Log in

Dry Mix for the Preparation of Facade Silicate Paint

Number of journal: 3-2023
Autors:

Yakovlev G.I.,
Pervushin G.N.,
Saidova Z.S.,
Ginchitskaya Yu.N.,
Kuzmina N.V.,
Buryanov A.F.,
Trofimova D.A.

DOI: https://doi.org/10.31659/0585-430X-2023-811-3-12-19
УДК: 685.34.043.2

 

AbstractAbout AuthorsReferences
A research on one-component dry mix for the preparation of facade silicate paint is presented in the following paper. The developed composition stands out for its ability to self-clean through the process of photocatalysis due to the presence of nano-titanium dioxide in the mixture, as well as for its increased adhesion to the base. In addition, the developed composition is prepared as a dry mix that can be dissolved in hot water before application, which makes it easier to use compared to two-component low-tech compositions in the form of silicate paint and cement-silicate paint with liquid glass in their content. Another advantage of the developed dry mix over traditional compositions is associated with the use of dry powder of sodium liquid glass instead of expensive potassium liquid glass. In the course of the work, the optimal amount of the main components and modifying additives was established. The microstructure of the facade paint, as well as its IR spectral and differential thermal analysis were carried out, which showed that the weather resistance of the facade paint is ensured by deep carbonization of the constituent components with their transformation into calcium carbonates, that are known by high water resistance and chemical stability.
G.I. YAKOVLEV1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
G.N. PERVUSHIN1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
Z.S. SAIDOVA1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
Yu.N. GINCHITSKAYA1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
N.V. KUZMINA1, postgraduate student (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.F. BURYANOV2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
D.A. TROFIMOVA1, Bachelor student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Kalashnikov Izhevsk State Technical University (7, Studencheskaya Street, Izhevsk, 426069, Russian Federation)
2 Russian Gypsum Association (117, Kraskovo, Moscow Region, K. Marksa Street, 140050, Russian Federation)

1. Ориентлихер Л.П., Логанина В.И. Защитно-декоративные покрытия бетонных и каменных стен: Справ. пособ. М.: Стройиздат, 1993. 120 с.
1. Orientlicher L.P., Loganina V.I. Zashchitno-dekorativnyye pokrytiya betonnykh i kamennykh sten. Spravzhochnoye posobiye [Protective and decorative coatings for concrete and stone walls]. Moscow: Stroyizdat. 1993. 120 p.
2. Серебряков А.И., Абакумов А.Е., Лукьянчиков С.А. Защитно-декоративное полимерное покрытие стеновых материалов // Строительные материалы. 2006. № 4. С. 20–21.
2. Serebryakov A.I., Abakumov A.E., Lukyanchikov S.A. Protective and decorative polymeric coating of wall materials. Stroitel’nye Materialy [Construction Materials]. 2006. No. 4, pp. 20–21. (In Russian).
3. Loganina V., Frolov M., Mazhitov E. Influence of protective and decorative coatings based on sol-silicate paints on the moisture regime of external walls of buildings. Construction and Geotechnics. 2021. Vol. 12. No. 4, pp. 103–114. DOI: 10.15593/2224-9826/2021.4.08.
4. Яковлев Г.И. Дегидратированная глина – активный компонент отделочной композиции на основе жидкого стекла // Стекло и керамика. 2003. № 1. С. 33–34.
4. Yakovlev G. I. Dehydrated clay as an active component of a finishing composition based on liquid glass. Steklo i Keramika. 2003. No. 1, pp. 33–34. (In Russian).
5. Яковлев, Г.И., Первушин Г.Н., Кизиевич О., Гинчицкая Ю.Н., Тайбахтина П.А. Влияние высолов в кирпичной кладке на разрушение отделочного полимерного покрытия // Строительные материалы. 2016. № 4. С. 69–71.
5. Yakovlev, G.I., Pervushin G.N., Kizievich O., Ginchitskaya Yu.N., Taibakhtina P.A. Influence of efflorescence in brickwork on the destruction of the finishing polymer coating. Stroitel’nye Materialy [Construction Materials]. 2016. No. 4, pp. 69–71. (In Russian).
6. Manohar S., Chockalingam N., Santhanam M. Experimental comparison between salt weathering testing procedures on different types of bricks. Journal of Materials in Civil Engineering. 2021. Vol. 33 (11). DOI: 10.1061/(ASCE)MT.1943-5533.0003936
7. Rodrigues Peruchi A.B., Zuchinali F.F., Bernardin A.M. Development of a water-based acrylic paint with resistance to efflorescence and test method to determine the appearance of stains. Journal of building engineering. 2020. Vol. 35. 102005. https://doi.org/10.1016/j.jobe.2020.102005
8. Bassuoni M.T., Rahman M.M. Response of concrete to accelerated physical salt attack exposure. Cement and Concrete Research. 2016. Vol. 79, pp. 395–408. https://doi.org/10.1016/j.cemconres.2015.02.006
9. Pietruszczak S., Przecherski P., Stryszewska T. Impact of salt crystallization on the mechanical properties of structural masonry: An experimental and numerical study. Construction and Building Materials. 2022. Vol. 344. 128062, https://doi.org/10.1016/j.conbuildmat.2022.128062
10. Яковлев Г.И., Кудрявцев В.А. Цементно-силикатная краска повышенной долговечности // Comportarea in siti a constructiilor. Materialele Conferintei Nationale. Bucuresti. 1996. С. 251–254.
10. Yakovlev G.I., Kudryavtsev V.A. Cement-silicate paint of increased durability. Comportarea in siti a constructiilor. Materialele Conferintei Nationale. Bucuresti. 1996, pp. 251–254.
11. Шинкарева Е.В. Однокомпонентная фасадная краска на основе жидкого калиевого стекла производства ОАО «Домановский ПТК» // Лакокрасочные материалы и их применение. 2013. № 6. С. 28–33.
11. Shinkareva E.V. One-component facade paint based on liquid potassium glass produced by OAO Domanovsky PTK. Lakokrasochnye materialy i ikh primeneniye. 2013. No. 6, pp. 28–33.
12. Везенцева А.И., Воронцова О.А., Сахонва Л.Ю., Бузанов В.Д. Защитно-декоративные покрытия на основе жидкого стекла // Хімія, хімічна технологія та екологія. Вісник НТУ «ХПІ». 2016. № 22 (1194). C. 34–38.
12. Vezentseva A.I., Vorontsova O.A., Sahonva L.Yu., Buzanov V.D. Protective and decorative coatings based on liquid glass. Khіmіya, khіmіchna tekhnologіya ta ekologіya. Vіsnik NTU «KhPІ». 2016. No. 22 (1194). pp. 34–38.
13. Wang S., Ding Z., Chang X., Xu J., Wang D.-H. Modified nano-tio2 based composites for environmental photocatalytic applications. Catalysts. 2020. Vol. 10 (7). 759. https://doi.org/10.3390/catal10070759
14. Хела Р., Боднарова Л. Исследование возможности тестирования эффективности фотокатализа TiO2 в бетоне // Строительные материалы. 2015. № 2. С. 77–81.
15. Hela R., Bodnarova L. Investigation of the possibility of testing the efficiency of TiO2 photocatalysis in concrete. Stroitel’nye Materialy [Construction Materials]. 2015. No. 2, pp. 77–81. (In Russian).
15. Пат. 2669642. Российская Федерация, МПК51 C09D 1/02, C09D 5/00, C09D 7/00. Силикатное покрытие повышенной долговечности и способ его приготовления / Шайбадуллина А.В., Яковлев Г.И., Первушин Г.Н., Полянских И.С., Огнев А.М., Алиев Э.В. Патентообладатель ФГБОУ ВО ИжГТУ им. М.Т. Калашникова. № 2669642. Заявл. 24.07.17. Опубл. 12.1018. Бюл. № 29.
15. Pat. 2669642 Russian Federation, MPK51 C09D 1/02, C09D 5/00, C09D 7/00. Silicate coating of increased durability and method of its preparation / Shaybadullina A.V., Yakovlev G.I., Pervushin G.N., Polyanskikh I.S., Ognev A.M., Aliev E.V. Patent holder FGBOU VO IzhGTU named after M.T. Kalashnikov, No. 2669642; Appl. 07/24/17; Published 12.1018. Bull. No. 29. (In Russian).
16. Яковлев Г.И., Пислегина А.В., Керене Я., Бурьянов А.Ф. Отделочная композиция на основе жидкого стекла // Строительные материалы, оборудование, технологии XXI века. 2009. № 7. С. 42–44.
16. Yakovlev G.I., Pislegina A.V., Kerene Ya., Buryanov A.F. Finishing composition based on liquid glass. Stroitel’nyye materialy, oborudovaniye, tekhnologii XXI veka. 2009. No. 7. pp. 42–44. (In Russian).
17. Яковлев Г.И., Шайбадуллина А.В., Полянских И.С., Гордина А.Ф., Пудов И.А., Грахов В.П., Первушин Г.Н., Бурьянов А.Ф. Многофункциональные декоративно-отделочные силикатные композции: монография / Под общ. ред. А.В. Шайбадуллиной. Ижевск: Управление информационных ресурсов ИжГТУ им. М.Т. Калашникова, 2021. 136 с.
17. Yakovlev G.I., Shaybadullina A.V., Polyanskikh I.S., Gordina A.F., Pudov I.A., Grakhov V.P., Pervushin G.N., Bur’yanov A.F. Mnogofunktsional’nyye dekorativno-otdelochnyye silikatnyye kompoztsii: monografiya [Multifunctional decorative and finishing silicate compositions: monograph] Izhevsk: Department of Information Resources of IzhGTU named after M.T. Kalashnikov. 2021. 136 p.

