N.L., Khrunov V.A., Kosterin A.Ya. Experimental studies of mass transfer processes during liquid corrosion of cement concretes. Privolzhskiy nauchnyy zhurnal. 2010. No. 1 (13), pp. 39–46. (In Russian).
23. Румянцева В.Е., Красильников И.В., Лавринович С.С., Виталова Н.М. Сравнительный анализ уравнений распределения температур по толщине железобетонной панели в процессах тепловлажностной обработки // Приволжский научный журнал. 2015. № 3 (35). С. 70–76.
23. Rumyantseva V.E., Krasilnikov I.V., Lavrinovich S.S., Vitalova N.M. Comparative analysis of the equations of temperature distribution over the thickness of a reinforced concrete panel in the processes of heat and moisture treatment. Privolzhskiy nauchnyy zhurnal. 2015. No. 3 (35), pp. 70–76.
24. Федосов С.В., Румянцева В.Е., Коновалова В.С., Гоглев И.Н. Явления массопереноса в системе «Цементный раствор – композитная пластиковая арматура» на стадии структурообразования композита. Ч. 1. Физические представления и математическая постановка задачи // Academia. Архитектура и строительство. 2020. № 1. С. 118–123.
24. Fedosov S.V., Rumyantseva V.E., Konovalova V.S., Goglev I.N. Mass transfer phenomena in the «Cement mortar-composite plastic reinforcement» system at the stage of composite structure formation. Part 1. Physical representations and mathematical formulation of the problem. Academia. Arkhitektura i stroitel’stvo. 2020. No. 1, pp. 118–123. (In Russian).
25. Красильников И.В., Красильникова И.А., Новикова У.А., Строкин К.Б. Способ аппроксимации аналитическими уравнениями экспериментальных данных о динамике массопереноса в теле строительных конструкций. Инженерные и социальные системы: Сборник научных трудов института архитектуры, строительства и транспорта ИВГПУ. Иваново, 2021. С. 11–18.
25. Krasilnikov I.V., Krasilnikova I.A., Novikova U.A., Strokin K.B. Method of approximation by analytical equations of experimental data on the dynamics of mass transfer in the body of building structures. In the collection: Engineering and social systems. Collection of scientific papers of the institute of architecture, construction and transport of IVSPU. Ivanovo. 2021, pp. 11–18. (In Russian).
26. Чернявская А.С., Бобков С.П. Моделирование процессов теплопереноса в движущейся жидкости // Вестник ИГЭУ. 2014. Вып. 4. С. 53–57.
26. Chernyavskaya A.S., Bobkov S.P. Modeling of heat transfer processes in a moving fluid. Vestnik of ISEU. 2014. Iss. 4, pp. 53–57. (In Russian).

For citation: Fedosov S.V., Bakanov M.O. Evolution of mathematical models of processes of non-stationary heat (mass) conduction in bodies of canonical form. Stroitel’nye Materialy [Construction Materials]. 2023. No. 8, pp. 54–62. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-816-8-54-62

Mechanisms for the Formation of the Structure and Properties of Pressed Fine-Grained Concretes

Number of journal: 8-2023
Autors:

Goncharova M.A.,
Agamov R.E.,
Zaeva A.G.,
Butuzov G.M.,
Monastyrev P.V.

DOI: https://doi.org/10.31659/0585-430X-2023-816-8-48-53
УДК: 666.972

 

AbstractAbout AuthorsReferences
The possibilities of optimizing technological and prescription factors and external influences under the conditions of pressing products from fine-grained concrete are considered in detail. It is shown that the tasks of improving the quality of these products are of particular relevance. It is established that moisture shrinkage is the most important and problematic property of modern concrete of modified structure, reducing their quality. The article shows that optimal construction and technical properties are obtained in the range of V/T ratios from 0.12 to 0.16, which characterizes the kinetics of hardening of fine-grained concrete pressed to the same density. The influence of the selected components and technological factors on the processes of early structure formation of cement systems (starting from the moment of mixing the components) on the balance of internal (film wedging and capillary tightening) forces in the system in a wide range of water-cement ratios was studied. The results obtained provide the necessary guidelines for specialists and consumers of pressed products.
M.A. GONCHAROVA1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
R.E. AGAMOV1, Engineer (smidt48@mail@ru),
A.G. ZAEVA1, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
G.M. BUTUZOV1, Engineer (smidt48@mail@ru);
P.V. MONASTYREV2, Doctor of Sciences (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Lipetsk State Technical University (30 Moskovskaya Street, Building B, Lipetsk, 398005, Russian Federation)
2 Tambov State Technical University (106/5 Sovetskaya Street, Tambov, 392000, Russian Federation)

