Log in

The Effect of Polycarboxylate-Based Superplasticizers on the Efficiency of Heat Treatment of Monolithic Concrete

Number of journal: 4-2023
Autors:

Kastornykh L.I.,
Kaklyugin A.V.,
Gikalo M.A.

DOI: https://doi.org/10.31659/0585-430X-2023-812-4-35-41
УДК: 691.32

 

AbstractAbout AuthorsReferences
The features of heat treatment of monolithic concrete with superplasticizers based on polycarboxylates are investigated. When designing the compositions of pumped concrete mixtures for concrete pumping technology, the provisions of directed concrete structure formation and technological factors that have a significant impact on the formation of optimal structures of an artificial conglomerate were taken into account. In the work, cements of various compositions and an active mineral additive, which is a waste of industrial production, were used. Polycarboxylate-based superplasticizers were used as water-reducing additives to ensure high connectivity and pumpability of mixtures. Modeling of concrete hardening acceleration processes was carried out in a laboratory steaming chamber according to the regimes that ensure that concrete achieves the required stripping strength in an economically reasonable time. It was revealed that the negative effect of high temperature, expressed in a decrease in the strength of concrete, is manifested to a greater extent for compositions with a high consumption of superplasticizer. It is established that in order to intensify the hardening of monolithic concrete with polycarboxylate-based superplasticizers, it is necessary to optimize its composition and heat treatment parameters. The duration of preliminary curing of concrete before heating should be consistent with the nature of the processes of structure formation of cement stone. To eliminate the negative effect of high temperature on the strength of concrete, the moment of the beginning of the thermal effect should coincide with the end of the induction (preparatory) period in the cement paste. Under the production conditions of monolithic concreting, the following heat treatment parameters are recommended: the duration of preliminary curing is not less than five hours, the temperature rise rate is not more than 10°C/h, the temperature of isothermal heating is not more than 50°C. The evaluation of the quality of heat treatment of monolithic concrete should be carried out according to the coefficient of heat treatment efficiency.
L.I. KASTORNYKH, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.V. KAKLYUGIN, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
M.A. GIKALO, Master’s student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Don State Technical University (162, Sotsialisticheskaya Street, Rostov-on-Don, 344022, Russian Federation)

1. Баженов Ю.М., Чернышов Е.М., Коротких Д.Н. Конструирование структур современных бетонов: определяющие принципы и технологические платформы // Строительные материалы. 2014. № 3. С. 6–14.
1. Bazhenov Yu.M., Cherny`shov E.M., Korotkikh D.N. Construction of structures of modern concrete: defining principles and technological platforms. Stroitel’nye Materialy [Construction Materials]. 2014. No. 3, pp. 6–14. (In Russian).
2. Kastornykh L.I., Trischenko I.V., Kakljugin A.V., Shershen D.R. Heat curing efficiency estimation of concrete with superplastificators on polycarboxylates basis. Materials Science Forum, Materials and Technologies in Construction and Architecture II. 2019. Vol. 974, pp. 231–236. DOI: https://doi.org/10.4028/www.scientific.net/MSF.974.231
3. Smirnova O.M. Low-heat steaming treatment of concrete with polycarboxylate superplasticizers. Magazine of Civil Engineering. 2021. № 2 (102). 10213. DOI: 10.34910/MCE.102.13
4. Османов С.Г., Манойленко А.Ю., Литовка В.В. Выбор вариантов механизации бетонных работ в монолитно-каркасном строительстве // Инженерный вестник Дона. 2019. № 1. https://ivdon.ru/ru/magazine/archive/n1y2019/5507
4. Osmanov S.G., Manojlenko A.Yu., Litovka V.V. Selection of options for mechanization of concrete works in monolithic frame construction. Inzhenerniy vestnik Dona. 2019. No. 1. (In Russian). https://ivdon.ru/ru/magazine/archive/n1y2019/5507
5. Касторных Л.И., Каклюгин А.В., Гикало М.А., Трищенко И.В. Особенности состава бетонных смесей для бетононасосной технологии // Строительные материалы. 2020. № 3. С. 4–11. DOI: https://doi.org/10.31659/0585-430X-2020-779-3-4-11
5. Kastornykh L.I., Kaklyugin A.V., Gikalo M.A., Trishchenko I.V. Features of the composition of concrete mixes for concrete pumping technology. Stroitel’nye Materialy [Construction Materials]. 2020. No. 3, pp. 4–11. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-779-3-4-11
6. Yamada K., Kim C-B., Ichitsubo K., Ichikawa M. Combined effect of cement characteristics on the perfofmance of superplasticizers. An investigation in real cement plants. Proceedings of 8-th CANMET/ACI International Conference on Superplasticizers and Other Chemical Admixtures in Concrete. Sorrento, Italy. October 29 – November 1. ACI SP-239. 2006, рp. 159–174.
7. Smirnova O.M. Compatibility of portland cement and polycarboxylate-based superplasticizers in high-strength concrete for precast constructions. Magazine of Civil Engineering. 2016. No. 6, рp. 12–22. DOI: 10.5862/MCE.66.2
8. Lange A., Plank J. Formation of nano-sized ettringite crystals identified as root cause for cement incompatibility of PCE superplasticizers. Nanotechnology in Construction. 2015, рp. 55–63. DOI: 10.1007/978-3-319-17088-6_6
9. Ivanov I.M., Kramar L.Ya., Orlov A.A. Influence of Superplasticizer-Microsilica Complex on Cement Hydration, Structure and Properties of Cement Stone. IOP Conference Series: Materials Science and Engineering, International Conference on Construction, Architecture and Technosphere Safety 2017, ICCATS 2017. Chelyabinsk, September 21–22, 2017, 262. 012028. DOI: 10.1088/1757-899X/262/1/012028
10. Kastornykh L.I., Kakljugin A.V., Kholodnyak M.G, Osipchuk I.V. Modified concrete mixes for monolithic construction. Materials Science Forum, Materials and Technologies in Construction and Architecture IV. 2021. Vol. 1043, pp. 81–91. DOI: https://doi.org/10.4028/www.scientific.net/MSF.1043.81
11. Kong F.R., Pan L.S., Wang C.M., Zhang D.L., Xu N. Effects of polycarboxylate superplasticizers with different molecular structure on the hydration behavior of cement paste. Construction and Building Materials. 2016. Vol. 105, рp. 545–553. https://doi.org/10.1016/j.conbuildmat.2015.12.178
12. Nesvetaev G., Koryanova Y., Korchagin I. To the problem of the methodology for evaluating the effectiveness of the use of superplasticizers in concretes. IOP Conference Series: Materials Science and Engineering, International Conference on Modern Trends in Manufacturing Technologies and Equipment 2019, ICMTME 2019, Sevastopol, 09-13 September 2019, 044056. 2020. DOI: 10.1088/1757-899X/709/4/044056
13. Несветаев Г.В., Корянова Ю.И., Сухин Д.П. Некоторые вопросы технологии бетонирования массивных фундаментных плит с применением самоуплотняющихся бетонных смесей // Инженерный вестник Дона. 2022. № 8. https://ivdon.ru/ru/magazine/archive/n8y2022/7870
13. Nesvetaev G.V., Koryanova Yu.I., Sukhin D.P. Some issues of concreting technology of massive foundation slabs using self-compacting concrete mixtures. Inzhenerniy vestnik Dona. 2022. No. 8. (In Russian). https://ivdon.ru/ru/magazine/archive/n8y2022/7870
14. Пикус Г.А., Мозгалёв К.М. Контроль параметров бетона, выдерживаемого в зимних условиях // Вестник Южно-Уральского государственного университета. Сер. Архитектура и строительство. 2015. № 1. Т. 15. С. 6–9.
14. Pikus G.A., Mozgalyov K.M. Control of the parameters of concrete maintained in winter conditions. Vestnik Bulletin of the South Ural State University. Series «Architecture and construction». 2015. No. 1. Vol. 15, pp. 6–9. (In Russian).
15. Мухаметгалеев Т.Х., Бикбулатов Р.И., Пирогова А.М. Автоматизация расчета параметров греющего провода при зимнем бетонировании // Инженерный вестник Дона. 2022. № 12. https://ivdon.ru/ru/magazine/archive/n12y2022/8041
15. Mukhametgaleev T.X., Bikbulatov R.I., Pirogova A.M. Automation of calculation of heating wire parameters during winter concreting. Inenernyj vestnik Dona. 2022. No. 12. (In Russian). https://ivdon.ru/ru/magazine/archive/n12y2022/8041
16. Руководство по прогреву бетона в монолитных конструкциях / Под ред. Б.А. Крылова, С.А. Амбарцумяна, А.И. Звездова. М.: НИИЖБ, 2005. 276 с.
16. Rukovodstvo po progrevu betona v monolitnykh konstruktsiyakh [Guidelines for heating concrete in monolithic structures] / edited by Krylov B.A., Ambarczu-myan S.A., Zvezdov A.I. Moscow: NIIZhB, 2005. 276 p.

For citation: Kastornykh L.I., Kaklyugin A.V., Gikalo M.A. The effect of polycarboxylate-based superplasticizers on the efficiency of heat treatment of monolithic concrete. Stroitel’nye Materialy [Construction Materials]. 2023. No. 4, pp. 35–41. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-812-4-35-41

Construction of Precast Reinforced Concrete

Number of journal: 4-2023
Autors:

Fotin O.V.

DOI: https://doi.org/10.31659/0585-430X-2023-812-4-32-34
УДК: 693.95

 

AbstractAbout AuthorsReferences
The prerequisites for the transition to the construction of buildings from prefabricated reinforced concrete in modern conditions are substantiated. It is known that in 2021, the volume of housing construction reached record values in the entire history of the Russian Federation. The “Strategy for the development of the construction industry and housing and communal services of the Russian Federation for the period up to 2030 with a forecast up to 2035” notes the need to reduce the duration of the investment and construction cycle by at least 30% due, among other things, to typical design and mass implementation of precast concrete construction. It is noted that the construction of buildings from prefabricated reinforced concrete, compared with monolithic construction, makes it possible to reduce the cost of construction by at least 20%; reduce construction time by more than 2 times; reduce reinforcement consumption by at least 20%; reduce concrete consumption by at least 30%.
O.V. FOTIN, Deputy Head for Scientific and Technical Issues (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Siberian Branch of the Research Institute of Building Constructions (TSNIISK) named after V.A. Koucherenko, JSC Research Center of Construction (27, Off. 406, Stepana Razina Street, Irkutsk, 664025, Russian Federation)

1. Nikolaev S.V. Revival of large-panel construction in Russia. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2012. No. 4, pp. 2–8. (In Russian).
2. Nikolaev S.V. Social housing at a new stage of improvement. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2013. No. 3, pp. 2–8. (In Russian).
3. Nikolaev S.V. Revival of House Building Factories on the Basis of Domestic Equipment. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2015. No. 2, pp. 4–9. (In Russian).
4. Fotin O.V. System of RKD «Irkutsk frame» of multi-storey buildings and structures. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2015. No. 5, pp. 65–68. (In Russian).
5. Fotin O.V. The system of RCD «Irkutsk frame» of multi-storey buildings and structures. Seismicheskoe stroitel’stvo. Bezopasnost’ sooruzhenii. 2016. No. 1, pp. 44–50. (In Russian).
6. Fotin O.V. Construction of multi-storey buildings from precast reinforced concrete. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2022. No. 10, pp. 19–22. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2022-10-19-22
7. Granik Yu.G. Zavodskoe proizvodstvo elementov polnosbornykh domov [Factory production of elements of fully assembled houses]. Moscow: Stroyizdat. 1984. 221 p.

For citation: Fotin O.V. Construction of precast reinforced concrete. Stroitel’nye Materialy [Construction Materials]. 2023. No. 4, pp. 32–34. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-812-4-32-34

Combined Action of Epoxy Composite and Protective Coating with Cement Concrete in the Adhesive Contact Zone

Number of journal: 4-2023
Autors:

Khozin V.G.,
Gizdatullin A.R.,
Mirsayapov I.T.,
Yarullin R.R.,
Borovskikh I.V.