For citation: Yakovlev G.I., Pervushin G.N., Saidova Z.S., Ginchitskaya Yu.N., Kuzmina N.V., Buryanov A.F., Trofimova D.A. Dry mix for the preparation of facade silicate paint. Stroitel’nye Materialy [Construction Materials]. 2023. No. 3, pp. 12–19. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-811-3-12-19

Indicators of the Technology of Manufacturing Products from Arbolite with the Use of Electric Heat Treatment

Number of journal: 3-2023
Autors:

Fedosov S.V.,
Lapidus A.A.,
Sokolov A.M.,
Sarkisov D.A.,
Samir Faraun,
Isachenko S.L.

DOI: https://doi.org/10.31659/0585-430X-2023-811-3-4-10
УДК: 674.816.2

 

AbstractAbout AuthorsReferences
Оne of the promising directions of scientific and technological progress in the construction industry is the use of arbolites, i.e. concrete products and structures containing organic fillers. The introduction of additives into concrete, characteristic of Russia, in the form of flax and hemp bonfires, allows you to obtain material and building structures from it that have positive qualities: increased thermal insulation properties of enclosing structures, the ability to regulate relative humidity in the building, the presence of a negative carbon footprint, etc. A serious obstacle to the widespread use of arbolite with these additives are the difficulties of using heat and moisture treatment (MT) in the process of manufacturing building products and structures made of such material. Due to the low thermal conductivity of the material, it is necessary to increase the duration of MT for guaranteed heating of the material throughout the entire volume of products. As a result, the already low energy efficiency of the MT is further reduced, and the cost of finished construction products and structures increases significantly. An effective way to overcome this obstacle, as previously performed studies show, is the use of electrothermal treatment (ETT) of products made of arbolite with high-frequency currents by the electrode method. Using ETT allows you to ensure uniform heating of the product due to the passage of electric current directly into the volume of concrete with minimal energy consumption and its cost. The performed and presented estimates show that the effect of the use ETT of high-frequency currents in the manufacture of products made of arbolite with a filler in the form of flax and hemp is significantly higher than in the manufacture of products made of heavy types of structural concrete. This is due to a reduction in energy costs for electric heating by at least 3 times, respectively, the electrical power required to perform ETT is also reduced. It is also shown that due to the smaller mass of arbolite products with such a filler, a reduction in labor costs and construction time is expected.
S.V. FEDOSOV, Doctor of Sciences (Engineering), Academician of RAASN,
A.A. LAPIDUS, Doctor of Sciences (Engineering),
A.M. SOKOLOV, Doctor of Sciences (Engineering),
D.A. SARKISOV, Engineer, SAMIR FARAUN, Engineer,
S.L. ISACHENKO, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Kapush I.R., Zakrevskaya L.V. Lightweight concretes based on natural organic substances and magnesia binder. Architectural and construction complex: problems, prospects, innovations: electronic collection of articles of the II International Scientific Conference. November 28–29, 2019. Novopolotsk, pp. 208–212. (In Russian).
2. Hamadou Fouad. Hemp concrete. Molodoy ycheniy. 2019. No. 4 (242), pp. 72–74. URL: https://moluch.ru/archive/242/55923/ (date of access: 07/13/2022) (In Russian).
3. Zakrevskaya L.V., Gavrilenko A., Andreeva K., Lubin P. et al. Published under licence by IOP Publishing LtdWall materials based on complex binders and organic aggregate. IOP Conference Series: Materials Science and Engineering. Vol. 896. International Conference on Materials Physics, Building Structures and Technologies in Construction, Industrial and Production Engineering (MPCPE 2020). 27–28 April 2020. Vladimir. DOI: 10.1088/1757-899X/896/1/012083
4. Krylov B.A., Ambartsumyan S.A., Zvezdov A.I. Rukovodstvo po progrevu betona v monolitnykh konstruktsiyakh [Guidelines for heating concrete in monolithic structures]. Moscow.: NIIZhB. 2005. 276 p.
5. Fedosov S.V., Bobylev V.I., Sokolov A.M. Elektroteplovaya obrabotka betona tokami povyshennoi chastoty na predpriyatiyakh sbornogo betona [Electrothermal treatment of concrete with high-frequency currents at precast concrete enterprisesMonograph]. Ivanovo: IGEU im. V.I. Lenina, IVGPU. 2016. 336 p.
6. Fedosov S.V., Bobylev V.I., Petrukhin A.B., Sokolov A.M. Evaluation of the economic efficiency of electric heat treatment at precast concrete enterprises. Promyshlennoye i grazhdanskoye stroitel’stvo. 2013. No. 3, pp. 54–57. (In Russian).
7. Bazhenov Yu.M. Tekhnologiya betona [Technology of concrete]. Moscow: ASV. 2003. 500 p.
8. Fedosov S.V., Krasnoselskikh N.V., Kuznetsov A.N., Sokolov A.M. The state and prospects of the use of electrothermal treatment of building materials and products with high-frequency currents. Actual problems of drying and thermal moisture treatment of materials in various industries and agro-industrial complex: a collection of scientific articles of the First International Lykov scientific readings devoted to 105 anniversary of Academician A.V. Lykov. 2015, pp. 291–299. (In Russian).
9. Fedosov S.V., Krasnoselskikh N.V., Korovin E.V., Sokolov A.M. Electrothermal treatment of reinforced concrete products with high-frequency currents in small enterprises. Stroitel’nye Materialy [Construction Materials]. 2014. No. 5, pp. 8–14. (In Russian).
10. Fedosov S.V., Bobylev V.I., Sokolov A.M. Method of calculation of parameters of electrothermal treatment of concrete mixes and reinforced concrete products on installations of periodic action. Izvestiya vuzov Stroitel’stvo. 2010. No. 5, pp. 104–113. (In Russian).
11. Rules on labor protection during loading and unloading operations and cargo placement. Order of the Ministry of Labor and Social Protection of the Russian Federation of October 28, 2020 N 753n. on approval of the rules on labor protection during loading and unloading and cargo placement. https://www.consultant.ru/document/cons_doc_LAW_78699// (Date of access 09.01.23. (In Russian).