1. Deryagin V.V., Churaev A.V., Ovcharenko F.D. Voda v dispersnykh sistemakh [Water in dispersed systems]. Moscow: Khimiya. 1989. 288 p.
2. Erofeev V.T., Maksimova I.N., Tarakanov O.V., Sanyagina Ya.A., Erofeeva I.V., Suzdaltsev O.V. Decorative and finishing powder-activated concretes with a granular surface texture. Stroitel’nye Materialy [Construction Materials]. 2022. No. 10, pp. 25–40. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-807-10-25-40
3. Ayzenshtadt A.M., Frolova M.A., Danilov V.E., Drozdyuk T.A., Malygina M.A. Modification transformations of saponite-containing material during mechanical grinding. Stroitel’nye Materialy [Construction Materials]. 2023. No. 7, pp. 54–59. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-815-7-54-59
4. Inozemtsev A.S., Korolev E.V. Comparative analysis of influence of nanomodification and micro-dispersed reinforcement on the process and parameters of destruction of high-strength lightweight concrete. Stroitel’nye Materialy [Construction Materials]. 2017. No. 7, pp. 11–15. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2017-750-7-11-15.
5. Kaprielov S.S., Sheinfeld A.V., Dondukov V.G. Cements and additives for producing high-strength concretes. Stroitel’nye Materialy [Construction Materials]. 2017. No. 11, pp. 4–10. (In Russian). DOI:https://doi.org/10.31659/0585-430X-2017-754-11-4-10
6. Gryzlov V.S., Zavialova D.V. Screenings of crushing of broken slag as an efficient component of concrete. Stroitel’nye Materialy [Construction Materials]. 2018. No. 5, pp. 40–43. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2018-759-5-40-43
7. Agamov R.E., Goncharova M.A., Mraev A.V. Steelmaking slags as an effective raw material in road construction. Stroitel’nye Materialy [Construction Materials]. 2023. No. 1–2, pp. 56–60. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-810-1-2-56-60
8. Аgamov R.E., Goncharova M.A., Pachin A.R. High-strength fiber-reinforced concrete in structures for general construction and special purposes. Stroitel’nye Materialy [Construction Materials]. 2023. No. 1–2, pp. 39–43. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-810-1-2-39-43
9. Al-Surrayvi H.G.H, Goncharova M.A., Zaeva A.G. Synthesis of composites on the basis of local raw materials under the influence of aggressive environment. Stroitel’nye Materialy [Construction Materials]. 2021. No. 5, pp. 69–74. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-791-5-69-74
10. Goncharova M.A., Komarichev A.V., Karaseva O.V. Composite injection materials with two-stage magnetic processing systems hardening. Stroitel’stvo i rekonstruktsiya. 2017. No. 6 (74), pp. 114–120. (In Russian).
11. Certificate of state registration of the computer program No. 2023610509 RF. Program for the selection of the composition of lightweight concrete without additives. Goncharova M.A., Yudina A.O., Dergunova E.S. Declared 12.27.2022. (In Russian).
12. Certificate of state registration of the computer program No. 2023618934 RF. Program for calculating the composition of concrete of various structures. Goncharova M.A., Myakiev A.H., Dergunova E.S. Declared 04.25.2023.
13. Goncharova M.A., Krokhotin V.V., Ivashkin A.N. The influence of fiber reinforcement on the properties of the selfcompacting concrete mix and concrete. Solid State Phenomena. 2020. Vol. 299, pp. 112–117. DOI 10.4028/www.scientific.net/SSP.299.112
14. Smirnov V.A., Korolev E.V. Building materials as disperse systems: multiscale modeling with dedicated software. Stroitel’nye Materialy [Construction Materials]. 2019. No. 1–2, pp. 43–53. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-43-53
15. Strokova V.V., Netsvet D.D., Nelubova V.V., Serenkov I.V. Properties of composite binder based on nanostructured suspension. Stroitel’nye Materialy [Construction materials]. 2017. No. 1–2, pp. 50–54. . (In Russian). DOI: https://doi.org/10.31659/0585-430X-2017-745-1-2-50-54
16. Shmit’ko E.I., Verlina N.A. Press-molding processes and their influence on adobe brick quality. Stroitel’nye Materialy [Construction Materials]. 2015. No. 10, pp. 5–7. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2015-730-10-5-7
17. Shmit’ko E.I., Bel’kova N.A., Makushina Yu.V. Influence of surfactants on humid shrinkage of concretes. Stroitel’nye Materialy [Construction Materials]. 2018. No. 4, pp. 48–51. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2018-758-4-48-51
19. Vernigorova V.N., Sadenko S.M. Concrete mix structure and role of water in its physical-chemical transformation in concrete. Stroitel’nye Materialy [Construction Materials]. 2018. No. 4, pp. 52–55. (In Russian).DOI: https://doi.org/10.31659/0585-430X-2018-758-4-52-55