DOI: https://doi.org/10.31659/0585-430X-2023-812-4-24-31
УДК: 691.328.4

 

AbstractAbout AuthorsReferences
Under the assumption of mutual reinforcement of epoxy polymer and cement concrete that are different in chemical nature and mechanical properties in the zone of strong adhesive contact, the concrete beams with the polymer composite reinforcements (PCR) based on the epoxy binder, and the reinforced concrete beams with the cold setting epoxy composite coatings of the tension region surfaces were experimentally studied. It was found that the beams reinforced by PCR with a small diameter (and a large specific surface area of contact with concrete) exhibited a higher bending stiffness and load-bearing capacity compared to that of the concrete beams, which were reinforced by PCR with a large diameter and an equal total cross-sectional area. This effect was attributed to a restraining effect of the rigid concrete matrix on the deformation of the pliable epoxy composite in the zone of strong adhesive contact. In the case of the reinforced concrete beams with the epoxy coatings on the tension region, the cement concrete in the area adjacent to the coating (3–4 cm from the contact boundary) deformed together with the coating without cracking; cracks initiate beyond the 3–4 cm layer at a bending moment more than 2 times greater than in the reinforced concrete beams without any coating, and the crack width was 5–10 times less. Both effects of the deformation restraint should be taken into account when designing concrete bending structures operated in aggressive environments.
V.G. KHOZIN1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.R. GIZDATULLIN2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
I.T. MIRSAYAPOV1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
R.R. YARULLIN3, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.);
I.V. BOROVSKIKH1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Kazan State University of Architecture and Engineering (1, Zelenaya Street, Kazan, 420043, Russian Federation)
2 “KazInzhProekt” OOO (9, Zhukovskogo Street, Kazan, 420015, Russian Federation)
3 “RTM – Inzheneriya” OOO (7, Nurlatskaya Street, Gorodok Ter. Snt., Pestrechinskii region 422788, Russian Federation

1. Bikerman Ya.O. New ideas concerning the strength of adhesive joints of polymers. Russian Chemical Reviews. 1972. Vol. 16. No. 8, pp. 1431–1464. https://doi.org/10.1070/RC1972v041n08ABEH002083
2. Scherbina A.A., Chalykh A.E. Adheziya i autoheziya polimerov. Perekhodnye zony. Vzaimo- i samodiffuziya [Adhezion and autoadhesion of polymers. Transition zones. Mutual and self-diffusion]. Moscow: OOO “Sam Poligrafist”. 2018. 352 p.
3. Kardashov D.A. Epoksidnye klei [Epoxy adhesives]. Moscow: Khimiya. 1973. 192 p.
4. Lee H., Neville K. Spravochnoye rukovodstvo po epoksidnym smolam [Reference guide to epoxy resins]. Moscow: Energiya. 1973. 416 p.
5. Polimernie kompozitzionnye materialy: struktura, svoistva, tekhnologiya: uchebnoe posobie [Polymer composite materials: structure, properties, technology: workbook]. Ed. by Berlin A.A. Saint Petersburg: Professiya. 2014. 592 p.
6. Khozin V.G. Usilenie epoksidykh polimerov [Reinforcement of epoxy polymers]. Kazan: PIK “Dom pechati”. 2004. 446 p.
7. Rozenberg B.A., Oleinik E.F., The formation, structure, and properties of epoxide matrices for high-strength composites. Russian Chemical Reviews. 1984. Iss. 53 (2), pp. 273–289. https://doi.org/10.1070/RC1984v053n02ABEH003037
8. Callister W., Retwich D. [Materials Science: From Technology to Application (Metals, Ceramics, Polymers]. Transl. from English I. Malkin. Saint Petersburg: Nauchnye osnovy i tekhnologii. 2011. 896 p.
9. Khozin V.G., Gisdatullin A.R. Compatibility of polymer-composite reinforcement with cement concrete in structures. Stroitel’nye Materialy [Construction Materials]. 2017. No. 11, pp. 30–38. (In Russian).

For citation: Khozin V.G., Gizdatullin A.R., Mirsayapov I.T., Yarullin R.R., Borovskikh I.V. Combined action of epoxy composite and protective coating with cement concrete in the adhesive contact zone. Stroitel’nye Materialy [Construction Materials]. 2023. No. 4, pp. 24–31. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-812-4-24-31

Recycling of Alumina-Containing Industrial Waste for the Synthesis of Heat-Resistant Concrete

Number of journal: 4-2023
Autors:

Sokolova S.V.,
Baranova M.N.,
Vasilieva D.I.,
Kholopov Y.A.

DOI: https://doi.org/10.31659/0585-430X-2023-812-4-20-23
УДК: 691.3

 

AbstractAbout AuthorsReferences
The possibility of secondary use of waste (sludge) obtained at the Samara Metallurgical Plant due to the synthesis of binder components for heat-resistant concrete on their basis is considered. The composition and properties of the finely ground refractory component of high-alumina chamotte have been studied. The chemical composition of finely ground chamotte, an X-ray of alumocalcium sludge is given. The structures of cement stone on liquid-glass binders with a silicate sodium (Na2SiF6) hardener and an alumocalcium hardener with additives of the studied chamotte are described. It is proved that the composition and properties of the sludge, which is formed in the form of waste at the Samara Metallurgical Plant, makes it possible to synthesize liquid-glass binders based on it. The greatest increase in strength is noted for compositions of liquid glass compositions with hardeners in which calcium aluminates are present. Petrographic study of the structure and neoplasms in samples of heat-resistant liquid-glass binders modified with finely ground chamotte showed compaction of the structure and reinforcement of the amorphous component with new-forming crystals. The obtained materials can be effectively used to obtain construction materials instead of sending industrial waste to landfills for disposal.
S.V. SOKOLOVA1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
M.N. BARANOVA2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
D.I. VASILIEVA2, Candidate of Sciences (Biology) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
Y.A. KHOLOPOV1, Candidate of Sciences (Agricultural) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Samara State University of Communications (2B, Svobody Street, Samara, 443066, Russian Federation)
2 Samara State Technical University (244, Molodogvardeyskaya Street, Samara, 443100, Russian Federation)

1. Report on the environmental situation in the Samara region for 2021. Issue 32. Samara, 2022. 162 p. (In Russian).
2. Galtseva N.A., Popov P.V., Kotov D.A. Recycling of industrial waste. Inzhenernyy vestnik Dona. 2022. No. 5 (89), pp. 572–581. (In Russian).
3. Bezdenezhnykh M.A., Munieva E.Yu., Zhukov A.D. Building materials and ecology. Perspektivy nauki. 2017. No. 11 (98), pp. 39–42. (In Russian).
4. Ivanova T.A., Kolesnikova L.G. Evaluation of the effectiveness of the use of concrete scrap as a coarse aggregate for concrete. Inzhenernyy vestnik Dona. 2022. No. 3. URL: ivdon.ru/ru/magazine/archive/n3y2022/7530 (In Russian).
5. Kiyanets A.V. The effectiveness of the use of polyethylene terephthalate secondary processing products in concretes. Inzhenernyy vestnik Dona. 2022. No. 2. URL: ivdon.ru/ru/magazine/archive/n2y2022/7487 (In Russian).
6. Khlystov A.I., Sokolova S.V., Konnov M.V. Directed structural-chemical modification is one of the ways to improve the physico-thermal characteristics of aluminosilicate and high-alumina refractories. Ogneupory i tekhnicheskaya keramika. 2012. No. 11, pp. 35–39. (In Russian).
7. Khlystov A.I., Sokolova S.V., Baranova M.N. Improving the technology of using lining impregnating-coating compositions and structural-chemical modification of aluminosilicate and high-alumina refractories. Ogneupory i tekhnicheskaya keramika. 2015. No. 10, pp. 48–55. (In Russian).
8. Sokolova S.V. Strukturno-khimicheskaya modifikatsiya zharostoykikh kompozitov. Kompozitsionnyye materialy: razrabotka i primeneniye: monografiya / pod red. M.Yu. Zvezdinoy [Structural and chemical modification of heat-resistant composites. Composite materials: development and application: monograph. Ed. M.Yu. Zvezdina]. Novosibirsk: SibAK. 2017. 180 p.
9. Khlystov A.I. Zharostoykiye betony na osnove otkhodov promyshlennosti Samarskoy oblasti; monografiya [Heat-resistant concretes based on industrial wastes of the Samara region; monograph]. Samara: ASA SamGTU. 2017. 171 p.
10. Khlystov A.I., Sokolova S.V., Baranova M.N. Prospects for the use of alumina-containing industrial waste in the production of heat-resistant concrete. Ekologiya i promyshlennost’ Rossii. 2021. Vol. 25. No. 7, pp. 13–19. (In Russian). DOI 10.18412/1816-0395-2021-7-13-19
11. Sokolova S.V. Synthesis of heat-resistant compositions based on aluminous materials in order to increase chemical resistance. Novyye materialy i tekhnologii v mashinostroyenii. 2022. No. 35, pp. 116–119. (In Russian).

For citation: Sokolova S.V., Baranova M.N., Vasilieva D.I., Kholopov Y.A. Recycling of alumina-containing industrial waste for the synthesis of heat-resistant concrete. Stroitel’nye Materialy [Construction Materials]. 2023. No. 4, pp. 20–23. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-812-4-20-23

Experimental Study of the Stress-Strain State of Reinforced Concrete Beams Strengthened with Carbon Fiber

Number of journal: 4-2023
Autors:

Suleimanov A.M.,
Shakirov A.R.

DOI: https://doi.org/10.31659/0585-430X-2023-812-4-10-17
УДК: 666.922

 

AbstractAbout AuthorsReferences
To develop methods for predicting the durability of reinforced concrete bendable elements strengthened with external carbon fiber reinforcement systems (CBA), it is necessary to determine the mechanisms of their stress-strain state development. Within the framework of the experimental study, the research methodology, requirements for the experimental installation and for the production of samples were developed. Using the strain gauge method, it was possible to identify the features of creep development of a reinforced concrete beams strengthened with CBA. It is fixed that the nature of the development of deformations on the surface of concrete and carbon fiber is different. Thus, it was revealed that the creep of the samples is due to a kind of slip of the adhesive layer between concrete and carbon fiber. The dependence of creep on changes in temperature influences is determined. The stepwise effect of temperature makes it possible to increase the creep rate of epoxy adhesives. The results obtained served as the basis for the development of a method for predicting the creep of external reinforcement systems using carbon fiber.
A.M. SULEIMANOV, Doctor of Sciences (Engineering), Professor, (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.R. SHAKIROV, Engineer (graduate student) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Kazan State University of Architecture and Engineering (1, Zelenaya Street, 420043, Kazan, Russian Federation)