For citation: Fedosov S.V., Lapidus A.A., Sokolov A.M., Sarkisov D.A., Samir Faraun, Isachenko S.L. Indicators of the technology of manufacturing products from arbolite using electric heat treatment. Stroitel’nye Materialy [Construction Materials]. 2023. No. 3, pp. 4–10. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-811-3-4-10

Evaluation of Elastic Modulus of Mixtures of Wood-Polymer Composites with Mineral Filler

Number of journal: No.1-2-2023
Autors:

Zhdanova T.V.,
Matseevich T.A.,
Askadskii A.A.

DOI: https://doi.org/10.31659/0585-430X-2023-810-1-2-106-111
УДК: 676.022

 

AbstractAbout AuthorsReferences
The method for predicting the elasticity modulus of materials based on wood-polymer composites containing CaCO3 as the filler is described. These materials contain fine dispersions of PVC, wood flour and calcite. Moduli of elasticity under uniaxial compression, shear moduli and moduli of bulk elasticity are analyzed. The dependences of elastic moduli under uniaxial loading, shear moduli, and bulk elasticity moduli on CaCO3 content are plotted. The introduction of a mineral filler in the form of CaCO3 leads to an increase in the modulus of elasticity under uniaxial loading under compression conditions E up to 3230 MPa at a CaCO3 content of 42% relative to the wood filler. The prediction of the modulus of elasticity for composites containing moso bamboo as wood filler shows that with the wood filler content of 42%, the modulus of elasticity E can increase to 4400 MPa. The shear modulus G at the same CaCO3 content is 1320 MPa, and the bulk modulus K is 3120 MPa.
T.V. ZHDANOVA1, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
T.A. MATSEEVICH1, Doctor of Sciences (Physics and Mathematics) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.A. ASKADSKII1,2, Doctor of Sciences (Сhemistry) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)
2 A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS) (28, Vavilova Street, Moscow, 119991, Russian Federation)