For citation: Goncharova M.A., Agamov R.E., Zaeva A.G., Butuzov G.M., Monastyrev P.V. Mechanisms for the formation of the structure and properties of pressed fine-grained concretes. Stroitel’nye Materialy [Construction Materials]. 2023. No. 8, pp. 48–53. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-816-8-48-53

Radiation-Protective Properties of Cellular Barite-Containing Concrete

Number of journal: 8-2023
Autors:

Samchenko S.V.,
Bruyako M.G.,
Novikov N.V.

DOI: https://doi.org/10.31659/0585-430X-2023-816-8-42-47
УДК: 666.974

 

AbstractAbout AuthorsReferences
In the modern construction practice, to protect medical personnel from the harmful effects of ionizing radiation, materials with high density and mass are used, which negatively affect the technical and economic performance of the construction. In this paper, the possibility of using cellular barite-containing concrete as a structural material for the radiation protection of the medical premises is considered. The aim of this approach is to reduce the weight of the protective structure while maintaining the required protective characteristics. Using the method of mathematical modeling, based on the elemental compositions and densities of the studied materials, the radiation-protective characteristics of barite-containing cellular concrete, designed to attenuate the radiation intensity in accordance with the existing policies, were determined. The allowable attenuation ratio of photon radiation resulting from the operation of x-ray equipment was calculated for the protective structures. The linear attenuation coefficients of photon radiation, the necessary thicknesses and mass per unit area of protective structures are determined. The obtained results were compared with similar indicators of structures made of standard concrete used for protection X-ray rooms from ionizing radiation. Reducing the density of the material leads to a decrease in radiation-protective characteristics, however, with an increase in the thickness of the structure made of cellular barite-containing concrete, it is possible to achieve a reduction in the mass of the structure necessary to achieve the required radiation-protective characteristics. The greatest effect can be achieved by shielding radiation with an energy range of 0.02–0.1 MeV. In this power range, it is possible to achieve a reduction in the mass of the building structures by 28–59%. At a radiation energy range of 0.2-3 MeV, the reduction in mass is 2–8%.
S.V. SAMCHENKO, Doctor of Science (Engineering), Professor, Head of Department of building materials science,
M.G. BRUYAKO, Candidate of Science (Engineering), Assistant professor,
N.V. NOVIKOV, Engineer (Postgraduate student) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Онищенко Г.Г., Романович И.К. Основные направления обеспечения радиационной безопасности населения Российской Федерации на современном этапе // Радиационная гигиена. 2014. Т. 7. № 4. С. 5–22.
1. Onishchenko G.G., Romanovich I.K. The main directions of ensuring the radiation safety of the population of the Russian Federation at the present stage Radiatsionnaya gygiena. 2014. Vol. 7. No. 4, pp. 5–22. (In Russian).
2. Балонов М.И., Голиков В.Ю., Звонова И.А., Кальницкий С.А., Репин В.С., Сарычева С.С., Чипига Л.А. Современные уровни медицинского облучения в России // Радиационная гигиена. 2015. Т. 8. № 3. С. 67–79.