1. Lesovik R.S., Klyuev S.S. Expansion of reinforcement of yellow concrete columns corner fabric. Innovative technological materials; collection of doctors of the International Scientific and Practical Conference. Belgorod, October 11–12. Part. 2, pp. 3–5. (In Russian).
2. SP 164.1325800.2014 “Reinforcement of reinforced concrete structures with composite materials”. 2015. (In Russian).
3. Klyuev S.V., Rubanov V.G., Pavlenko V.I., Guryanov Yu.V., Ginzburg A.V. Calculation of carbon fiber reinforced building structures. Bulletin of BSTU named after V.G. Shukhov. 2013. No. 5, pp. 54–56. (In Russian).
4. Shilin A.A., Pshenichny V.A., Kartuzov D.V. Vneshnee armirovanie zhelezobetonnyh konstrukcij kompozicionnymi materialami [External reinforcement of reinforced concrete structures with composite materials]. Moscow: Stroyizdat, 2007. 181 p.
5. Bokarev S.A., Smerdov D.N. Experimental studies of bent reinforced concrete elements reinforced with composite materials. Izvestiya vuzov. Stroitel’stvo. 2010. No. 2, pp. 112–124. (In Russian).
6. Klyuev S.V. Strengthening and restoration of structures using carbon fiber–based composites. Beton i zhelezobeton [Concrete and reinforced concrete]. 2012. No. 3, pp. 23–26. (In Russian).
7. Nerovnykh A.A. Improving the methodology for assessing the load capacity of reinforced concrete superstructures of railway bridges reinforced with composite materials. Diss… Candidate of Sciences (Engineering). Novosibirsk. 2013. 201 p. (In Russian).
8. Ovchinnikov I.G., Valiev Sh.N., Ovchinnikov I.I., Zinoviev V.S., Umirov A.D. Issues of reinforcement of reinforced concrete structures with composites: 1. Experimental studies of the features of reinforcement by composites of bent reinforced concrete structures. Internet-zhurnal «Naukovedenie». 2012. No. 4. http://naukovedenie.ru/PDF/13tvn412.pdf (In Russian).
9. Ovchinnikov I.G., Valiev Sh.N., Ovchinnikov I.I., Zinoviev V.S., Amirov A.D. Analysis of problems of reinforcement of reinforced concrete structures with composite materials. Transport development in the regions of Russia: problems and prospects. Materials of the II All-Russian Conference with international participation. Kirov. 2012, pp. 49–52. (In Russian).
10. Ovchinnikov I.I., Ovchinnikov I.G., Chesnokov G.V., Mikhalkin E.S. Analysis of experimental studies on strengthening reinforced concrete structures with polymer composite materials. Part 1. Domestic experiments with static loading. Internet-zhurnal «Naukovedenie». 2016. Vol. 8. No. 3. http://naukovedenie.ru/PDF/24TVN316.pdf (In Russian).
11. Bonacci, J.F., Maalej, M. Externally bonded fiber-reinforced polymer for rehabilitation of corrosion damaged concrete beams. ACI Structural Journal. 2000. 97 (5), pp. 703–11.
12. Denvid Lau, Hoat Joen Pam. Experimental study of hybrid FRP reinforced concrete beams. Engineering Structures. 2010. Vol. 32, pp. 3857–3865.
13. Sólrún Lovísa Sveinsdóttir. Experimental research on strengthening of concrete beams by the use of epoxy adhesive and cement-based bonding material. School of Science and Engineering at Reykjavk University. Thesis in Civil Engineering for the degree of Master of Science. 2012. 108 p.
14. Bokarev S.A., Nerovnykh A.A., Smerdov D.N. Resistance of bent reinforced concrete structures reinforced with composite materials based on carbon fiber to the effects of negative and positive temperatures. Innovative factors of Transsib development at the present stage. International scientific and practical conference dedicated to the 80th anniversary of the Siberian State University of Railways. Abstracts of the conference. Part I. Novosibirsk. 2012, pp. 127–128. (In Russian).
15. Bokarev S.A., Kostenko A.N., Smerdov D.N., Nerovnykh A.A. Experimental studies at low and elevated temperatures of reinforced concrete samples reinforced with polymer composite materials. Internet-zhurnal «Naukovedenie». 2013. No. 3 (16), pp. 1–9. (In Russian).
16. Durability tests of reinforced concrete structures reinforced with the FibARM system. «Kompozit». 2016. 35 p. (In Russian).
17. Ovchinnikov I.I., Ovchinnikov I.G., Chesnokov G.V., Mikhalkin E.S. Analysis of experimental studies on strengthening reinforced concrete structures with polymer composite materials. Part 2. Influence of temperature. Internet-zhurnal «Naukovedenie». 2016. Vol. 8. No. 4 http://naukovedenie.ru/PDF/01TVN416.pdf (In Russian).
18. Smerdov D.N. Assessment of the load-bearing capacity of reinforced concrete bridge spans reinforced with composite materials. Diss. Candidate of Sciences (Engineering). Novosibirsk. 2010. 158 p. (In Russian).
19. Smerdov M.N. Investigation of the bearing capacity of reinforced concrete structures of hydraulic engineering buildings and structures reinforced with composite materials, taking into account temperature factors. Diss. Candidate of Sciences (Engineering). Yekaterinburg. 2015. 135 p. (In Russian).
20. Salamaa A.E., Ghanema G.M., Abd-Elnabya S.F., El-Hefnawyb A.A., AbdElghaffarb M. Behavior of thermally protected RC beams strengthened with CFRP under dual effect of elevated temperature and loading. HBRC Journal. Vol. 8. Iss. 1. 2012, pp. 26–35.
21. Burke P.J., Bisby L.A., Green M.F. Effects of elevated temperature on near surface mounted and externally bonded FRP strengthening systems for concrete. Cement and Concrete Composites. 2013. Vol. 35. Iss. 1, pp. 190–199 https://doi.org/10.1016/j.cemconcomp.2012.10.003
22. Petkova D. and Donchev T. Residual strength of CFRP strengthened beams after heating and cooling. In: Concrete Solutions 2011. 4th International Conference on Concrete Repair. 26–28 September 2011. Dresden, Germany.
23. Liu S, Pan Y, Li H, Xian G. Durability of the bond between CFRP and concrete exposed to thermal cycles. Materials (Basel). 2019. 8; 12(3):515. doi: 10.3390/ma12030515
24. Djouani Fatma, Connan Carole, Delamar Michel, Chehimi Mohamed, Benzarti Karim. Cement paste-epoxy adhesive interactions. Construction and Building Materials. 2011. Vol. 25, pp. 411–423. DOI: 10.1016/j.conbuildmat.2010.02.035
25. Selivanova E.O., Smerdov D.N. Experimental studies of creep in composite materials reinforcing bent reinforced concrete elements. Academic Bulletin of UralNIIproekt RAASN. 2017. No. 2. (In Russian).
26. Suleymanov A.M., Shakirov A.R., Agliullina A.F., Starovoitova I.A. Investigation of short-term and long-term strength of adhesive adhesive joints for the device of external reinforcement systems of building structures. Izvestiya KGASU. 2018. No. 4 (46). (In Russian).
27. Houhou N., Benzarti Karim, Quiertant M., Chataigner Sylvain, Fléty A., Marty C. Analysis of the nonlinear creep behavior of concrete/FRP-bonded assemblies. Journal of Adhesion Science and Technology. 2014. 28, pp. 1345–1366. DOI: 10.1080/01694243.2012.697387

For citation: Suleimanov A.M., Shakirov A.R. Experimental study of the stress-strain state of reinforced concrete beams strengthened with carbon fiber. Stroitel’nye Materialy [Construction Materials]. 2023. No. 4, pp. 10–17. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-812-4-10-17

A New Approach to Warehousing Finished Products at Precast Concrete Plants

Number of journal: 4-2023
Autors:

Krasinikova N.M.,
Antyshev D.G.,
Fathutdinov A.R.,
Kalmykov D.A.,
Nekrasov A.B.

DOI: https://doi.org/10.31659/0585-430X-2023-812-4-7-9
УДК: 691.32

 

AbstractAbout AuthorsReferences
The relevance of the topic is due to the fact that the logistics of warehousing products of reinforced concrete plants lags far behind the logistics of warehousing small-piece goods, which has made a huge breakthrough, primarily due to the methods of mathematical analysis. The existing rules for storing finished concrete products do not meet the current trends in the formation of logistics processes. On the example of LLC “Kazansky DSK”, a new model of warehousing of finished products is shown, which makes it possible to significantly reduce the time of loading products on objects under construction and to carry out operational process management due to automatic accounting with system 1C: Production Enterprise Management.
N.M. KRASINIKOVA1, Candidate of Sciences (Engineering), Deputy Director for Quality, Chief Technologist(This email address is being protected from spambots. You need JavaScript enabled to view it.);
D.G. ANTYSHEV2, Head of the Internal Audit Department (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.R. FATHUTDINOV2, Chief Specialist of the Internal Audit Department (This email address is being protected from spambots. You need JavaScript enabled to view it.);
D.A. KALMYKOV1, Deputy Director of Production (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.B. NEKRASOV1, Director (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 LLC “KDSK” (118, Adelya Kutuya Street, Kazan, 420087, Russian Federation)
2 LLC “AK BARS DEVELOPMENT” (28/9, Alberta Kamaleeva Avenue, 420081, Kazan, Russian Federation)

1. Ismagilova E.R., Shakirov A.T. Improvement of activities in the storage system. Natsional’naya assotsiatsiya uchenykh (NAU). 2021. No. 65, pp. 18–24. (In Russian).
2. Ivanov G.G. Kireeva N.S. Skladskaya logistika [Warehouse Logistics]. Moscow: Infra-M. 2020. 192 p.
3. Belozersky A.Yu., Meshalkin V.P. Osnovy logistiki skladirovaniya [Fundamentals of warehousing logistics]. Kaluga: Manuscript, 2009. 155 p.
4. Taisheva G.R., Gafurova G.T., Poltorykhina S.V., Saydasheva V.A., Khabibulina A.G., Rabazanova A.A. Formation of a synthetic classification criterion in ABC analysis as a factor influencing the activities and results of companies. Ekonomika i upravleniye: problemy, resheniya. 2018. Vol. 7. No. 10, pp. 69–76. (In Russian).
5. Bazhenov Yu.M., Alimov L.A., Voronin V.V., Treskova N.V. Proyektirovaniye predpriyatiy po proizvodstvu stroitel’nykh materialov i izdeliy (uchebnik). [Designing enterprises for the production of building materials and products (textbook)]. Moscow: ASV. 2005. 472 p.
6. Krasinikova H.M., Nekrasov A.B., Minnixanova A.I. Positive aspects of the national project on labor productivity on the example of the Kazan DSK. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2021. No. 5, pp. 19–21. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2021-5-19-21

For citation: Krasinikova N.M., Antyshev D.G., Fathutdinov A.R., Kalmykov D.A., Nekrasov A.B. A new approach to warehousing finished products at precast concrete plants. Stroitel’nye Materialy [Construction Materials]. 2023. No. 4, pp. 7–9. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-812-4-7-9

Overview of the Russian Cement Market: Results of 2022

Number of journal: 4-2023
Autors:

Semenov A.A.

DOI: https://doi.org/10.31659/0585-430X-2023-812-4-4-6
УДК: 666.9

 

AbstractAbout AuthorsReferences
An overview of the state and main trends in the development of the Russian cement market in 2022 is presented. Data on the volumes and dynamics of production, consumption and foreign trade operations with cement are given. In the structure of cement production, there is a tendency to increase the share of production of Portland cements without additives. Traditionally, among the subjects of the Federation, the main sales market is the Moscow region, which accounts for up to 16% of the total Russian consumption of these products. Throughout the year, there was a steady increase in cement prices: in 2022, this indicator increased by 25.2% compared to the level of 2021 to 6,536 rubles/t.
A.A. SEMENOV, Candidate of Sciences (Engineering), General Director, (This email address is being protected from spambots. You need JavaScript enabled to view it.)

GS-Expert LLC (17, bldg. 1, Architect Vlasov Street, Moscow, 117335, Russian Federation) http://www.gs-expert.ru/

For citation: Semenov A.A. Overview of the Russian cement market: results of 2022. Stroitel’nye Materialy [Construction Materials]. 2023. No. 4, pp. 4–6. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-812-4-4-6

Technologies of Sol-Gel Synthesis of Nanosilica as a Modifier of Cement-Based Materials. Foresight analysis

Number of journal: 3-2023
Autors:

Strokova V.V.,
Nelubova V.V.,
Kuzmin E.O.,
Ryltsova I.G.,
Gubareva E.N.,
Baskakov P.S.

DOI: https://doi.org/10.31659/0585-430X-2023-811-3-43-72
УДК: 539.2:666.942.6

 

AbstractAbout AuthorsReferences
The paper presents an overview of publications on existing methods for the formation of nanoscale SiO2 particles by sol-gel technology used as a modifier in cement-based building materials. These methods differ in variations within a wide range of compositions of reaction mixtures (precursors, solvents, catalysts, stabilizers and other components), synthesis conditions (temperature, pressure, sequence of introduction of components, regulation of the duration of technological processing) and hardware design. The variety of technological solutions causes a significant difference in the finished product in the form of nanosilicon (suspension or powder) in particle size, their fractional composition, mono- or polydispersity, shape and degree of sphericity and morphology of their surface, resistance to external influences, aggregative and sedimentation stability, reactivity in the medium of hydrating cement and cost. The general scheme of sol-gel synthesis of silica nanoparticles is a step-by-step passage of the following stages: hydrolysis, polycondensation, gleyification, syneresis and drying, each of which differs in the parameters that determine the intermediate or final product. The processes occurring during the passage of sequential stages are described in native and foreign theoretical and experimental works, as a rule, without unifying the role of compositional (type and concentration of individual components) and hardware-technological (staging, barothermal conditions, homogenization mode and stabilization method) parameters that cause the production of a material with a given set of physico-chemical characteristics, ensuring the effective use of nanosilicon as an active component of cement binders. The systematization, classification and generalization of modern formulation and technological parameters of sol-gel synthesis and studies of mechanisms for processing organosilicon systems will ensure the formation of new methodological solutions for the production of chemically active and aggregatively stable nanodispersed silicon dioxide under controlled factors of dimensionality, homogeneity and morphology of the solid phase with high reactivity under conditions of hydrating cement
V.V. STROKOVA, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.V. NELUBOVA, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
E.O. KUZMIN, Postgraduate Student (This email address is being protected from spambots. You need JavaScript enabled to view it.),
I.G. RYLTSOVA, Candidate of Sciences (Engineering),
E.N. GUBAREVA, Candidate of Sciences (Engineering),
P.S. BASKAKOV, Candidate of Sciences (Engineering)

Belgorod State Technological University named after V.G. Shukhov (46, Kostyukova Street, Belgorod, 308012, Russian Federation)