1. Buthaina A. Ibrahim, Karrer M. Kadum. Influence of polymer blending on mechanical and thermal properties. Modern Applied Science. 2010. Vol. 4. No. 9, pp. 157–161. DOI: 10.5539/mas.v4n9p157
2. Аскадский А.А., Кондращенко В.И. Компьютерное материаловедение полимеров. Т. 1. Атомно-молекулярный уровень. М.: Издательство Науч-ный Мир, 1999. 543 c.
2. Askadsky A.A., Kondrashchenko V.I. Komp’yuternoye materialovedeniye polimerov. T. 1. Atomno-molekulyarnyy uroven’ [Computer materials science of polymers. T. 1. Atomic-molecular level]. Moscow: Nauchniy Mir Publishing House. 1999. 543 p.
3. Аскадский А.А., Попова М.Н., Кондращенко В.И. Физико-химия полимерных материалов и методы их исследования. М.: Издательство АСВ, 2015. 407 c.
3. Askadsky A.A., Popova M.N., Kondrashchenko V.I. Fiziko-khimiya polimernykh materialov i metody ikh issledovaniya [Physico-chemistry of polymeric materials and methods of their research]. Moscow: ASV Publishing House. 2015. 407 p.
4. Saxe P., Freeman C., Rigby D. Mechanical properties of glassy polymer blends and thermosets. Materials Design, Inc., Angel Fire, NM and San Diego, CA. LAMMPS Users’ Workshop and Symposium, Albuquerque, NM, August 8, 2013.
5. Doi M., Ohta T. Dynamics and rheology of complex interfaces. I. The Journal of Chemical Physics. 1991. Vol. 95, p. 1242. https://doi.org/10.1063/1.461156
6. Anastasiadis S.H., Gancarz I., Koberstein J.T. Interfacial tension of immiscible polymer blends: temperature and molecular weight dependence. Macromolecules. 1988. Vol. 21 (10), pp. 2980–2987.
7. Biresaw G., Carriere C., Sammler R. Effect of temperature and molecular weight on the interfacial tension of PS/PDMS blends. Rheologica Acta. 2003. Vol. 42. Iss. 1–2, pp. 142–147.
8. Ellingson P.C., Strand D.A., Cohen A., Sammler R.L., Carriere C.J. Molecular weight dependence of polystyrene/poly(methyl methacrylate) interfacial tension probed by imbedded-fiber retraction. Macromolecules. 1994. Vol. 27. Iss. 6, pp. 1643–1647.
9. Gramespacher H., Meissner J. Interfacial tension between polymer melts measured by shear oscillations of their blends. Journal of Rheology. 1992. Vol. 36, pp. 1127–1142. https://doi.org/10.1122/1.550304
10. Lacroix C., Bousmina M., Carreau P.J., Favis B.D., Michel A. Properties of PETG/EVA blends: 1. Viscoelastic, morphological and interfacial properties. Polymer. 1996. Vol. 37. Iss. 14, pp. 2939–2947. https://doi.org/10.1016/0032-3861(96)89389-X
11. Li R., Yu W., Zhou C. Rheological characterization of droplet-matrix versus co-continuous morphology. Journal of Macromolecular Science, Part B. Physics. 2006. Vol. 45. Iss. 5, pp. 889–898. https://doi.org/10.1080/00222340600777496
12. Chopra D., Kontopoulou M., Vlassopoulos D., Hatzikiriakos S.G. Effect of maleic anhydride content on the rheology and phase behavior of poly(styrene-co-maleic anhydride)/poly(methyl methacrylate) blends. Rheologica Acta. 2002. Vol. 41 (1), pp. 10–24. DOI: 10.1007/s003970200001
13. Guenther G.K., Baird D.G. An evaluation of the Doi-Ohta theory for an immiscible polymer blend. Journal of Rheology. 1996. Vol. 40, Iss. 1. https://doi.org/10.1122/1.550785
14. Hashimoto T., Takenaka M., Jinnai H. Scattering studies of self-assembling processes of polymer blends in spinodal decomposition. Journal of Applied Crystallography. 1991. Vol. 24. Iss. 5, pp. 457–466. https://doi.org/10.1107/S0021889891000444
15. Bicerano J. Prediction of polymer properties. New-York, Marcel Dekker, Inc. 1996. 669 p.
16. Аскадский А.А., Ван С., Курская Е.А., Кондращенко В.И., Жданова Т.В., Мацеевич Т.А. Возможности предсказания коэффициента термического расширения материалов на основе поливинилхлорида // Строительные материалы. 2019. № 11. С. 57–65. DOI: https://doi.org/10.31659/0585-430X-2019-776-11-57-65
16. Askadskii A.A., Wang C., Kurskaya E.A., Kondrashchenko V.I., Zhdanova T.V., Matseevich T.A. Possibilities for predicting the coefficient of thermal expansion of materials based on polyvinyl chloride. Stroitel’nye Materialy [Construction Materials]. 2019. No. 11, pp. 57–65. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-776-11-57-65
17. Azeez M.A., Orege J.I. Bamboo, its chemical modification and products. Bamboo: Current and Future Prospects. 2018. 25 p.
18. Li X. Physical, chemical, and mechanical properties of bamboo and its utilization potential for fiberboard manufacturing. LSU Master’s Theses. 2004. 866 p.
19. Болобова А.В., Аскадский А.А., Кондращенко В.И., Рабинович М.Л. Теоретические основы биотехнологии древесных композитов. Ферменты, модели, процессы. М.: Наука, 2002. 343 c.
19. Bolobova A.V., Askadsky A.A., Kondrashchenko V.I., Rabinovich M.L. Teoreticheskiye osnovy biotekhnologii drevesnykh kompozitov. Fermenty, modeli, protsessy [Theoretical bases of biotechnology of wood composites. Enzymes, models, processes]. Moscow: Nauka. 2002. 343 p.
20. Мюллер О.Д. Совершенствование технологии производства древесных гранул: Дис. ... д-ра техн. наук. Северодвинск, 2015. 289 с.
20. Muller O.D. Improving the technology of production of wood pellets. Diss. Doctor of Science (Engineering). Severodvinsk. 2015. 289 p. (In Russian).
21. Жданова Т.В. Структурообразование древесно-полимерных композитов и влияние жидких агрессивных сред на их физико-механические характеристики: Дис. … канд. техн. наук. М., 2022.
21. Zhdanova T.V. Structure formation of wood-polymer composites and the influence of liquid aggressive media on their physical and mechanical characteristics. Diss… Cand. of Sciences (Engineering). Moscow. 2022. (In Russian).

For citation: Zhdanova T.V., Matseevich T.A., Askadskii A.A. Evaluation of elastic modulus of mixtures of wood-polymer composites with mineral filler. Stroitel’nye Materialy [Construction Materials]. 2023. No. 1–2, pp. 106–111. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-810-1-2-106-111

Microbiological Aspects of the Preparations Development for Surface Materials Treatment Based on Copper Colloidal Solutions

Number of journal: No.1-2-2023
Autors:

Revenok T.V.,
Sleptsov V.V.

DOI: https://doi.org/10.31659/0585-430X-2023-810-1-2-100-105
УДК: 648.61:630*381.2

 

AbstractAbout AuthorsReferences
In recent years, taking into account the biopathogens resistance to the effects of antibiotics and antiseptics, the search for new biocidal materials has become relevant. A study of the biocidal properties of copper colloidal solutions obtained by the pulse-arc dispersion method in was carried out. It has been shown that copper colloidal solutions with a concentration of 75 mg/l have a pronounced biocidal effect on the Staphylococcus aureus and Escherichia coli test cultures. The dependence of biocidal properties on the copper colloidal solution concentration has been demonstrated. It has been noted that the metal nanoparticles size affects the solutions bactericidal properties. It has been shown that the treatment of steel, ceramic and plastic surfaces with a copper colloidal solution at a concentration of 75 mg/l has a disinfecting effect. Tests to impart biocidal properties to textile materials by the impregnation method demonstrated that materials treated with a colloidal copper solution obtained by the electric spark method have a pronounced bactericidal activity. The obtained colloidal solutions can be used for biocidal treatment of textile and fibrous materials used in the production of finishing, heat-insulating and composite materials for the construction, textile and agricultural industries.
T.V. REVENOK1, Candidate of Sciences (Chemistry), assistant professor, (This email address is being protected from spambots. You need JavaScript enabled to view it.);
V.V. SLEPTSOV2, Doctor of Sciences (Engineering), professor, (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 National Research Moscow State University Of Civil Engineering (26, Yaroslavskoye Highway, Moscow, 129337, Russian Federation)
2 Moscow Aviation Institute (National Research University) (4, Volokolamskoe Highway, Moscow, 125993, Russian Federation)