2. Balonov M.I., Golikov V.Yu., Zvonova I.A., Kalnitsky S.A., Repin V.S., Sarycheva S.S., Chipiga L.A. Modern levels of medical exposure in Russia. Radiatsionnaya gygiena. 2015. Vol. 8. No. 3, pp. 67–79. (In Russian).
3. Онищенко Г.Г., Попова А.Ю., Романович И.К., Водоватов А.В., Башкетова Н.С., Историк О.А., Чипига Л.А., Шацкий И.Г., Репин Л.В., Библин А.М. Современные принципы обеспечения радиационной безопасности при использовании источников ионизирующего излучения в медицине. Ч. 1. Тенденции развития, структура лучевой диагностики и дозы медицинского облучения // Радиационная гигиена. 2019. Т. 12. № 1. С. 6–24. DOI: https://doi.org/10.21514/1998-426X-2019-12-1-6-24
3. Onischenko G.G., Popova A.Yu., Romanovich I.K., Vodovatov A.V., Bashketova N.S., Istorik O.A., Chipiga L.A., Shatsky I.G., Repin L.V., Biblin A.M. Modern principles of the radiation protection from sources of ionizing radiation in medicine. Part 1: Trends, structure of x-ray diagnostics and doses from medical exposure. Radiatsionnaya gygiena. 2019. Vol. 12. No. 1, pp. 6–24. (In Russian) https://doi.org/10.21514/1998-426X-2019-12-1-6-24
4. Yıldız A., Köse E., Demirtaş Ö.C. Analysis of precautions taken for protection from X-rays in a hospital in Gaziantep in the context of workplace health and safety. Journal of Radiation Research and Applied Sciences. 2022. Vol. 15. No. 4. DOI: https://doi.org/10.1016/j.jrras.2022.08.004
5. Ташлыков О.Л., Щеклеин С.Е., Хомяков А.П., Русских И.М., Селезнев Е.Н. Расчетно-экспериментальное исследование гомогенных защит от гамма-излучения // Ядерная и радиационная безопасность. 2015. № 3 (77). С. 17–24.
5. Tashlykov O.L., Shcheklein S.E., Khomyakov A.P., Russkikh I.M., Seleznev E.N. Computational and experimental study of homogeneous protection against gamma radiation. Yadernaya i radiatsionnaya bezopasnost’. 2015. No. 3 (77), pp. 17–24. (In Russian).
6. Abu Al Roos N.J., Amin N.A.B., Zainon R. Conventional and new lead-free radiation shielding materials for radiation protection in nuclear medicine: A review. Radiation Physics and Chemistry. 2019. Vol. 165. DOI: https://doi.org/10.1016/j.radphyschem.2019.108439
7. Ташлыков О.Л., Щеклеин С.Е., Лукьяненко В.Ю., Михайлова А.Ф., Русских И.М., Селезнев Е.Н., Козлов А.В. Оптимизация состава радиационной защиты // Известия высших учебных заведений. Ядерная энергетика. 2015. № 4. С. 36–42. DOI: 10.26583/npe.2015.4.04
7. Tashlykov O.L., Shcheklein S.E., Lukyanenko V.Yu., Mikhailova A.F., Russkikh I.M., Seleznev E.N., Kozlov A.V. Optimization of the composition of radiation protection. Izvestiya vysshikh uchebnykh zavedeniy. Yadernaya energetika. 2015. No. 4, pp. 36–42. (In Russian). DOI: 10.26583/npe.2015.4.04
8. Daungwilailuk T., Yenchai C., Rungjaroenkiti W., Pheinsusom P., Panwisawas C., Pansuk W. Use of barite concrete for radiation shielding against gamma-rays and neutrons. Construction and Building Materials. 2022. Vol. 326. DOI: https://doi.org/10.1016/j.conbuildmat.2022.126838
9. Akkurt I., Basyigit C., Kilincarslan S., Mavi B. The shielding of γ-rays by concretes produced with barite. Progress in Nuclear Energy. 2005. Vol. 46. No. 1, pp. 1–11. DOI: https://doi.org/10.1016/j.pnucene.2004.09.015
10. Saidani K., Ajam L., Ouezdou M. B. Barite powder as sand substitution in concrete: Effect on some mechanical properties. Construction and Building Materials. 2015. Vol. 95, pp. 287–295. DOI: https://doi.org/10.1016/j.conbuildmat.2015.07.140