1. Stöber W., Fink A., Bohn E. Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science. 1968. Vol. 26, pp. 62–69. https://doi.org/10.1016/0021-9797(68)90272-5
2. Singh L.P., Agarwal S.K., Bhattacharyya S.K., Sharma U., Ahalawat S. Preparation of silica nanoparticles and its beneficial role in cementitious materials. Nanomater. nanotechnol. 2011. Vol. 1. No. 1, pp. 44–51. https://doi.org/10.5772/50
3. Meier M., Ungerer J., Klinge M., Nirschl H. Synthesis of nanometric silica particles via a modified Stöber synthesis route. Colloids and Surfaces A. 2018. Vol. 538, pp. 559–564. https://doi.org/10.1016/j.colsurfa.2017.11.047
4. Kyoung-Ku K., Hyun-Seok O., Dong-Young K., Gyurak S., Chang-Soo L. Synthesis of silica nanoparticles using biomimetic mineralization with polyallylamine hydrochloride. Journal of Colloid and Interface Science. 2017. Vol. 507, pp. 145–153. https://doi.org/10.1016/j.jcis.2017.07.115
5. Xiangyu L., Nan X., Weimin L., Wenjing L., Xiaobo W. Tribological properties of nanosilica prepared by in-situ sol-gel method. Lubrication engineering. 2017. Vol. 5. No. 1, pp. 1–12.
6. Satyanarayana M.S., Sreenath P.R., Anil K. Bhowmick, K. Dinesh Kumar. Catalyst driven preferential growth of in-situ generated nanosilica particles in the phases of incompatible polymer blend and its effect on physicomechanical properties. Polymer. 2018. Vol. 156, pp. 186–202. https://doi.org/10.1016/j.polymer.2018.10.012
7. Rahman I.A., Jafarzadeh M., Sipaut C.S. Synthesis of organo-functionalized nanosilica via a co-condensation modification using g-aminopropyltriethoxysilane (APTES). Ceramics International. 2009. Vol. 35, pp. 1883–1888. DOI: 10.1016/j.ceramint.2008.10.028
8. Mohammed Hussein J.H. Al-Atia, Hayat K. Saeed, Asia R. Fliayh, Ali J. Addie. Investigating the effects of calcination temperatures on the structure of modified nanosilica prepared by sol-gel. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2017. Vol. 520, pp. 590–596. https://doi.org/10.1016/j.colsurfa.2017.02.020
9. Zohreh Asadi, Reza Norouzbeigi. Synthesis of colloidal nanosilica from waste glass powder as a low cost precursor. Ceramics International. 2018. Vol. 44, pp. 22692–22697. https://doi.org/10.1016/j.ceramint.2018.09.050
10. Hamdy El-Didamony, Ezzat El-Fadaly, Ahmed A. Amer, Ibrahime H. Abazeed. Synthesis and characterization of low cost nanosilica from sodium silicate solution and their applications in ceramic engobes. Boletín de la Sociedad Española de Cerámica y Vidrio. 2020. Vol. 59. No. 1, pp. 31–43. https://doi.org/10.1016/j.bsecv.2019.06.004
11. Jafari V., Allahverdi A., Vafaei M. Ultrasound-assisted synthesis of colloidal nanosilica from silica fume: Effect of sonication time on the properties of product. Advanced Powder Technology. 2014. Vol. 25, pp. 1571–1577. https://doi.org/10.1016/j.apt.2014.05.011
12. Rahman I.A., Vejayakumaran P., Sipaut C.S., Ismail J., Abu Bakar M., Adnan R., Chee C.K. Effect of anion electrolytes on the formation of silica nanoparticles via the sol-gel process. Ceramics International. 2006. Vol. 32, pp. 691–699. https://doi.org/10.1016/j.ceramint.2005.05.004
13. Ribeiro P.C., Kiminami R.H.G.A., Costa A.C.F.M. Nanosilica synthesized by the Pechini method for potential application as a catalytic support. Ceramics International. 2014. Vol. 40, pp. 2035–2039. https://doi.org/10.1016/j.ceramint.2013.07.115
14. Asadi Z., Norouzbeigi R. Optimization of colloidal nanosilica production from expanded perlite using Taguchi design of experiments. Ceramics International. 2017. Vol. 43, pp. 11318–11323. https://doi.org/10.1016/j.ceramint.2017.05.332
15. Sheng-Hung W., Po-Hsiang W., I-Ming H., Chih-Chen H. Microfluidic synthesis of silica microcomponents using sol-gel process and stop-flow lithography. Journal of the Taiwan Institute of Chemical Engineers. 2018. Vol. 93, pp. 103–108. https://doi.org/10.1016/j.jtice.2018.09.015
16. Shakhmenko G., Juhnevica I., Korjakins A. Influence of sol-gel nanosilica on hardening processes and physically-mechanical properties of cement paste. Procedia Engineering. 2013. Vol. 57, pp. 1013–1021. https://doi.org/10.1016/j.proeng.2013.04.128
17. Julie Chandra C.S., Shadiya M.A., Bipinbal P.K., Sunil K. Narayanankutty. Effect of olivine nanosilica on the reinforcement of natural rubber nanosilica composites. Materials Today: Proceedings. 2019. Vol. 9, pp. 127–132. https://doi.org/10.1016/j.matpr.2019.02.047
18. Chrus´ciel J., S´lusarski L. Synthesis of nanosilica by the sol-gel method and its activity toward polymers. Materials Science. 2003. Vol. 21. No. 4, pp. 461–469.
19. Keshavarz M., Norhayati A. Characterization and modification of mesoporous silica nanoparticles prepared by sol-gel. Journal of Nanoparticles. 2013. No. 4, pp. 1–4. DOI: 10.1155/2013/102823
20. Ramasinghe R.L.P., Liyanage N.M.V.K. Synthesis of nanosilica using acrylic polymers as surface modifiers. Moratuwa Engineering Research Conference. 2017, pp. 73–78. DOI: 10.1109/MERCon.2017.7980459
21. Jafari V., Allahverdi A. Synthesis and characterization of colloidal nanosilica via an ultrasound assisted route based on alkali leaching of silica fume. Int. J. Nanosci. Nanotechnol. 2014. Vol. 10, pp. 145–152.
22. Фарус О.А. Исследование влияния типа катализатора на процессы гелеобразования золь-гель систем на основе тетраэтоксисилана // Вестник евразийской науки. 2015. Т. 7. №. 4 (29). С. 102.
22. Farus O.A. Study of the influence of the type of catalyst on the processes of gelation of sol-gel systems based on tetraethoxysilane. Vestnik evraziiskoi nauki. 2015. Vol. 7. No. 4 (29), pp. 102. (In Russian).
23. Mujiyanti D.W., Surianthy M.D., Junaidi A.B. The initial characterization of nanosilica from tetraethylorthosilicate (TEOS) with the addition polivynil alcohol by fourier transform infra red. IOP Conf. Series: Earth and Environmental Science. 2018. Vol. 187, pp. 1–6. DOI 10.1088/1755-1315/187/1/012056
24. Jin Seok C., Hyun-Kwuon L., Sung Jin An. Synthesis of high purity nano-silica using water glass. Korean Journal of Materials Research. 2014. Vol. 24. No. 5, pp. 271–276. DOI: 10.3740/MRSK.2014.24.5.271
25. Nguyen Xuan H., Tran Nam A., Nguyen T.T.H., Dao T.T.N., Nguyen V.T. Nanosilica synthesis and application for lead treatment in water. J. Viet. Env. 2018. Vol. 9 (5), pp. 255–263. DOI: 10.13141/jve.vol9.no5.pp255-263
26. Kiele E., Senvaitiene J., Griguceviciene A., Ramanauskas R., Raudonis R., Kareiva A. Application of sol-gel method for the conservation of copper alloys. Microchemical Journal. 2016. Vol. 124, pp. 623–628. https://doi.org/10.1016/j.microc.2015.10.003
27. Alan G. Howard, Nezar H. Khdary. Spray synthesis of monodisperse sub-micron spherical silica particles. Materials Letters. 2007. Vol. 61, pp. 1951–1954. https://doi.org/10.1016/j.matlet.2006.07.110
28. Sutha S., Yuvakkumar R., Rajendran V., Palanivelu R. Effect of thermal treatment on hydrophobicity of methyl-functionalised hybrid nano-silica particles. Materials Letters. 2013. Vol. 90, pp. 68–71. https://doi.org/10.1016/j.matlet.2012.09.018
29. Румянцева Е.Л. Получение нанодисперсной коллоидной кремниевой кислоты из техногенного сырья // Современные научные исследования и инновации. 2013. №. 11. С. 27–30.
29. Rumyantseva E.L. Obtaining nanodispersed colloidal silicic acid from technogenic raw materials. Sovremennye nauchnye issledovaniya i innovatsii. 2013. No. 11, pp. 27–30. (In Russian).
30. Фролов Ю.Г., Гродский А.С., Клещевникова С.И., Пащенко Л.А., Растегина Л.Л. Получение гидрозолей диоксидов кремния и циркония методом ионного обмена, совмещенного с электродиализом. Получение и применение гидрозолей кремнезема. Труды Московского химико-технологического института им. Д.И. Менделеева. 1979. Вып. 107. С. 31–38.
30. Frolov Yu.G., Grodsky A.S., Kleshchevnikova S.I., Pashchenko L.A., Rastegina L.L. Obtaining hydrosols of silicon dioxide and zirconium by the method of ion exchange combined with electrodialysis. Preparation and application of silica hydrosols. Proceedings of the Moscow Chemical-Technological Institute named after D.I. Mendeleev. 1979. Vol. 107, pp. 31–38. (In Russian).
31. Потапов В.В. Осаждение кремнезема из гидротермального теплоносителя с добавлением извести и легкогидролизующихся солей // Вестник КамчатГТУ. 2002. № 1. C. 156–165.
31. Potapov V.V. Precipitation of silica from a hydrothermal coolant with the addition of lime and easily hydrolyzed salts. Vestnik KamchatGTU. 2002. No. 1, pp. 156–165. (In Russian).
32. Потапов В.В., Поваров К.О., Словцов И.Б., Харлов А.Е. Разработка способов осаждения кремнезема из гидротермального теплоносителя // Химическая технология. 2003. № 5. С. 8–13.
32. Potapov V.V., Povarov K.O., Slovtsov I.B., Kharlov A.E. Development of silica precipitation methods from hydrothermal heat carrier. Khimicheskaya tekhnologiya. 2003. No. 5, pp. 8–13. (In Russian).
33. Шилова О.А. Наноразмерные пленки, получаемые из золей на основе тетраэтоксисилана, и их применение в планарной технологии изготовления полупроводниковых газовых сенсоров // Физика и химия стекла. 2005. Т. 31. № 2. С. 270–294.
33. Shilova O.A. Nanoscale films obtained from sols based on tetraethoxysilane and their application in planar technology for the manufacture of semiconductor gas sensors. Fizika i khimiya stekla. 2005. Vol. 31. No. 2, pp. 270–294. (In Russian).
34. Мошников В.А., Шилова О.А. Золь-гель технология наноструктурированных материалов // Нанотехнология: физика, процессы, диагностика, приборы. 2006. C. 205–249.
34. Moshnikov V.A., Shilova O.A. Sol-gel technology of nanostructured materials. Nanotekhnologiya: fizika, protsessy, diagnostika, pribory. 2006, pp. 205–249. (In Russian).
35. Потапов В.В., Горев Д.С., Туманов А.В., Кашутин А.Н., Горева Т.С. Получение комплексной добавки для повышения прочности бетона на основе нанодисперсного диоксида кремния гид-ротермальных растворов // Фундаментальные исследования. 2012. № 9–2. С. 404–409.
35. Potapov V.V., Gorev D.S., Tumanov A.V., Kashutin A.N., Goreva T.S. Production of a complex additive for increasing the strength of concrete based on nanodispersed silicon dioxide of hydrothermal solutions. Fundamental’nye issledovaniya. 2012. No. 9–2, pp. 404–409. (In Russian).
36. Горев Д.С., Потапов В.В., Шалаев К.С. Получение нанопорошка диоксида кремния на основе гидротермального раствора криохимической вакуумной сублимации // Вестник КРАУНЦ. Физико-математические науки. 2013. № 1. C. 56–66.
36. Gorev D.S., Potapov V.V., Shalaev K.S. Preparation of silicon dioxide nanopowder based on hydrothermal solution of cryochemical vacuum sublimation. Vestnik KRAUNTs. Fiziko-matematicheskie nauki. 2013. No. 1, pp. 56–66. (In Russian).
37. Кашутин А.Н., Потапов В.В., Шалаев К.С., Горев Д.С., Горева Т.С. Применение нанодобавки кремнезема для повышения прочности при сжатии строительного раствора М200 // Фундаментальные исследования. 2013. № 8–2. С. 275–280.
37. Kashutin A.N., Potapov V.V., Shalaev K.S., Gorev D.S., Goreva T.S. The use of silica nanoadditives to increase the compressive strength of mortar M200. Fundamental’nye issledovaniya. 2013. No. 8–2, pp. 275–280. (In Russian).
38. Hao C., Zhuojun Y., Baozong L., Yi L., Qi-Hui W. Manipulation of mesoporous silica hollow spheres by control of silica precursors. Materials Letters. 2013. Vol. 112, pp. 78–80. https://doi.org/10.1016/j.matlet.2013.09.040
39. Sinae S., Hong-Baek C., Hee Taik K. Surfactant-free synthesis of high surface area silica nanoparticles derived from rice husks by employing the Taguchi approach. Journal of Industrial and Engineering Chemistry. 2018. Vol. 61, pp. 281–287. https://doi.org/10.1016/j.jiec.2017.12.025
40. Ming N.T., Yong S.P. Synthesis of stable hollow silica nanospheres. Journal of Industrial and Engineering Chemistry. 2009. Vol. 15, pp. 365–369. https://doi.org/10.1016/j.jiec.2008.11.013
41. Zhihao X., Zhen L., Pengfei S., Changfa X. Fabrication of super-hydrophobic polypropylene hollow fiber membrane and its application in membrane distillation. Desalination. 2017. Vol. 414, pp. 10–17. https://doi.org/10.1016/j.desal.2017.03.029