1. Batin M.A., Pichugin A.P., Khritankov V.F., Kudryashov A.Y. To improve the biological resistance floors made of modified wood the introduction of nanoscale additives. Stroitel’nye Materialy [Construction materials]. 2018. No. 1–2, pp. 52–57. (In Russian). DOI: http://10.31659/0585-430X-2018-756-1-2-52-57
2. Strokova V.V., Nelubova V.V., Sivalneva M.N., Rykunova M.D., Shapovalov N.A. Resistance of binding systems of various compositions to the action of molds. Stroitel’nye Materialy [Construction Materials]. 2020. No. 11, pp. 41–46. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-786-11-41-46
3. Pogorelsky I.P., Frolov G.A., Gurin K.I., Chernyadiev A.V., Durnev E.A., Lundovskikh E.A., Yasnov S.N., Kungurov A.V. Microbiological aspects of the selection of metal nanoparticles to create antimicrobial disinfectant compositions. Dezinfektsionnoye delo. 2012. No. 4, pp. 37–40. (In Russian).
4. Dzhanpaizova V.M., Tashmenov R.S., Toksanbaeva Zh.S., Ashirbekova G.Sh. Torebaev B.P. Influence on the regeneration of experimental wounds of dressings impregnated with metal nanoparticles. Nauka i Mir. 2019. No. 6–1 (70), pp. 26–28. (In Russian).
5. Burakov V.S., Sevastenko N.A., Tarasenko N.V., Nevar E.A. Synthesis of nanoparticles using a pulsed electrical discharge in a liquid. Zhurnal prikladnoy spektroskopii. 2008. Vol. 75. No. 1, pp. 111–120. (In Russian).
6. Ivanov L.F., Xu L.D., Bokova E.S., Ishkov A.D., Borisova O.N. Inventions in the area of nanomaterials and nanotechnologies. Part I. Nanotechnologies in Сonstruction. 2022. No. 14 (1), pp. 18–26. DOI: https://doi.org/10.15828/2075-8545-2022-14-1-18-26
7. Lukin A.A., Golubtsova Yu.V., Sukhikh S.A. Studying the antimicrobial activity of a colloidal copper solution. Yestestvennyye i tekhnicheskiye nauki. 2019. No. 1 (127), pp. 24–27. (In Russian).
8. Krasochko P.A., Korochkin R.B., Ponaskov M.A., Kashko L.S., Kugelev I.M. The use of atomic force microscopy in the study of the antibacterial effect of colloidal particles of silver and copper. International Scientific conference “Tendencies to Increase Competitiveness and Export Potential of Agricultural Products”: theses of reports. Smolensk. 2021, pp. 114–120. (In Russian).
9. Zakharova O.V., Gusev A.A., Altabaeva Yu.V., Perova S.Yu. Biological effects of freshly prepared and 24-h aqueous dispersions of copper and copper oxide nanoparticles on E.COLI bacteria. Rossiyskiye nanotekhnologii. 2018. Vol. 13. No. 3–4, pp. 69–75. (In Russian).
10. Biryukova M.I., Yurkov G.Yu., Mirgorod Yu.A. Synthesis of copper nanoparticles and their use in modifying natural tissues. Fizika voloknistykh materialov: Struktura, svoystva, naukoyemkiye tekhnologii i materialy (SMARTEX). 2012. No. 1, pp. 49–55. (In Russian).
11. Grishina A.N., Korolev E.V. Nanosized diocidal modifiers based on silicate of metals for binders. Stroitel’nye materialy, oborudovaniye, tekhnologii XXI veka. 2019. No. 5–6 (244–245), pp. 21–23. (In Russian).
12. Rakhimova S.M., Vig A., Tausarova B.R., Kutzhanova A.Zh. The use of nanosized particles of metal oxides for antimicrobial finishing of cotton fabrics. Izvestiya vuzov. Tekhnologiya tekstil’noy promyshlennosti. 2015. No. 3 (357), pp. 202–205. (In Russian).
13. Timoshina Yu. A., Sergeeva E.A. Review of modern methods for obtaining textile materials with antibacterial properties. Vestnik Kazanskogo tekhnologicheskogo universiteta. 2014. Vol. 17. No. 2, pp. 94–96. (In Russian).
14. Shahidi S., Jamali A., Ghomi H., Dalal Sharifi S. In-situ synthesis of CuO nanoparticles on cotton fabrics using spark discharge method to fabricate antibacterial textile. Journal of Natural Fibers. 2018. Vol. 15. No. 6, pp. 870–881. DOI: 10.1080/15440478.2017.1376302
15. Tausarova B.R., Rakhimova S.M. Cellulosic textile materials with antibacterial properties modified with copper nanoparticles. Khimiya rastitel’nogo syr’ya. 2018. No. 1, pp. 163–169. DOI: 10.14258/jcprm.2018012190. (In Russian).
16. Mirgorod Yu.A., Borshch N.A., Borodina V.G., Yurkov G.Yu. Obtaining and characterization of cotton fabric modified with copper nanoparticles. Khimicheskaya promyshlennost’. Primeneniye khimicheskoy produktsii. 2012. Vol. 89. No. 6, pp. 310–316. (In Russian).
17. Ostroukhov N.N., Tyanginskii A.Yu., Sleptsov V.V., Tserulev M.V. Electric discharge technology of production and diagnosis of metallic hydrosols with nanosized particles. Inorganic Materials: Applied Research. 2014. Vol. 5 (3), pp. 284–288. DOI: 10.1134/S2075113314030113
18. Kristavchuk O.V., Sohatsky A.S., Skoi V.V., Kuklin A.I., Trofimov V.V., Nechaev A.N., Apel’ P.Y., Kozlovskiy V.I., Sleptsov V.V. Structural characteristics and ionic composition of a colloidal solution of silver nanoparticles obtained by electrical-spark discharge in water. Colloid Journal. 2021. Vol. 83. No. 4, pp. 448–460. DOI: 10.1134/S1061933X21040049
19. Kudriavtseva E.V., Burinskaya A.A. Investigation of the effect of stabilizers on the stability of colloidal solutions of bimetallic copper-silver nanoparticles. Vestnik of St. Petersburg State University of Technology and Design. Ser. 1: Natural and technical sciences. 2021. No. 2, pp. 101–106. (In Russian).
20. Tyurnina A.E., Shur V.Y., Kozin R.V., Kuznetsov D.K., Pryakhina V.I., Burban G.V. Synthesis and investigation of stable copper nanoparticle colloids. Physics of the Solid State. 2014. Vol. 56. No. 7, pp. 1431–1437. DOI: 10.1134/S1063783414070324
21. Eivazihollagh A., Bäckström J., Dahlström C., Carlsson F., Ibrahem I., Lindman B. , Edlund H., Norgren M. One-pot synthesis of cellulose-templated copper nanoparticles with antibacterial properties. Materials Letters. 2017. Vol. 187, pp. 170–172. DOI: 10.1016/j.matlet.2016.10.026

For citation: Revenok T.V., Sleptsov V.V. Microbiological aspects of the preparations development for surface materials treatment based on copper colloidal solutions. Stroitel’nye Materialy [Construction Materials]. 2023. No. 1–2, pp. 100–105. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-810-1-2-100-105

Road Clinker Based on Secondary Raw Materials

Number of journal: No.1-2-2023
Autors:

Khamidulina D.D.,
Nekrasova S.A.,
Voronin K.M.,
Surovtsov M.M.,
Tkacheva T.A.