11. Luković J., Biljana B., Bučevac D., Prekajski M., Pantić J., Baščarević Z., Matović B. Synthesis and characterization of tungsten carbide fine powders. Ceramics International. 2015. Vol. 41. No. 1. Part B, pp. 1271–1277. DOI: https://doi.org/10.1016/j.ceramint.2014.09.057
12. Duran S.U., Küçüköğmeroğlu B., Çiriş A., Ersoy H. Gamma-ray absorbing characteristic of obsidian rocks as a potential material for radiation protection. Radiation Physics and Chemistry. 2022. Vol. 199. DOI: https://doi.org/10.1016/j.radphyschem.2022.110309
13. Алфимова Н.И., Пириева С.Ю., Федоренко А.В., Шейченко М.С., Вишневская Я.Ю. Современные тенденции развития радиационно-защитного материаловедения // Вестник Белгородского госу-
дарственного технологического университета им. В.Г. Шухова. 2017. № 4. С. 20–25. DOI: 10.12737/article_58e24bcd42faa5.10006763
13. Alfimova N.I., Pirieva S.Yu., Fedorenko A.V., Sheichenko M.S., Vishnevskaya Ya.Yu. Modern trends in the development of radiation-protective materials science. Vestnik of the Belgorod State Technological University named after V.G. Shukhov. 2017. No. 4, pp. 20–25. (In Russian) DOI: 10.12737/article_58e24bcd42faa5.10006763
14. Костылев В.А., Наркевич Б.Я. Медицинская физика. М.: Медицина, 2008. 464 c.
14. Kostylev V.A., Narkevich B.Ya. Meditsinskaya fizika [Medical physics]. Moscow: Medicine. 2008. 464 p.
15. Reda S.M., Saleh H.M. Calculation of the gamma radiation shielding efficiency of cement-bitumen portable container using MCNPX code. 2021. Progress in Nuclear Energy. Vol. 142. DOI: https://doi.org/10.1016/j.pnucene.2021.104012
16. Cherkashina N., Gavrish V., Chayka T. Experiment – calculated investigation of composite materials for protection against radiation. Materials Today: Proceedings. 2019. Vol. 11. Part 1, pp. 554–560. DOI: https://doi.org/10.1016/j.matpr.2019.01.028
17. Şensoy A., Gökçe H. Simulation and optimization of gamma-ray linear attenuation coefficients of barite concrete shields. Construction and Building Materials. 2020. Vol. 253. DOI: https://doi.org/10.1016/j.conbuildmat.2020.119218
18. Lakshminarayana G., Kumar A., Dong M., Sayyed M., Long N.V., Mahdi M. Exploration of gamma radiation shielding features for titanate bismuth borotellurite glasses using relevant software program and Monte Carlo simulation code. Journal of Non-Crystalline Solids. 2018. Vol. 481, pp. 65–73. DOI: https://doi.org/10.1016/j.jnoncrysol.2017.10.027
19. Baltas H., Sirin M., Celik A., Ustabas I., El-Khayatt A. Radiation shielding properties of mortars with minerals and ores additives. Cement and Concrete Composites. 2019. Vol. 97, pp. 268–278. DOI: https://doi.org/10.1016/j.cemconcomp.2019.01.006
20. Sayyed M., Askin A., Zaid M., Olukotun S., Khandaker M.U., Tishkevich D.I., Bradley D. Radiation shielding and mechanical properties of Bi2O3–Na2O–TiO2–ZnO–TeO2 glass system. Radiation Physics and Chemistry. 2021. Vol. 186. DOI: https://doi.org/10.1016/j.radphyschem.2021.109556
21. Комаровский А.Н. Строительство ядерных установок. М.: Атомиздат, 1969. 503 c.
21. Komarovsky A.N. Stroitel’stvo yadernykh ustanovok [Construction of nuclear installations]. Moscow: Atomizdat. 1969. 503 p.
22. Немец О.Ф., Гофман Ю.В. Справочник по ядерной физике. Киев: Наукова думка, 1975. 414 c.
22. Nemets O.F., Gofman Yu.V. Spravochnik po yadernoi fizike [Handbook of nuclear physics]. Kyiv: Naukova Dumka. 1975. 414 p.