42. Nicolas B., Nathanael G., Luc V., Nicolas S. Thermomechanical behavior of a novel biobased poly(furfurylalcohol)/silica nanocomposite elaborated by smart functionalization of silica nanoparticles. Polymer Degradation and Stability. 2015. Vol. 118, pp. 137–146. https://doi.org/10.1016/j.polymdegradstab.2015.04.018
43. Ershadi M., Alaei M., Rashidi A., Ramazani A., Khosravani S. Carbonate and sandstone reservoirs wettability improvement without using surfactants for Chemical Enhanced Oil Recovery (C-EOR). Fuel. 2015. Vol. 153, pp. 408–415. https://doi.org/10.1016/j.fuel.2015.02.060
44. Divya K., Xinghua W., Qitao F., Jeffrey W.C.H., Pushkar D.K., Lin L., Zhong C. Development of durable self-cleaning coatings usingorganic–inorganic hybrid sol-gel method. Applied Surface Science. 2015. Vol. 344, pp. 205–212. https://doi.org/10.1016/j.apsusc.2015.03.105
45. Peng B., Chen M., Zhou S., Wu L., Ma X. Fabrication of hollow silica spheres using droplet templates derived from a miniemulsion technique. Journal of Colloid and Interface Science. 2008. Vol. 321, pp. 67–73. https://doi.org/10.1016/j.jcis.2007.12.044
46. Daniel-da-Silva A.L., Pinto F., Lopes-da-Silva J.A., Trindade T., Goodfellow B.J., Gil A.M. Rheological behavior of thermoreversible κ-carrageenan/nanosilica gels. Journal of Colloid and Interface Science. 2008. Vol. 320, pp. 575-581. DOI: 10.1016/j.jcis.2008.01.035
47. Loґpez T., Quintana P., Martıґnez J.M., Esquivel D. Stabilization of dopamine in nanosilica sol-gel matrix to be used as a controlled drug delivery system. Journal of Non-Crystalline Solids. 2007. Vol. 353, pp. 987–989. https://doi.org/10.1016/j.jnoncrysol.2006.12.083
48. Grzegorz Checmanowski J., Szczygieł B. Effect of nanosilica type on protective properties of composite ceramic coatings deposited on steel 316L by sol-gel technique. Journal of Non-Crystalline Solids. 2008. Vol. 354, pp. 1786–1795. https://doi.org/10.1016/j.jnoncrysol.2007.08.056
49. Tadjarodi A., Haghverdi M., Mohammadi V. Preparation and characterization of nano-porous silica aerogel from rice husk ash by drying at atmospheric pressure. Materials Research Bulletin. 2012. Vol. 47, pp. 2584–2589. https://doi.org/10.1016/j.materresbull.2012.04.143
50. Başgoz O., Guler O. The unusually formation of porous silica nano-stalactite structure by high temperature heat treatment of SiO2 aerogel synthesized from rice hull. Ceramics International. 2020. Vol. 46, pp. 370–380. https://doi.org/10.1016/j.ceramint.2019.08.271
51. Fan W., Du W., Li Z., Dan N, Huang J. Abrasion resistance of waterborne polyurethane films incorporated with PU/silica hybrids. Progress in Organic Coatings. 2015. Vol. 86, pp. 125–133. https://doi.org/10.1016/j.porgcoat.2015.04.022
52. Song Y., Bu J., Zuo M., Gao Y., Zhang W., Zheng Q. Glass transition of poly (methyl methacrylate) filled with nanosilica and core-shell structured silica. Polymer. 2017. Vol. 127, pp. 141–149. https://doi.org/10.1016/j.polymer.2017.08.038
53. Mohammadpour Nazarabady M., Farzi G. Morphology control to design p(acrylic acid)/silica nanohybrids with controlled mechanical properties. Polymer. 2018. Vol. 143, pp. 289–297. https://doi.org/10.1016/j.polymer.2018.02.026
54. Satyanarayana M.S., Sreenath P.R., Bhowmick Anil K., Dinesh Kumar K. Catalyst driven preferential growth of in-situ generated nanosilica particles in the phases of incompatible polymer blend and its effect on physicomechanical properties. Polymer. 2018. Vol. 156, pp. 186–202. https://doi.org/10.1016/j.polymer.2018.10.012
55. Alasti Bonab S., Moghaddas J., Rezaei M. In-situ synthesis of silica aerogel/polyurethane inorganic-organic hybrid nanocomposite foams: Characterization, cell microstructure and mechanical properties. Polymer. 2019. Vol. 172, pp. 27–40. https://doi.org/10.1016/j.polymer.2019.03.050
56. Balamurugan M., Saravanan S. Producing nanosilica from Sorghum vulgare seed heads. Powder Technology. 2012. Vol. 224, pp. 345–350. https://doi.org/10.1016/j.powtec.2012.03.017
57. Noushad M., Ab Rahman I., Husein A., Dasmawati M. Nanohybrid dental composite using silica from biomass waste. Powder Technology. 2016. Vol. 299, pp. 19–25. https://doi.org/10.1016/j.powtec.2016.05.035
58. Chen G., Zhou S., Gu G., Wu L. Modification of colloidal silica on the mechanical properties of acrylic based polyurethane/silica composites. Colloids and Surfaces A: Physicochem. 2007. Vol. 296, pp. 29–36. https://doi.org/10.1016/j.colsurfa.2006.09.016
59. Branda F., Silvestri B., Luciani G., Costantini A., Tescione F. Synthesis structure and stability of amino functionalized PEGylated silica nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2010. Vol. 367, pp. 12–16. https://doi.org/10.1016/j.colsurfa.2006.09.016
60. Yeoh B.W., Mohamad D., Rahman I.A., Sipaut C.S., Ghani A.M. Synthesis of nanosilica fillers by sol-gel process and surface modification. Dental materials. 2009. Vol. 25. No. 5. DOI: 10.1016/j.dental.2009.01.047
61. Ramezanzadeh B., Haeri Z., Ramezanzadeh M. A facile route of making silica nanoparticles-covered graphene oxide nanohybrids (SiO2-GO); fabrication of SiO2-GO/epoxy composite coating with superior barrier and corrosion protection performance. Chemical Engineering Journal. 2016. Vol. 303, pp. 511–528. https://doi.org/10.1016/j.cej.2016.06.028
62. Jeziorska R., Szadkowska A., Zielecka M., Wenda M., Kepska B. Morphology and thermal properties of HDPE nanocomposites: Effect of spherical silica surface modification and compatibilizer. Polymer Degradation and Stability. 2017. Vol. 145, pp. 70–78. https://doi.org/10.1016/j.polymdegradstab.2017.06.007
63. Asaro L., Manfredi L.B., Pellice S., Procaccini R., Rodriguez E.S. Innovative ablative fire resistant composites based on phenolic resins modified with mesoporous silica particles. Polymer Degradation and Stability. 2017. Vol. 144, pp. 7–16. https://doi.org/10.1016/j.polymdegradstab.2017.07.023
64. Mousavi M.A., Hassanajili Sh., Rahimpour M.R. Synthesis of fluorinated nano-silica and its application in wettability alteration near-wellbore region in gas condensate reservoirs. Applied Surface Science. 2013. Vol. 273, pp. 205–214. https://doi.org/10.1016/j.apsusc.2013.02.014
65. Danushika C.M., Rohini M. de Silva, K.M. Nalin de Silva. Double layer approach to create durable superhydrophobicity on cotton fabric using nano silica and auxiliary non fluorinated materials. Applied Surface Science. 2016. Vol. 360, pp. 777–788. https://doi.org/10.1016/j.apsusc.2015.11.068
66. Pantoja M., Abenojar J., Martinez M.A. Influence of the type of solvent on the development of superhydrophobicity from silane-based solution containing nanoparticles. Applied Surface Science. 2017. Vol. 397, pp. 87–94. https://doi.org/10.1016/j.apsusc.2016.11.099
67. Li X., Li H., Huang K., Zou H., Yu D., Li Y., Qiu B., Wang X. Durable superamphiphobic nano-silica/epoxy composite coating via coaxial electrospraying method. Applied Surface Science. 2018. Vol. 436, pp. 283–292. https://doi.org/10.1016/j.apsusc.2017.11.241
68. Jouyandeh M., Moini Jazani O., H. Navarchian A., Shabanian M., Vahabi H., Reza Saeb M. Surface engineering of nanoparticles with macromolecules for epoxy curing: Development of super-reactive nitrogen-rich nanosilica through surface chemistry manipulation. Applied Surface Science. 2018. Vol. 447, pp. 152–164. https://doi.org/10.1016/j.apsusc.2018.03.197
69. George V. Belessiotis, Kyriaki G. Papadokostaki, Evangelos P. Favvas, Eleni K. Efthimiadou, Sotirios Karellas. Preparation and investigation of distinct and shape stable paraffin/SiO2 composite PCM nanospheres. Energy Conversion and Management. 2018. Vol. 168, pp. 382–394. https://doi.org/10.1016/j.enconman.2018.04.059
70. Perez G., Erkizia E., Gaitero J.J., Kaltzakorta I., Jimenez I., Guerrero A. Synthesis and characterization of epoxy encapsulating silica microcapsules and amine functionalized silica nanoparticles for development of an innovative self-healing concrete. Materials Chemistry and Physics. 2015. Vol. 165, pp. 39–48. https://doi.org/10.1016/j.matchemphys.2015.08.047
71. Khamsehashari N., Hassanzadeh-Tabrizi S.A., Bigham A. Effects of strontium adding on the drug delivery behavior of silica nanoparticles synthesized by P123-assisted sol-gel method. Materials Chemistry and Physics. 2018. Vol. 205, pp. 283–291. https://doi.org/10.1016/j.matchemphys.2017.11.034
72. Prasad T., Halder S., Siddhartha S. Dhar. Imidazole-supported silica one-pot processed nanoparticles to enhance toughness of epoxy based nanocomposites. Materials Chemistry and Physics. 2019. Vol. 231, pp. 75–86. https://doi.org/10.1016/j.matchemphys.2019.04.002
73. Lee S.J., Kawashima S., Kim K.J., Woo S.K., Won J.P. Interfacial properties of nanosilica-treated structural polymer fibres in cement matrix composites. Composite Structures. 2018. Vol. 202, pp. 465–472. https://doi.org/10.1016/j.compstruct.2018.02.068
74. Kumar D., Wu X., Fu Q., Weng Chye Ho J., D. Kanhere P., Li L., Chen Z. Hydrophobic sol-gel coatings based on polydimethylsiloxane for self-cleaning applications. Materials and Design. 2015. Vol. 86, pp. 855–862. https://doi.org/10.1016/j.matdes.2015.07.174
75. Palza H., Vergara R., Zapata P. Composites of polypropylene melt blended with synthesized silica nanoparticles. Composites Science and Technology. 2011. Vol. 71, pp. 535–540. https://doi.org/10.1016/j.compscitech.2011.01.002
76. Rahman I.A., Vejayakumaran P., Sipaut C.S., Ismail J., Abu Bakar M., Adnan R., Chee C.K. Effect of anion electrolytes on the formation of silica nanoparticles via the sol-gel process. Ceramics International. 2006. Vol. 32, pp. 691–699. https://doi.org/10.1016/j.ceramint.2005.05.004
77. Rahman I.A., Jafarzadeh M., Sipaut C.S. Synthesis of organo-functionalized nanosilica via a co-condensation modification using g-aminopropyltriethoxysilane (APTES). Ceramics International. 2009. Vol. 35, pp. 1883–1888. 10.1016/j.ceramint.2008.10.028
78. Jeevajothi K., Crossiya D., Subasri R. Non-fluorinated, room temperature curable hydrophobic coatings by sol-gel process. Ceramics International. 2012. Vol. 38, pp. 2971–2976. https://doi.org/10.1016/j.ceramint.2011.11.075
79. Jeevajothi K., Subasri R., SomaRaju K.R.C. Transparent, non-fluorinated, hydrophobic silica coatings with improved mechanical properties. Ceramics International. 2013. Vol. 39, pp. 2111–2116. https://doi.org/10.1016/j.ceramint.2012.07.019
80. Sheeraz Che Zulkifli N., Ab Rahman I., Mohamad D., Husein A. A green sol-gel route for the synthesis of structurally controlled silica particles from rice husk for dental composite filler. Ceramics International. 2013. Vol. 39, pp. 4559–4567. https://doi.org/10.1016/j.ceramint.2012.11.052
81. Noushad M., Ab Rahman I., Sheeraz Che Zulkifli N., Husein A., Mohamad D. Low surface area nanosilica from an agricultural biomass for fabrication of dental. Ceramics International. 2014. Vol. 40, pp. 4163–4171. https://doi.org/10.1016/j.ceramint.2013.08.073
82. Cao G. Nanostructures and nanomaterials: synthesis, properties and applications. London: Imperial College Press. 2004. 112 p.
83. Altavilla C., Ciliberto E. Inorganic Nanoparticles: synthesis, applications and perspectives. London: Boca Raton, CRC. 2010, pp. 547–558.
84. Tjong S. C., Chen H. Nanocrystalline materials and coatings. Materials Science and Engineering: R: Reports. 2004. Vol. 45. N 1–2, pp. 1–88. https://doi.org/10.1016/j.mser.2004.07.001
85. Hosono H., Mishima Y., Takezoe H., MacKenzie K.J.D. Nanomaterials: research towards applications. Great Britain: Elsevier Sci. Publ. 2006. 488  p.
86. Teipel U. Energetic Materials. Particle processing and characterization. Weinheim: WileyVCH. 2005, pp. 7–27, 203–226, 450–457, 509–528.
87. Singh M. R., Lipson R. H. Transport and optical properties of nanomaterials. Proc. of the Intern. Conf. Ser: AIP Conf. Proc./ Mater. Phys. and Appl. Ser. 2009, p. 1147.
88. Bréchignac C., Houdy P., Lahmani M. Nanomaterials and nanochemistry. Berlin; Heidelberg: Springer-Verl. 2008. 123 p.
89. Rao C. N. R., Müller A., Cheetham A. K. Nanomaterials chemistry: recent developments and new directions. Weinheim: Wiley-VCH Verlag, GmbH and Co., KGaA, 2007.
90. Capek I. Nanocomposite Structures and Dispersions. Amsterdam: Elsevier. 2006. 312 p.