DOI: https://doi.org/10.31659/0585-430X-2023-810-1-2-95-99
УДК: 666.71.022

 

AbstractAbout AuthorsReferences
Reducing the use of natural raw materials in the production of building materials is one of the priority tasks. No less urgent is the issue of recycling of secondary raw materials, especially since the construction industry has the greatest potential in this area. On the other hand, the choice of durable and decoratively attractive material for the arrangement of outdoor public spaces is also important. The use in construction of waste from various industries, including metallurgical, can significantly reduce the growing burden on the environment, reduce the consumption of scarce and expensive natural raw materials, thereby increasing economic efficiency. The purpose of this work is to develop a composition of road clinker based on nickel slag, ground glass and clay. Researches of operational and physical-mechanical properties of samples of various compositions are carried out. According to the results of studies the composition with the maximum qualitative and operational characteristics has been chosen. Chemical interaction of sharp glassy facets of nickel slag with glass melt and interaction of glass with and minerals of clay in thin films provides the increased strength. High perspectivity of obtaining road elements of increased durability on the basis of nickel slag with operating characteristics not inferior to traditionally used concrete and natural road materials has been established.
D.D. KHAMIDULINA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
S.A. NEKRASOVA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
K.M. VORONIN, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
M.M. SUROVTSOV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
T.A. TKACHEVA, Student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Nosov Magnitogorsk State Technical University (38, Lenin Street, Magnitogorsk, 455000, Russian Federation)

1. Lesovik V.S., Zagorodnyuk L.H., Babaev Z.K., Dzhumaniyazov Z.B. The possibility of obtaining road clinker ceramics and its use in the conditions of the Aral Sea. Safety, protection and environmental protection: fundamental and applied research: All-Russian Scientific Conference. Belgorod. October 14–18, 2019, pp. 230–234.
2. Voronin K.M., Khamidulina D.D., Nekrasova S.A., Trubkin I.S. Vibrocompressed paving elements using steelmaking slags. Stroitel’nye Materialy [Construction Materials]. 2017. No. 12, pp. 71–73. (In Russian).
3. Korepanova V.F., Korepanova G.I. Production of clinker bricks at the Nikolsky Brick Plant of the LSR Group. Stroitel’nye Materialy [Construction Materials]. 2014. No. 4, pp. 10–13. (In Russian).
4. Gavrilov A.V., Greenfeld G.I. A brief overview of the history, state and prospects of the market for clinker bricks in Russia. Stroitel’nye Materialy [Construction Materials]. 2013. No. 4, pp. 20–22.
5. Zhironkin P.V., Gerashchenko V.N., Greenfeld G.I. History and prospects of the ceramic building materials industry in Russia. Stroitel’nye Materialy [Construction Materials]. 2012. No. 5, pp. 13–18.
6. Dergunov S.A., Albakasov A.I., Serikov S.V., Mazepa A.K. Directions of industrial waste disposal in Russia and European countries. University complex as a regional center of education, science and culture: materials of the All-Russian scientific and methodological conference (with international participation). Orenburg. January 25–27, 2021, pp. 104–111.
7. Pugin K.G., Vaisman Y.I., Volkov G.N., Maltsev A.V. Assessment of the negative impact on the environment of building materials containing ferrous metallurgy waste. Modern problems of science and education. 2012. No. 2. URL: https://science-education.ru/ru/article/view?id=5990 (accessed date: 04.11.2022)
8. Gurevich B.I., Tyukavkina V.V. Slags from the dump of the Severonickel plant. Environmental problems of the northern regions and ways to solve them: Materials of the International Conference. Apatity. August 31 – September 03, 2004, pp. 107–108.
9. Mayorova E.A. Kasikov A.G., Tyukavkina V.V., Gurevich B.I. Impact of dump slags of the Pechenganikel plant on the pollution of the environment with heavy metals and possible ways to reduce it. Collection of reports of the XII International Scientific Conference of Students and Postgraduates “Problems of the Arctic Region”. Murmansk. May 15, 2012, pp. 23–24.
10. Chanturia V.A., Chaplygin N.N., Vigdergauz V.E. Modern directions in the field of creating resource-saving technologies and environmental protection during processing of mineral raw materials. Gornyj zhurnal. 2007. No. 2, pp. 91–96.
11. Makarov V.N., Vasilyeva T.N., Makarov D.V. et al. Potential environmental hazard of decommissioned copper-nickel ore processing tailings storage facilities Himija v interesah ustojchivogo razvitija. 2005. Vol. 13. No. 1, pp. 85–93. (In Russian).
12. Makarov D.V., Masloboev V.A., Koshkina L.B. et al. Studies to justify the reduction of the environmental hazard of mining waste: the main results and prospects of the scientific direction. Trudy Kol’skogo nauchnogo centra RAN. 2018. Vol. 9. No. 9–6, pp. 104–160. (In Russian). DOI: 10.25702/KSC.2307-5252.2018.9.9.104-160
13. Makarov D.V., Melkonyan R.G., Suvorova O.V., Kumarova V.A. Prospects for the use of industrial waste for the production of ceramic building materials. Gornyj informacionno-analiticheskij bjulleten’ (scientific and technical journal). 2016. No. 5, pp. 254–281. (In Russian).
14. Illarionov I.E., Strelnikov I.A. On the use of man-made waste in foundry. Vestnik of Magnitogorsk State Technical University named after G.I. Nosov. 2016. Vol. 14. No. 4, pp. 36–41. (In Russian). DOI: 10.18503/1995-2732-2016-14-4-36-41
15. Veselovsky A.A., Roshchin V.E., Laikhan S.A. Chemical and thermal treatment of nickel dump slags in order to extract nickel and iron. Vestnik JuUrGU. Serija «Metallurgija». 2017. Vol. 17. No. 4, рр. 22–31. (In Russian).
16. Chuprova L.V., Mishurina O.A. Environmental and economic aspects of glass waste disposal. Mezhdu-narodnyj zhurnal prikladnyh i fundamental’nyh issledovanij. 2016. No. 11–2, pp. 222–225.
17. Belykh S.A., Artyukhova P.N., Kazyeva A.I., Sivkova V.I. Ways to use glass fiber in the technology of building materials. Young thought: science, technology, innovation: materials of the IX (XV) All-Russian scientific and technical conference of students, undergraduates, graduate students and young scientists. Bratsk. March 20–24, 2017, pp. 13–17.
18. Trushin A.V. Factors influencing the development of the Russian glass fiber market. Alley of Science. 2018. Vol. 6. No. 10 (26), pp. 348–351.
19. Voronin K.M., Trubkin I.S. Paving elements from industrial waste. Construction materials, structures and technologies of the 21st century: Intercollegiate collection of scientific works. Edited by M.B. Permyakov. Magnitogorsk. 2019, pp. 68–70.
20. Voronin K.M., Nekrasova S.A., Zubulina N.I. Paving elements from glass and quartz dust waste. Steklo i keramika. 2014. No. 3, pp. 11–12. (In Russian).