For citation: Samchenko S.V., Bruyako M.G., Novikov N.V. Radiation-protective properties of cellular barite-containing concrete. Stroitel’nye Materialy [Construction Materials]. 2023. No. 8, pp. 42–47. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-816-8-42-47

Ifluence of the Grain Composition of the Aggregate on the Properties of Plaster Solutions Based on a Composite Gypsum Binder

Number of journal: 8-2023
Autors:

Othman Azmi S.A.,
Chernysheva N.V.,
Denisov V.P.
Drebezgova M.Yu.

DOI: https://doi.org/10.31659/0585-430X-2023-816-8-35-41
УДК: 666.533

 

AbstractAbout AuthorsReferences
A special place among modern materials in Palestine is occupied by finishing materials, the effectiveness of which determines the architectural expressiveness and aesthetics of urban planning, as well as the creation of comfortable living conditions, the rational use of fuel and energy resources, and much more. In the country, traditionally, imported cement-sand plaster is used for interior and exterior decoration of buildings and structures. In this regard, it is relevant to develop competitive finishing materials of a new generation (plaster mortars) based on composite gypsum binders (CGB) with increased water resistance, which meet high requirements for product quality, operational and environmental characteristics, as well as energy costs for their production, and capable of replacing imported analogues. The paper presents the results of determining the granulometric composition of a plaster mortar based on a composite gypsum binder (CGB) with a filler of substandard dune quartz sands and a sand fraction of limestone crushing by computational and experimental modeling according to known equations of ideal curves. It was found that the studied sands do not fit into the schedule with the area of normalized grain composition. In order to obtain the optimal granulometric composition of the aggregate, close to the ideal Fuller curve and providing the most dense packing in the plaster mortar based on CGB, the possibility of its enrichment by mixing two types of quartz sands with the sandy fraction of limestone crushing screenings was considered. For this purpose, using the Granlab program, the optimal granulometric composition of a fine filler from a mixture of 3 different sands of the Palestine deposits was calculated. The combined effect of the dosage, as well as the granulometric composition of the CGB and the optimized mixture of aggregates with a sufficiently dense packing of particles, made it possible to achieve the minimum water demand of plaster mixtures with the required workability and to increase the strength of the hardened solution at 28 days of age by 35%.
S.A. OTHMAN AZMI1, Postgraduate (This email address is being protected from spambots. You need JavaScript enabled to view it.),
N.V. CHERNYSHEVA1, Doctor of Sciences (Engineering), Docent, Professor (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.P. DENISOV1, Candidate of Sciences (Engineering), Head of the Laboratory of the Department of Automobile and Railways (This email address is being protected from spambots. You need JavaScript enabled to view it.);
M.Yu. DREBEZGOVA2, Candidate of Sciences (Engineering), Docent (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Belgorod State Technological University named after V.G. Shukhov (46, Kostyukova Street, Belgorod, 308012, Russian Federation)
2 Peter the Great St. Petersburg Polytechnic University (29, Polytechnicheskaya Street, St. Petersburg, 195251, Russian Federation)