91. Rao C. N. R., Müller A., Cheetham K. The chemistry of nanomaterials: synthesis, properties and applications. Weinheim: Wiley-VCH Verlag, GmbH and Co., KGaA. 2004.
92. Edelstein A.S., Cammaratra R.C. Nanomaterials: synthesis, properties and applications. 2nd Ed. Great Britain: Taylor and Francis. 1998.
93. Geckeler K.E., Nishide H. Advanced nanomaterials. Weinheim: Wiley-VCH Verlag, GmbH and Co., KGaA. 2010.
94. Schwartz M. New materials, processes, and methods technology. Boca Raton, Florida: CRC Press, Taylor and Francis. 2005.
95. Ping L.J., Fullerton E., Gutfleisch O., Sellmyer D.J. Nano scale magnetic materials and applications. New York: Springer Publ. 2009.
96. Reithmaier J., Petkov P., Kulisch W., Popov C. Nanostructured Materials for Advanced Technological Applications (NATO Science for Peace and Security Series B: Physics and Biophysics). Dordrecht, Netherlands: Springer Publ. 2009. 562 p.
97. Hassan A.F., Alafid F., Hrdina R. Preparation of melamine formaldehyde/nanozeolite Y composite based on nanosilica extracted from rice husks by sol-gel method: adsorption of lead (II) ion. Journal of Sol-Gel Science and Technology. 2020. Vol. 95. No. 1, pp. 211–222. https://doi.org/10.1007/s10971-020-05295-y
98. Indrasti N. S., Ismayana A., Maddu A., Utomo S.S. Synthesis of nano-silica from boiler ash in the sugar cane industry using the precipitation method. Synthesis. 2020. Vol. 11. No. 2. DOI: https://doi.org/10.14716/ijtech.v11i2.1741
99. Potapov V., Fediuk R., Gorev D. Obtaining sols, gels and mesoporous nanopowders of hydrothermal nanosilica. Journal of Sol-Gel Science and Technology. 2020. Vol. 94, pp. 1–14. https://doi.org/10.1007/s10971-020-05216-z
100. Meng L., Zhu H., Feng B., Gao B., Wang D., Wei S. Embedded polyhedral SiO2/castor oil-based WPU shell-core hybrid coating via self-assembly sol-gel process. Progress in Organic Coatings. 2020. Vol. 141. 105540. https://doi.org/10.1016/j.porgcoat.2020.105540
101. Imoisili P.E., Ukoba K.O., Jen T.C. Green technology extraction and characterisation of silica nanoparticles from palm kernel shell ash via sol-gel. Journal of Materials Research and Technology. 2020. Vol. 9. No. 1, pp. 307–313. https://doi.org/10.1016/j.jmrt.2019.10.059
102. Tangsee S., Lashari N. U. R. Facile synthesis of nano silica-based coating on API5L-x80 steel to achieve ultra non-wetting surface and its corrosion resistance. Applied Nanoscience. 2020. Vol. 10. No. 11, pp. 4103–4113. https://doi.org/10.1007/s13204-020-01522-8
103. Gnoatto J. A. João Vitor de O., Eduarda A., Faccio Busatto F., P. Moreno Ruiz Y., Cristina Borba da Cunha A., Jaqueline Moura D., Henrique Zimnoch dos Santos J. Hybrid nanosilicas produced by the Stöber sol-gel process: In vitro evaluation in MRC-5 cells. Journal of Non-Crystalline Solids. 2020. Vol. 542. 120152. https://doi.org/10.1016/j.jnoncrysol.2020.120152
104. Boukarroum R. H. Sol-Gel synthesis of silica nanoparticles and their role in predicting cement mortar strength at early ages: dis. Notre Dame University-Louaize, 2020.
105. Xu E., Zhang Y., Lin L. Improvement of mechanical, hydrophobicity and thermal properties of Chinese fir wood by impregnation of nano silica sol. Polymers. 2020. Vol. 12. No. 8. 1632. DOI: 10.3390/polym12081632
106. Azzahra A. N., Yusefin E.S., Salima G., Mudita M.M.W.M., Febriani N.A., Nandyianto A.B.D. Synthesis of nanosilica materials from various sources using various methods. Journal of Applied Science and Environmental Studies. 2020. Vol. 3. No. 4, pp. 254–278.
107. Al-Abboodi S.M.T., Al-Shaibani E.J.A., Alrubai E.A. Preparation and characterization of nano silica prepared by different precipitation methods. IOP Conference Series: Materials Science and Engineering. IOP Publishing. 2020. Vol. 978. No. 1. 012031. DOI 10.1088/1757-899X/978/1/012031
108. Kodippili D. Sol-gel derived nano-silica suspensions for inclusion in cement paste: dis. Concordia University, 2020.
109. Ma Y., He H., Huang B., Jing H., Zhao Z. In situ fabrication of wood flour/nano silica hybrid and its application in polypropylene-based wood-plastic composites. Polymer Composites. 2020. Vol. 41. No. 2, pp. 573–584. https://doi.org/10.1002/pc.25389
110. El-Naggar M. E., Abdelsalam, N.R.; Fouda, M.M.G.; Mackled, M.I.; Al-Jaddadi, M.A.M.; Ali, H.M.; Siddiqui, M.H.; Kandil, E.E. Soil application of nano silica on maize yield and its insecticidal activity against some stored insects after the post-harvest. Nanomaterials. 2020. Vol. 10. No. 4. 739. DOI: 10.3390/nano10040739
111. Almira K. G., Susanto B. H., Ismail A. Synthesize hydrophobic nanomaterial from sodium silicate by sol-gel method combined with hot injection method. AIP Conference Proceedings. 2020. Vol. 2255. No. 1. 060024. https://doi.org/10.1063/5.0014325
112. Sun Q., Wang Y., Huang l., Lu P., Wang X., Zhang Z., Wang Y., Tang J., A. Belfiore L. Enhanced NIR-fluorescent properties of Tm3+ complex combined with nano silica. Inorganic Chemistry Communications. 2020. Vol. 120. 108172. DOI: 10.3390/nano10101964
113. Zarandi P. K., Madani A, Bagheri H, Moslemion M. The effect of sandblasting and coating of zirconia by nano composites on bond strength of zirconia to resin cements. Journal of Dentistry. 2020. Vol. 21. No. 1. DOI: 10.30476/DENTJODS.2019.77789.0
114. El-Didamony H., El-Fadaly E., A. Amer A., H. Abazeed I. Synthesis and characterization of low cost nanosilica from sodium silicate solution and their applications in ceramic engobes. Boletín de la Sociedad Española de Cerámica y Vidrio. 2020. Vol. 59. No. 1, pp. 31–43. https://doi.org/10.1016/j.bsecv.2019.06.004
115. Chainaruprasert R., Pongprayoon T. Synthesis of biogenic nanosilica from rice husk: using scaling-up batch reactor from laboratory. Key Engineering Materials. 2020. Vol. 856, pp. 198–204. https://doi.org/10.4028/www.scientific.net/KEM.856.198
116. Kooshafar M., Madani H. An investigation on the influence of nano silica morphology on the characteristics of cement composites. Journal of Building Engineering. 2020. Vol. 30. 101293. https://doi.org/10.1016/j.jobe.2020.101293
117. Meng L., Qiu H., Wang D., Feng B., Di M., Shi J., Wei S. Castor-oil-based waterborne acrylate/SiO2 hybrid coatings prepared via sol-gel and thiol-ene reactions. Progress in Organic Coatings. 2020. Vol. 140. 105492. https://doi.org/10.1016/j.porgcoat.2019.105492
118. Beirami K., Baghshahi S., Ardestani M., Ardestani M. Synthesis and characterization of hydrophobic nano-silica thin coatings for outdoor insulators. Processing and Application of Ceramics. 2020. Vol. 14. No. 1, pp. 40–46. DOI: 10.2298/PAC2001040B
119. Mohd Daud F. D., Nur Aishah M. Azmy, Mudrikah S.M., Norshahida S., Hafizah Hanim M. Zaki. Preparation of nanosilica powder using rice husk via precipitation method. Materials Science Forum. 2020. Vol. 1010, pp. 501–507. https://doi.org/10.4028/www.scientific.net/MSF.1010.501
120. Heiman-Burstein D., Dotan A., Dodiuk H., Kenig S. Hybrid sol-gel superhydrophobic coatings based on alkyl silane-modified nanosilica. Polymers. 2021. Vol. 13. No. 4. 539. https://doi.org/10.3390/polym13040539
121. Kadhim R.A., Mohammed A.A. K., Hussein H.M. Synthesis and preparation of Nano-silica particles from Iraqi western region silica sand via SOL-GEL method. Journal of Physics: Conference Series. IOP Publishing. 2021. Vol. 1973. No. 1. 012071. DOI 10.1088/1742-6596/1973/1/012071
122. Sarkar J., Deepanjan M., Joy S., Jonathan T.O., Bhuman G., Dipankar C., Tarit R., Krishnendu A. Synthesis of nanosilica from agricultural wastes and its multifaceted applications: A review. Biocatalysis and Agricultural Biotechnology. 2021. Vol. 37. 102175. https://doi.org/10.1016/j.bcab.2021.102175
123. Owoeye S.S., Abegunde S.M., Oji B. Effects of process variable on synthesis and characterization of amorphous silica nanoparticles using sodium silicate solutions as precursor by sol-gel method. Nano-Structures & Nano-Objects. 2021. Vol. 25. 100625. https://doi.org/10.1016/j.nanoso.2020.100625
124. Kamasamudram K.S., Ashraf W., Landis E. N. Cellulose nanofibrils with and without nanosilica for the performance enhancement of Portland cement systems. Construction and Building Materials. 2021. Vol. 285. 121547. https://doi.org/10.1016/j.conbuildmat.2020.121547
125. Nair P. A. K., Vasconcelos W.L., Paine K., Calabria-Holley J. A review on applications of sol-gel science in cement. Construction and Building Materials. 2021. Vol. 291. 123065. https://doi.org/10.1016/j.conbuildmat.2021.123065
126. Behnia B., Safardoust-Hojaghan H., Amiri O., Salavati-Niasari M., Aali Anvari A. High-performance cement mortars-based composites with colloidal nano-silica: Synthesis, characterization and mechanical properties. Arabian Journal of Chemistry. 2021. Vol. 14. No. 9. 103338. https://doi.org/10.1016/j.arabjc.2021.103338
127. Mujiyanti D. R., Trisno Santoso U., Dwi Saptarini M., Heirani Emi N. Synthesis and characterization nanosilica from rice husk ash using sol-gel method with addition of PEG-6000 and PVA. JKPK (Jurnal Kimia dan Pendidikan Kimia). 2021. Vol. 6. No. 3, pp. 252–263. https://repo-dosen.ulm.ac.id//handle/123456789/23200
128. Aziz T., Mehmood, S., Haq, F., Ullah, R., Khan, F. U.,Ullah, B., Raheel, M., Iqbal, M., Ullah, A. Synthesis and modification of silica-based epoxy nanocomposites with different sol-gel process enhanced thermal and mechanical properties. Journal of Applied Polymer Science. 2021. Vol. 138 (40). 51191.
129. Santos L., Taleghani A. D., Li G. Nanosilica-treated shape memory polymer fibers to strengthen wellbore cement. Journal of Petroleum Science and Engineering. 2021. Vol. 196, pp. 107646. https://doi.org/10.1016/j.petrol.2020.107646
130. Jyoti A., Kr Singh R., Kumar N., Kr Aman A., Kar M. Synthesis and properties of amorphous nanosilica from rice husk and its composites. Materials Science and Engineering: B. 2021. Vol. 263, pp. 114871. https://doi.org/10.1016/j.mseb.2020.114871
131. Setyawan N., Yuliani S. Synthesis of silica from rice husk by sol-gel method. IOP Conference Series: Earth and Environmental Science. 2021. Vol. 733. No. 1. 012149. DOI 10.1088/1755-1315/733/1/012149
132. Zuwanna I., Riza M., Aprilia S. The impact of solvent concentration on the characteristic of silica from rice husk ash using sol gel method. IOP Conference Series: Materials Science and Engineering. IOP Publishing. 2021. Vol. 1087. No. 1. 012060. DOI: 10.1088/1757-899X/1087/1/012060
133. Wan W., Mai Y., Guo D., Hou G., Dai X., Gu Y., Li S., Wu F. A novel sol-gel process to encapsulate micron silicon with a uniformly Ni-doped graphite carbon layer by coupling for use in lithium ion batteries. Synthetic Metals. 2021. Vol. 274. 116717. https://doi.org/10.1016/j.synthmet.2021.116717
134. Meda U. S., Sachin K.C. Synthesis of silicon dioxide nanoparticles by sol-gel method for application in geopolymer composites. SPAST Abstracts. 2021. Vol. 1. No. 1. https://spast.org/techrep/article/view/2626
135. Da’na E., Al-Arjan W.S., Al-Saeed S., El-Aassar M.R. One-pot synthesis of amine-functionalized nano-silica via sol-gel assisted by reverse micelle microemulsion for environmental application. Nanomaterials. 2022. Vol. 12. No. 6. 947. DOI: 10.3390/nano12060947
136. Singh G., Arora H., Hariprasad P., Sharma S. Development of clove oil based nanoencapsulated biopesticide employing mesoporous nanosilica synthesized from paddy straw via bioinspired sol-gel route. Environmental Research. 2023. 115208. https://doi.org/10.1016/j.envres.2022.115208
137. Gautam K. D., Ullas A. V. Effect of stirring speed on the morphology of nanosilica by sol-gel method. Materials Today: Proceedings. 2022. https://doi.org/10.1016/j.matpr.2022.10.281
138. Moradi H.. Atashi P., Amelirad O., Yang J.-K., Chang Y.-Y., Kamranifard T. Machine learning modeling and DOE-assisted optimization in synthesis of nanosilica particles via Stöber method. Advances in nano research. 2022. Vol. 12. No. 4, pp. 387–403. DOI: 10.12989/anr.2022.12.4.387
139. Toyofuji A., Hano N., Yamaguchi Y., Wakiya T., Ihara H., Takafuji M. Preparation of hybrid microspheres with homogeneously dispersed nanosilica using in-situ sol-gel reaction inside a polystyrene matrix. Chemistry Letters. 2022. Vol. 51. No. 6, pp. 639–642. https://doi.org/10.1246/cl.220121