For citation: Khamidulina D.D., Nekrasova S.A., Voronin K.M., Surovtsov M.M., Tkacheva T.A. Road clinker on the basis of secondary raw materials. Stroitel’nye Materialy [Construction Materials]. 2023. No. 1–2, pp. 95–99. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-810-1-2-95-99

Composite Materials for Road Construction Based on Waste from the Chemical and Metallurgical Industries

Number of journal: No.1-2-2023
Autors:

Babkov V.V. ,
Nedoseko I.V.,
Glazachev A.O.,
Sinitsin D.A.,
Parfenova A.A.,
Kayumova E.I.

DOI: https://doi.org/10.31659/0585-430X-2023-810-1-2-88-94
УДК: 625.861

 

AbstractAbout AuthorsReferences
The most important tasks of the industry program “Use of secondary resources and secondary raw materials from waste in industrial production” approved by the Decree of the Government of the Russian Federation of November 17, 2022 are the creation of a technological infrastructure for the involvement of secondary raw materials in industry and an increase in the share of products manufactured using secondary raw materials, in the total volume of output. In addition to the environmental effect – saving non-renewable scarce natural resources, reducing the area of sludge storage and landfills – the use of secondary resources also makes it possible to get a significant economic effect. In particular, in the construction and production of building materials, the use of secondary resources and by-products of industrial production with modern scientific and technical support opens up significant reserves for saving material and fuel and energy resources, which is confirmed by numerous laboratory studies and production experiments. This article presents the results of studies on the possibility of using a clinker-free lime-slag binder based on a mineral product of soda production and metallurgical slags for stabilizing and strengthening soils in order to use them in pavement structures when constructing highways for various purposes. It has been experimentally shown that the addition of a binder in the amount of 8–10% of the dry mass of both cohesive (loam, sandy loam) and non-cohesive (fine sand) soil makes it possible to obtain a reinforced soil with high strength and deformation characteristics, which can be used instead of scarce natural crushed stone in the construction of base layers during the construction and reconstruction of highways.
V.V. BABKOV, Doctor of Sciences (Engineering),
I.V. NEDOSEKO, Doctor of Sciences (Engineering), Professor (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.O. GLAZACHEV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
D.A. SINITSIN, Candidate of Sciences (Engineering), (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.A. PARFENOVA, Engineer (postgraduate student) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
E.I. KAYUMOVA, Engineer (senior lecturer) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Ufa State Petroleum Technological University (1, Kosmonavtov Street, Ufa, 450062, Russian Federation)

1. Aristov S.A., Vadivasov D.M., Davydov E.M., Derbenev A.V., Zvorykina Yu.V., Kogan V.V. Ecological indicators of resource and energy efficiency of road facilities, taking into account their life cycle in the framework of environmental declaration. Mir dorog. 2021. Iss. 141, pp. 42–47. (In Russian).
2. Zvorykina Yu.V., Stankevich V.G., Maryev A.V., Mamulat S.L. Sustainable development of transport infrastructure – a “green” benchmark for the development of a “closed” cycle economy and improving the quality of life. Mir dorog. April 2020, pp. 10–39. (In Russian).
3. Alekhin Yu.A., Lyusov A.N. Ekonomicheskaya effektivnost’ ispol’zovaniya vtorichnykh resursov v proizvodstve stroitel’nykh materialov [Economic efficiency of the use of secondary resources in the production of building materials]. Moscow: Stroyizdat. 1988. 344 p.
4. Vatin N.I., Petrosov D.V., Kalachev A.I., Lakhtinen  P. The use of ashes and ash and slag waste in construction. Inzhenerno-stroitel’nyi zhurnal. 2011. No. 4 (22), pp. 16–21.
5. Mirsaev R.N., Babkov V.V., Chuikin A.E. et al. Industrial wastes of enterprises of the Ural-Bashkir region in construction technologies. Stroitel’nye Materialy [Construction Materials]. 2003. No. 10, pp. 22–24. (In Russian).
6. Vagapov R.F., Sinitsin D.A., Oratovskaya A.A., Tenenbaum G.V. Building materials based on industrial waste of the Republic of Bashkortostan. Izvestiya of the Kazan State University of Architecture and Civil Engineering. 2012. No. 4 (22), pp. 279–284. (In Russian).
7. Ryazanova V.A., Davydov A.D. Technical and environmental aspects of the use of waste from the thermal power plant of Bashkortostan. Problems of the building complex in Russia: materials of the XXII International Scientific and Technical Conference. Ufa. 02.28.2018, pp. 10–12. (In Russian).
8. Fursov S.G. Construction of structural layers of pavements from soils reinforced with binders. Avto-mobil’nyye dorogi i mosty. 2007. Iss. 3, pp. 17–21. (In Russian).
9. Volzhensky A.V., Ivanov I.A., Vinogradov B.N. The use of ashes and fuel slags in the production of building materials. Moscow: Stroyizdat. 1984. 255 p.
10. Babkov V.V., Mirsaev R.N., Shatov A.A., Nedoseko I.V. et al. Non-firing binders based on industrial waste from enterprises of the Ural-Bashkir region. Bashkirskiy khimicheskiy zhurnal. 1999. Vol. 6. No. 2–3, pp. 95–99.
11. Babkov V.V., Komokhov P.G., Shatov A.A., Mirsaev R.N., Nedoseko I.V. Activated slag binders based on industrial waste from enterprises of the Ural-Bashkir region. Tsement i ego primeneniye. 1998. No. 2, p. 37.
12. Ryazanov A.N., Vinnichenko V.I., Nedoseko I.V., Ryazanova V.A., Ryazanov A.A. Structure and properties of lime-ash cement and its modification. Stroitel’nye Materialy [Construction Materials]. 2018. No. 1–2, pp. 18–22. (In Russian).
13. Ryazanov A.N., Sinitsin D.A., Shagigalin G.Yu., Bikbulatov M.R., Nedoseko I.V. Solid wastes of soda production - an important reserve for expanding the raw material base for obtaining lime and low-energy clinker-free binders based on it. Stroitel’nye Materialy [Construction Materials]. 2020. No. 4–5, pp. 14–17. (In Russian).
14. Mamulat S.L., Babkov V.V., Davydov E.M., Kogan V.V., Kuznetsov D.V., Ryazanov A.N., Sinitsin D.A., Fatkullin R.N. Analysis of the composition, properties and prospects of application of the mineral product of soda production of Bashkir Soda Company JSC for the manufacture of energy-efficient binders. Stroitel’nye Materialy [Construction Materials]. 2022. No. 3, pp. 61–73. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-800-3-61-73
15. Oratovskaya A.A., Smirnova N.F., Kravtsov V.M. A binder based on waste soda production. Hardening of cement. Abstracts of reports and reports of the World Conference. Ufa. 1974.
16. Oratovskaya A.A., Sinitsin D.A., Galeeva L.Sh., Babkov V.V., Shatov A.A. The use of soda ash production waste for obtaining lime-containing binders and building materials based on them. Stroitel’nye Materialy [Construction Materials]. 2012. No. 2, pp. 52–54. (In Russian).
17. Oratovskaya A.A., Merkulov Yu.I., Khabirov D.M., Galeeva L.Sh., Shatov A.A., Yakimtseva G.V. and others. Autoclaved cellular concrete in the Republic of Bashkortostan. Stroitel’nye Materialy [Construction Materials]. 2005. No. 1, pp. 52–54. (In Russian).