1. Babaa Mutasim, Sameh Monna, Muhannad Haj Hussein, Abdel-Fattah Hassan Fuad Baba. Green Buildings Guideline – Palestine Second Edition 2022. 176 p.
2. Tayeh Jehad. Enclosing structures of modern construction in the hot climate of Palestine. Vestnik of MUCE. 2008. No. 3, pp. 22–26. (In Russin).
3. Othman Azmi S.A., Chernysheva N.V., Drebezgova M.Yu., Kovalenko E.V., Masalitina S.V. Composition and properties of composite gypsum binder with increased water resistance. Stroitel’nye Materialy [Construction Materials]. 2023. No. 5, pp. 81–88. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-813-5-81-88
4. Otman Azmi S.A., Chernysheva N.V., Drebezgova M.Yu., Kovalenko E.V., Masalitina S.V. Features of structure formation of composite gypsum binders with a complex of mineral and organic additives. Vestnik of Belgorod state technological university named after V.G. Shukhov. 2023. Vol. 8. No. 4, pp. 24–33. (In Russian). DOI: 10.34031/2071-7318-2023-8-4-24-33
5. Otman Azmi S.A., Chernysheva N.V., Drebezgova M.Yu., Margolis B.I., Novichenkova T.B. Influence of particle size distribution of composite gypsum binder on its properties. Vestnik of Belgorod state technological university named after V.G. Shukhov. 2023. No. 6, pp. 8–16. (In Russian). DOI: 10.34031/2071-7318-2023-8-6-17-25
6. Drebezgova M.Yu., Chernysheva N.V., Shatalova S.V. Composite gypsum binder with multicomponent mineral additives of different genesis. Vestnik of Belgorod state technological university named after V.G. Shukhov. 2017. No. 10, pp. 27–34. (In Russian).
7. Lesovik V., Drebezgova M., Fediuk R. Fast-curing composites based on multicomponent gypsum binders. Journal of Materials in Civil Engineering. 2020. Vol. 32. No. 9. 04020234. DOI: 10.1061/(ASCE)MT.1943-5533.0003313.34031/2071-7318-2023-8-4-24-33
8. Batova M.D., Semenova Yu.A., Gordina A.F., Yakovlev G.I., Buryanov A.F., Stevens A.E., Begunova E.V. Structure and properties of gypsum compositions with mineral dispersed additives. Stroitel’nye Materialy [Construction Materials]. 2021. No. 10, pp. 49–53. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-796-10-49-53
9. Zagorodnyuk L.Kh., Lesovik V.S. Povysheniye effektivnosti proizvodstva sukhikh stroitel’nykh smesey: monografiya [Improving the efficiency of production of dry building mixtures: a monograph]. Belgorod. Publishing house of BSTU. 2014. 548 p.
10. Zozulya P.V. Optimization of particle size distribution and properties of aggregates and fillers for dry building mixtures. Collection of abstracts. 3rd International Conference “Dry Building Mixes for the 21st Century: Technology and Business”. 2003, pp. 12–13. (In Russian).
11. Petropavlovskaya V.B., Belov V.V., Novichenkova T.B., Buryanov A.F., Pustovgar A.P. Optimization of the internal structure of dispersed systems of non-hydration hardening. Stroitel’nye Materialy [Construction Materials]. 2010. No. 7, pp. 22–24. (In Russian).
12. Petropavlovskii K., Novichenkova T., Petropavlovskaya V., Sulman M., Fediuk R., Amran M. Faience waste for the production of wall products. Materials. 2021. Vol. 14 (21). DOI: 10.3390/ma14216677
13. Petropavlovskaya V.B., Novichenkova T.B., Belov V.V., Buryanov A.F. Granulometric composition as a criterion for regulating the properties of dispersed systems. Stroitel’nye Materialy [Construction Materials]. 2013. No. 1, pp. 64–65. (In Russian).
14. Belov V.V., Obraztsov I.V. Komp’yuternoye modelirovaniye i optimizirovaniye sostavov stroitel’nykh kompozitov: monografiya [Computer modeling and optimization of compositions of building composites: monograph]. Tver: TVGTU. 2014. 124 p.
15. Belov V.V. Smirnov M.A. Stroitel’nyye kompozity iz optimizirovannykh mineral’nykh smesey: monografiya [Building composites from optimized mineral mixtures: monograph]. Tver: TVGTU. 2012. 112 p.
16. Dyachenko E.I., Sushenkov A.N. The role of the grain composition of the aggregate in dry building mixtures. Proceedings of the 3rd international scientific and technical conference “Modern technologies of dry mixes in construction”. Saint Petersburg. 2001, pp. 83–89. (In Russian).
17. Kharhardin A.N. Structural topology of disperse systems of interacting micro- and nanoparticles. Izvestiya vuzov. Stroitel’stvo. 2011. No. 5, pp. 119–125. (In Russian).

For citation: Othman Azmi S.A., Chernysheva N.V., Denisov V.P. Drebezgova M.Yu. Ifluence of the grain composition of the aggregate on the properties of plaster solutions based on a composite gypsum binder. Stroitel’nye Materialy [Construction Materials]. 2023. No. 8, pp. 35–41. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-816-8-35-41

https://www.traditionrolex.com/10