For citation: Strokova V.V., Nelubova V.V., Kuzmin E.O., Ryltsova I.G., Gubareva E.N., Baskakov P.S. Technologies of sol-gel synthesis of nanosilica as a modifier of cement-based materials. Foresight analysis. Stroitel’nye Materialy [Construction Materials]. 2023. No. 3, pp. 43–72. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-811-3-43-72

Formation of Nanosystems During Hardening of Composite Cements of Centrifugal-Impact Grinding

Number of journal: 3-2023
Autors:

Garkavi M.S.,
Artamonov A.V.,
Kolodezhnaya E.V.,
Dergunov S.A.,
Serikov S.V.

DOI: https://doi.org/10.31659/0585-430X-2023-811-3-39-42
УДК: 666.945

 

AbstractAbout AuthorsReferences
Composite cement is a modern building material, which contains a mineral component that improves the technological properties of cement. With the joint grinding and mechanical activation of the components of composite cement in an energy-intensive centrifugal impact mill, particle agglomerates are formed – mechanocomposites that affect the hardening and properties of the finished product. Schemes of hydration of composite cements of separate and joint grinding are proposed. It is shown that during the hydration of mechanocomposites in the composite cement, nanometer-sized X-ray amorphous calcium hydrosilicates and calcium hydroaluminates are formed. Crystallization of these neoplasms by a non-classical kvataron mechanism leads to the formation of a fractal structure of a cement stone with high early strength.
M.S. GARKAVI1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.V. ARTAMONOV1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
E.V. KOLODEZHNAYA2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
S.A. DERGUNOV3, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
S.V. SERIKOV3, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Ural-Omega PJSC (89, Duilding 7, Lenina Avenue, Magnitogorsk, 455037, Russian Federation)
2 Institute of Comprehensive Exploitation Mineral Resources Russian Academy of Sciences (4, Kryukovskiy Tupik, Moscow, 111020, Russian Federation)
3 Orenburg State University (13, Pobedy Avenue, Orenburg, 460018, Russian Federation)

1. Rikert J., Müller K. Efficient composite cements - a contribution to the reduction of CO2 emissions. «ALITINFORM» Mezhdunarodnoe analiticheskoe obozrenie. 2011. No. 2, pp. 28–43.
2. Serjun V.Z., Mirti B., Mladenovi A. Evaluation of ladle slag as a potential material for building and civil engineering. 2013. Materials and Technologies. Vol. 47(5), pp. 543–550.
3. Zbigniew Giergiczny. Fly ash and slag. Cement and Concrete Research. 2019. Vol. 124. 1058264. https://doi.org/10.1016/j.cemconres.2019.105826
4. Amit Rai, Prabakar J., Raju C.B., Morchalle R.K. Metallurgical slag as a component in blended cement. Construction and Building Materials. 2002.Vol. 16. Iss. 8, pp. 489–494. https://doi.org/10.1016/S0950-0618(02)00046-6
5. Khripacheva I.S., Garkavi M.S., Artamonova A.V., Voronin K.M., Artamonova A.V. Cements of centrifugal-impact grinding. Cement i ego primenenie. 2013. No. 4, pp. 106–109. (In Russian).
6. Khripacheva I.S., Garkavi M.S. Mixed cements of centrifugal-impact grinding based on blast-furnace waste slag. Stroitel’nye Materialy [Construction Materials]. 2010. No. 8, pp. 40–41. (In Russian).
7. Lapshin O.V., Smolyakov V.K. Formation of a layered structure of mechanocomposites during grinding of a binary mixture. Himicheskaya fizika i mezoskopiya. 2013. Vol. 15. No. 2, pp. 278–284.
8. Garkavi M.S., Dergunov S.A., Serikov S.V. Formation of the structure of composite cement in the grinding process. Stroitel’nye Materialy [Construction Materials]. 2021. No. 10, pp. 65–68. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-796-10-65-68
9. Ancharov A.I. et al. Mehanokompozity – prekursory dlja sozdanija materialov s novymi svojstvami [Mechanocomposites as precursors for creating materials with new properties]. Novosibirsk: Publishing house of SO RAN, 2010. 424 p.
10. Garkavi M.S., Artamonov A.V., Stavtseva A.V., Kolo-dezhnaya E.V., Dergunov S.A., Serikov S.V. Modeling of structural transformations when grinding composite cement. Stroitel’nye Materialy [Construction Materials]. 2021. No. 11, pp. 41–46. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-797-11-41-46
11. Tikhomirova I.N., Makarov A.V. Mechanical activation of lime-quartz Stroitel’nye Materialy [Construction Materials]. 2012. No. 9, pp. 4–7.
12. Panfilov M.I., Shkolnik Ya.Sh., Orininsky N.V. Pererabotka shlakov i bezothodnaja tehnologii v metallurgii [Slag processing and non-waste technologies in metallurgy]. Moscow: Metallurgy. 1987. 238 p.
13. Gorshkov V.S., Aleksandrov S.E., Ivashchenko S.I., Gorshkova I.V. Kompleksnaja pererabotka i ispol’zovanie metallurgicheskih shlakov v stroitel’stve [Complex processing and use of metallurgical slags in construction]. Moscow: Stroyizdat. 1985. 272 p.
14. Lapshin O.V., Boldyreva E.V., Boldyrev V.V. The role of mixing and dispersion in mechanochemical synthesis (review). Zhurnal neorganicheskoy himii. 2012. Vol. 66. No. 3, pp. 402–424.
15. Garkavi M. Termodinamika tverdeniya vyazhushchikh sistem. Teoreticheskie printsipy i tekhnologicheskie prilozheniya [Thermodynamics of hardening of binder systems. Theoretical principles and technological applications]. Berlin Palmarium Academic Publishing. 2013. 247 p.
16. Askhabov A.M. Kvataron concept: basic ideas and some applications. Izvestiya of the Komi Scientific Center of the Ural Branch of the Russian Academy of Sciences. 2011. Iss. 3, pp. 70–77.
17. Askhabov A.M. On the properties of pre-embryonic (protomineral) clusters. Doklady Akademii nauk. 2019. Vol. 487. No. 5, pp. 47–50. (In Russian).

For citation: Garkavi M.S., Artamonov A.V., Kolodezhnaya E.V., Dergunov S.A., Serikov S.V. Formation of nanosystems during hardening of composite cements of centrifugal-impact grinding. Stroitel’nye Materialy [Construction Materials]. 2023. No. 3, pp. 39–42. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-811-3-39-42

Investigation of the Porous Structure of Concretes Treated with Polymer Silicate Compositions with Nanoadditives

Number of journal: 3-2023
Autors:

Shatalov A.A.,
Chesnokov R.A.,
Pichugin A.P.

DOI: https://doi.org/10.31659/0585-430X-2023-811-3-33-38
УДК: 691.18:620.3

 

AbstractAbout AuthorsReferences
The influence of nanoscale and fine-dispersed additives on the properties of protective impregnating compositions during the restoration of the structure of various materials, including concrete and ground concrete, which is very important for the reliable operation of the operated structures, has been studied. The study notes that during operation, the total porosity of materials changes dramatically and increases, and this leads to the decommissioning of building elements or their condition is recognized as unsatisfactory. Methods of protection of various materials on a mineral bundle with protective impregnating polymer-containing compositions with nanoscale additives aimed at prolonging the service life of structures, buildings and structures are considered. The necessity of preventive measures at the design stage of structures, as well as primary and secondary protection of materials from corrosion and aging, including, respectively, the introduction of various modifying additives, including nanoscale ones, into their composition, is noted. In addition, the study of physico-chemical processes in systems with protective impregnating compositions made it possible to optimize their rational consumption and obtain effective means to extend the service life of various objects.
A.A. SHATALOV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
R.A. CHESNOKOV, PhD student (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.P. PICHUGIN, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Novosibirsk State Agrarian University (160, Dobrolyubova Street, Novosibirsk, 630039, Russian Federation)

1. Shatalov A.A., Pichugin A.P., Pchelnikov A.V. Zashchitnye kompozitsii betonnykh prichal’nykh sooruzhenii. Monografiya [Protective compositions of concrete berthing structures. Monograph]. Novosibirsk: TSARIS. 2022. 160 p.
2. Shatalov A.A., Nikitenko K.A. Pichugin A.P. The condition of concrete berths operated in harsh conditions of Siberia. Izvestiya vuzov. Stroitel’stvo. 2018. No. 10, pp. 71–78. (In Russian).
3. Chernyshov E.M., Artamonova O.VA., Slavcheva G.S. Nanomodifitsirovanie sistem tverdeniya v strukture stroitel’nykh kompozitov: Monografiya [Nanomodification of hardening systems in the structure of building composites: Monograph]. Voronezh: Scientific Book, 2016. 132 p.
4. Lisenko V.A. Effective polymer solutions for homologation of structures during their restoration, reconstruction and repair. Abstract Diss. ... Doctor of Sciences (Engineering). Moscow. 1989. 32 p. (In Russian).
5. Alimov L.A. Development of the theory and improvement of concrete technology based on its structural and technological characteristics. Diss. ... Doctor of Sciences (Engineering). Moscow. 1982. 420 p.
6. Kazansky V.M., Petrenko I.Yu. Fizicheskie metody issledovaniya struktury stroitel’nykh materialov [Physical methods of studying the structure of building materials]. Kiev: KISI. 1984. 76 p.
7. Greg S., Sing K. Adsorbtsiya, udel’naya poverkhnost’, poristost’ [Adsorption, specific surface area, porosity]. Moscow: Mir. 1970. 138 p.
8. Malkin A.Ya., Askadsky A.A., Kovriga V.V. Metody izmereniya mekhanicheskikh svoistv polimerov [Methods of measuring the mechanical properties of polymers]. Moscow: Khimiya. 1978. 330 p.
9. Kargin V.A. Rol’ strukturnykh yavlenii v formirovanii svoistv polimerov [The role of structural phenomena in the formation of polymer properties]. Moscow: Nauka. 1969, pp. 7–31.
10. Teitelbaum B.Ya. Termomekhanicheskii analiz polimerov [Thermomechanical analysis of polymers]. Moscow: Nauka. 1969. 236 p.
11. Gorshkov V.S. Termografiya stroitel’nykh materialov [Thermography of building materials]. Moscow: Stroyizdat. 1968. 145 p.
12. Topor N.D. Differentsial’no-termicheskii i termovesovoi analiz mineralov [Differential-thermal and thermal-weight analysis of minerals]. Moscow: Nedra. 1964. 159 p.
13. Knigina G.I., Tatsky O.N., Kucherova E.A. Sovre-mennye fiziko-khimicheskie metody issledovaniya stroitel’nykh materialov: uchebnoe posobie [Modern physico-chemical methods of research of building materials]. Novosibirsk: NISI im. V.V. Kuibysheva. 1981. 114 p.
14. Pichugin A.P., Hritankov V.F., Pchelnikov A.V., Shatalov A.A., Smirnova O.E. Thermomechanical studies of protective impregnating compositions with nanoscale special additives. Inzhenerno-stroitel’nyi vestnik Prikaspiya. 2020. No. 3, pp. 53–58. (In Russian).

For citation: Shatalov A.A., Chesnokov R.A., Pichugin A.P. Investigation of the porous structure of concretes treated with polymer silicate compositions with nanoadditives. Stroitel’nye Materialy [Construction Materials]. 2023. No. 3, pp. 33–38. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-811-3-33-38

Evaluation of the Efficiency of Protection Against Static Electricity when Using Nanomodified Paint Coatings

Number of journal: 3-2023
Autors:

Pchelnikov A.V.

DOI: https://doi.org/10.31659/0585-430X-2023-811-3-27-32
УДК: 691.1:539.2

 

AbstractAbout AuthorsReferences
This article deals with the protection of agro-industrial complex objects from static electricity by nanomodified coatings. It is indicated that one of the main causes of ignition of objects of the agro-industrial complex is static electricity discharges, leading to damage to equipment, possible fires, explosions and injuries to maintenance personnel. The conducted experimental studies of modified coatings with carbon nanotubes are reflected. With a concentration of compositions with carbon nanotubes in the paintwork material up to 0.1%, the resulting coating becomes up to two times more antistatic and has increased adhesive strength (adhesion strength increases two or more times). When analyzing the samples on a scanning electron microscope, it was determined that the introduction of carbon nanotubes into the composition of paint and varnish materials contributes to a faster (1.2–1.5 times) passage of electrons through the coating and, as a result, the formation of dark areas in electronic images, which characterizes conductive and antistatic coating quality. The use of acrylic paints and varnishes modified with carbon nanotubes will reduce the risk of ignition of fire hazardous objects of the agro-industrial complex, as well as extend the service life of protective coatings.
A.V. PCHELNIKOV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Novosibirsk State Agrarian University (630039, Novosibirsk, Dobrolyubova Street, 160)

1. World fire statistics for the year. Statistics and causes of fires (Electronic resource). https://ortait.ru/mirovaya-pozharnaya-statistika-za-god-statistika-i-prichiny-pozharov/. Date of access: 04.12.2022. (In Russian).
2. Summary statistics of fires in the Russian Federation (Electronic resource). https://wikifire.org/Summary%20statistics%20%20fires%20%20Russian%20Federation.ashx. Accessed: 04.12.2022. (In Russian).
3. Statistics of fires in Russia (Electronic resource) http://www.pojarnayabezopasnost.ru/statistika.html/. Date of access: 04.12.2022. (In Russian).
4. Pchelnikov A.V., Pichugin A.P., Khritankov V.F., Voloboi E.A. Modeling of the process and methods for assessing the combustion of protective coatings of metal structures and equipment. Izvestiya vysshikh uchebnykh zavedenii. Stroitel’stvo. 2020. No. 6 (738), pp. 81–90. DOI: 10.32683/0536-1052-2020-738-6-81-90.
5. Reibman A.I. Zashchitnye lakokrasochnye pokrytiya [Protective paint coatings. 5th ed., revised. and additional]. Leningrad: Khimiya, 1982. 320 p.
6. Yazykov S.Yu., Dammer V.Kh., Panin S.V., Ovechkin B.B. Antistatic composite coatings for the protection of magnesium alloys based on powder paints processed in a planetary ball mill. Izvestiya TPU. Mathematics and mechanics. Physics. 2014. Vol. 325. No. 2, pp. 105–113. (In Russian).
7. Stepin S.N., Abdullin I.Sh., Svetlakova T.N., Ziganshina M.R., Svetlakov A.P. Nanoscale objects in the field of anti-corrosion protection with polymer coatings. Lakokrasochnye materialy i ikh primenenie. 2009. No. 3, pp. 40–42. (In Russian).
8. Shashok Zh.S., Prokopchuk N.R. Primenenie uglerodnykh nanomaterialov v polimernykh kompozitsiyakh [Application of carbon nanomaterials in polymer compositions]. Minsk: BSTU. 2014. 232 p.
9. Pchelnikov A.V., Pichugin A.P., Khritankov V.F., Smirnova O.E. The role of nano-additives in the formation of a strong contact layer of protective coatings. Stroitel’nye Materialy [Construction Materials]. 2022. No. 7, pp. 45–50. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-804-7-45-50
10. Pichugin A.P., Khritankov V.F., Pchelnikov A.V. Thermomechanical studies of protective impregnating compositions with nanosized and special additives. Inzhenerno-stroitel’nyi vestnik Prikaspiya. 2020. No. 3 (33), pp. 53–58. (In Russian).
11. Hippel A.R. Dielektriki i ikh primenenie [Dielectrics and their application]. Moscow-Leningrad: Gosenergoizdat. 1959. 336 p.
12. Pchelnikov A.V., Pichugin A.P., Lutsik R.V., Tkachenko S.E., Dielectric analysis of operational characteristics and the aging process of protective coatings. Ekspert: teoriya i praktika. 2022. No. 1 (16), pp. 14–22. (In Russian). DOI: 10.51608/26867818_2022_1_14
13. Vinogradov S.A., Pichugin M.A., Khritankov V.F., Pichugin A.P. Dielectric properties and strength of cement stone in fine-grained concrete. Izvestiya vysshikh uchebnykh zavedenii. Stroitel’stvo. 2019. No. 3 (723), pp. 20–30. (In Russian).
14. Application guide for 200 and 300 series Tuball Matrix. Oxial. 2019. 6 p.
15. Yazykov S.Yu., Dammer V.Kh., Panin S.V., Ovechkin B.B. Antistatic composite coatings for the protection of magnesium alloys based on powder paints processed in a planetary ball mill. Izvestiya TPU. Mathematics and mechanics. Physics. 2014. Vol. 325. No. 2, pp. 105–113.
16. Conductive enamels (Electronic resource). http://npklkp.ru/emali-tokoprovodyashchiye. Date of access: 12.04.2022. (In Russian).

For citation: Pchelnikov A.V. Evaluation of the efficiency of protection against static electricity when using nanomodified paint coatings. Stroitel’nye Materialy [Construction Materials]. 2023. No. 3, pp. 27–32. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-811-3-27-32

Evaluation of the Effectiveness of the Use of Nano-Additives in Protective Coatings

Number of journal: 3-2023
Autors:

Pichugin A.P.,
Pchelnikov A.V.,
Khritankov V.F.,
Tulyaganov A.K.

DOI: https://doi.org/10.31659/0585-430X-2023-811-3-20-26
УДК: 691.17

 

AbstractAbout AuthorsReferences
The issues of practical application of nano-modified coatings for the protection of objects of the agro-industrial complex are considered. Various options for the use of paint and varnish coatings with nano-scale additives and the real physical, mechanical and operational properties of these coatings, which contribute to increased adhesion, chemical resistance, resistance to mechanical and climatic factors, are shown. For an objective assessment of the quality indicators of protective coatings, the authors developed physicochemical non-destructive test methods based on dielcometric analysis data. For this purpose, a device for an express method for assessing the state of paint and varnish protective coatings has also been developed. The conducted experimental studies of modified coatings with carbon and other nano-additives are reflected. The use of acrylic paints and varnishes modified with nano-additives will increase the resistance of coatings to operating factors, increase the inter-repair time, and also reduce the risk of ignition of fire hazardous objects of the agro-industrial complex, as well as extend the service life of protective coatings.
A.P. PICHUGIN1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.V. PCHELNIKOV1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.F. KHRITANKOV1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.K. TULYAGANOV2, Director (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Novosibirsk State Agrarian University (160, Dobrolyubova Street, Novosibirsk, 630039, Russian Federation)
2 Varnish-and-lacquer plant “Kolorit” (67, Petukhova Street, Novosibirsk, 630088, Russian Federation)

1. Shashok Zh.S., Prokopchuk N.R. Primeneniye uglerodnykh nanomaterialov v polimernykh kompozitsiyakh [Application of carbon nanomaterials in polymer compositions]. Minsk: BSTU. 2014. 232 p.
2. Abdrakhmanova L.A., Khozin V.G., Nizamov R.K. Nanomodification of epoxy binders. Nanotekhnologii v stroitel’stve: scientific online journal. 2019. Vol. 11. No. 6, pp. 686–695. (In Russian).
3. Nizina T., Balykov A., Korovkin D., Volodin V. Optimization of the composition of cement dispersion-reinforced fine-grained concrete containing carbon nanomodifiers. Nanoindustriya. 2017. No. 7 (78), pp. 82–91. (In Russian).
4. Nizina T.A., Balykov A.S., Korovkin D.I., Volodin V.V. Physical and mechanical properties of modified fine-grained fibre-reinforced concretes containing carbon nanostructures. International Journal of Nanotechnology. 2019. Vol. 16. No. 6–10, pp. 496–509. DOI: 10.1504/IJNT.2019.106621
5. Matveeva L.Yu., Mokrova M.V., Korotaeva A.S., Rodionova A.M. Influence of nanomodifiers on the structure and properties of gypsum. Traditions and innovations in construction and architecture. Construction and building technologies: Collection of articles of the 79th All-Russian Scientific and Technical Conference / Under the editorship of Shuvalov M.V., Pishchu-leva A.A., Strelkov A.K. Samara, April 18–22, 2022, pp. 821–829. (In Russian).
6. Patent No. 2775585 C9 Russian Federation, IPC C04B 28/04. Nanomodified high-strength lightweight concrete based on composite binder: No. 2021136553 / Grishina A.N., Inozemtsev A.S., Korolev E.V. Applicant FGBUO “National Research Moscow State University of Civil Engineering”. Appl. 12/10/2021. Published 08/22/2022.
7. Shekhovtsova S., Korolev E. Nanomodified rejuvenators and protective materials for asphalt concrete. Magazine of Civil Engineering. 2021. No. 6 (106). 10607. DOI: 10.34910/MCE.106.7
8. Ginchitskaya Yu.N., Yakovlev G.I., Drochitka R., Pervushin G.N., Khritankov V.F., Kolbina D.S., Balobanova Yu.A. Research of structure and properties of nanomodified ceramics. Stroitel’nye Materialy [Construction materials]. 2018. No. 1–2, pp. 27–32. (In Russian).
9. Lesovik V.S., Fediuk R.S., Gridchin A.M., Murali G. Improving the operational characteristics of protective composites. Stroitel’nye Materialy [Construction Materials]. 2021. No. 9, pp. 32–40. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-795-9-32-40
10. Nelubova V.V., Usikov S.A., Strokova V.V., Netsvet D.D. Composition and properties of self-compacting concrete using a complex of modifiers. Stroitel’nye Materialy [Construction Materials]. 2021. No. 12, pp. 48–54. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-798-12-48-54
11. Pchelnikov A.V., Pichugin A.P., Khritankov V.F., Smirnova O.E. The role of nano-additives in the formation of a strong contact layer of protective coatings. Stroitel’nye Materialy [Construction Materials]. 2022. No. 7, pp. 45–50. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-804-7-45-50
12. Ilyasov A.P., Pchelnikov A.V., Pichugin A.P., Khritankov V.F. Heat-shielding properties of polymer compositions with nanosized and special additives. Izvestiya vuzov. Stroitel’stvo. 2022. No. 3, pp. 15–24. (In Russian).
13. Pchelnikov A.V., Pichugin A.P., Lutsik R.V., Tkachenko S.E. Dielectric analysis of operational characteristics and the aging process of protective coatings. Ekspert: teoriya i praktika. 2022. No. 1 (16). pp. 14–22. (In Russian).
14. Pichugin A.P., Khritankov V.F., Pchelnikov A.V., Romashev D.V. Protective properties of compositions with nanosized and special additives against radiation exposure. Izvestiya vuzov. Stroitel’stvo. 2021. No. 12 (756), pp. 24–33. (In Russian).
15. Pchelnikov A.V., Pichugin A.P., Khritankov V.F., Ilyasov A.P. Influence of nanoadditives on increasing the adhesion strength of protective coatings to steel structures and equipment. Izvestiya vuzov. Stroitel’stvo. 2021. No. 7, pp. 103–113. (In Russian).
16. Pchelnikov A.V., Pichugin A.P., Khritankov V.F., Voloboy E.A. Modeling of the process and methods for assessing the burning of protective coatings of metal structures and equipment. Izvestiya vuzov. Stroitel’stvo. 2020. No. 6 (738), pp. 81–90. (In Russian).
17. Frolov V.V. Khimiya: Uchebnoye posobiye dlya mashinostroitel’nykh spetsial’nostey vuzov [Chemi-stry: Textbook for engineering specialties of universities]. Moscow: Vysshaya shkola.1986. 543 p.
18. Vorobyov A.A. Fizicheskiye svoystva ionnykh kristallicheskikh dielektrikov. Kn. 1. [Physical properties of ionic crystalline dielectrics. Book 1]. Tomsk: Publishing House of Tomsk University. 1960. 231 p.

For citation: Pichugin A.P., Pchelnikov A.V., Khritankov V.F., Tulyaganov A.K. Evaluation of the effectiveness of the use of nano-additives in protective coatings. Stroitel’nye Materialy [Construction Materials]. 2023. No. 3, pp. 20–26. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-811-3-20-26

https://www.traditionrolex.com/10