For citation: Babkov V.V. , Nedoseko I.V., Glazachev A.O., Sinitsin D.A., Parfenova A.A., Kayumova E.I. Composite materials for road construction based on waste from the chemical and metallurgical industries. Stroitel’nye Materialy [Construction Materials]. 2023. No. 1–2, pp. 88–94. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-810-1-2-88-94

Nanomodified Polymer-Bitumen Binders

Number of journal: No.1-2-2023
Autors:

Ayupov D.A.,
Kazakulov R.I.

DOI: https://doi.org/10.31659/0585-430X-2023-810-1-2-82-86
УДК: 691.16

 

AbstractAbout AuthorsReferences
A modification of petroleum bitumen for road building was carried out by devulcanizing rubber crumb and adding modified dispersion, consisting of single-walled carbon nanotubes (SWCNT), distributed in industrial oil (I-20A). It was found that the particle size after sonication became significantly smaller. In this case, the optimal dispersion time was 10 minutes, because further ultrasonic exposure was not accompanied by a change in particle size, according to the HoribaLA-95 laser analyzer. It has been experimentally determined that the optimal wavelength for measuring optical density and transmittance is λ=430 nm. It was found that the introduction of nanotubes plasticizes the binder. In this case, the introduction of SWCNTs increases its hardness. It was also noted that the effect of the dispersed phase on the properties decreases with the introduction of nanotubes.
D.A. AYUPOV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
R.I. KAZAKULOV, Engi(Graduate student)

Kazan State University of Architecture and Engineering (1, Zelenaya Street, 420043, Kazan, Russian Federation)

1. Khantimirov A.G., Abdrakhmanova L.A., Nizamov R.K., Khozin V.G. Wood-polymer composites based on polyvinyl chloride, reinforced with basalt fiber. Izvestiya of the Kazan State University of Architecture and Civil Engineering. 2022. No. 3 (61), pp. 75–81. DOI: 10.52409/20731523_2022_3_75 (In Russian).
2. Khuziakhmetova K.R., Abdrakhmanova L.A., Nizamov R.K., Potapova L.I. The structure of mixtures of polymers based on polyvinyl chloride. Izvestiya of the Kazan State University of Architecture and Civil Engineering. 2022. No. 3 (61), pp. 82–89. DOI: 10.52409/20731523_2022_3_82 (In Russian).
3. Avksentiev V.I., Krasinikova N.M., Stepanov S.V., Makarov D.B. Properties and phase composition of hydrated cement stone modified with sludge of chemical water treatment of thermal power plants. Izvestiya of the Kazan State University of Architecture and Civil Engineering. 2020. No. 2 (52), pp. 24–33. (In Russian).
4. Volfson S.I., Khakimullin Yu.N., Zakirova L.Yu., Khusainov A.D., Volfson I.S., Makarov D.B., Khozin V.G. Modification of bitumens as a way to improve their operational properties. Vestnik tekhnologicheskogo universiteta. 2016. Vol. 19. No. 17, pp. 29–33. (In Russian).
5. Kiselev V.P., Shevchenko V.A., Vasilovskaya G.V., Ivanova L.A., Voronchikhin V.D. Aging resistance of petroleum road bitumen modified with low-carboxylated polybutadienes. Izvestiya vysshikh uchebnykh zavedeniy. Stroitel’stvo. 2015. No. 3 (675), pp. 78–84. (In Russian).
6. Mardirosova I.V., Chernykh D.S. Study of the influence of rubber-polymer modifier on the structural properties of road bitumen during aging. Construction and architecture – 2015: Materials of the international scientific and practical conference. Rostov-on-Don. 2015, pp. 175–177. (In Russian).
7. Xiaohu L. Chemical and rheological evaluation of ageing properties of SBS polymer modified bitumens. Fuel. 1998. Vol. 77. No. 9–10, pp. 961–972. https://doi.org/10.1016/S0016-2361(97)00283-4
8. Isacsson U. Characterization of bitumens modified with SEBS, EVA and EBA polymers. Journal of Materials Science. 1999. Vol. 34. No. 15, pp. 3737–3745. https://doi.org/10.1023/A:1004636329521
9. Lu X. Modification of road bitumens with thermoplastic polymers. Polymer Testing. 2000. Vol. 20. No. 1, pp. 77–86. https://doi.org/10.1016/S0142-9418(00)00004-0
10. Dubina S.I. et al. Composite Rubber-Polymer Binder in the Design and Construction of Amur Bridge. In: Sinitsyn, A. (eds) Sustainable Energy Systems: Innovative Perspectives. SES 2020. Lecture Notes in Civil Engineering. 2021. Vol. 141. Springer, Cham. https://doi.org/10.1007/978-3-030-67654-4_14
11. Ayupov D.A., Murafa A.V., Makarov D.B., Khakimullin Yu.N., Khozin V.G. Nanomodified bituminous binders for asphalt concrete. Stroitel’nye Materialy [Construction Materials]. 2010. No. 10, pp. 34–35. (In Russian).
12. Iliopolov S.K. Modern ways to improve the durability of asphalt concrete coatings. Vestnik of the Kharkov National Automobile and Road University. 2008. No. 40, pp. 57–58. (In Russian).
13. Urkhanova L.A., Shestakov N.I., Buyantuev S.L., Semenov A.P., Smirnyagina N.N. Improvement of the properties of bitumen and asphalt concrete by the introduction of a carbon nanomodifier. In the collection: high technologies and innovations Anniversary International scientific and practical conference dedicated to the 60th anniversary of BSTU named after V.G. Shukhov (XXI scientific readings). 2014, pp. 391–398. (In Russian).
14. Shekhovtsova S.Yu. Efficient asphalt concrete based on nanomodified polymer-bitumen binder. Dis... Сandidate of Sciences (Engineering). Belgorod. 2016. 192 p. (In Russian).
15. Gun R.B. Neftyanyye bitumy [Oil bitumen]. Moscow: Khimiya. 1973. 432 p.
16. Kalinina M.O. Application of innovative materials in road construction. Modern technologies: current issues, achievements and innovations: a collection of articles by the winners of the III International Scientific and Practical Conference. Penza. 2016, pp. 19–22. (In Russian).
17. Kindeev O.N., Vysotskaya M.A., Shekhovtsova S.Yu. Influence of the type of plasticizer on the properties of bitumen and polymer-bitumen binders. Vestnik of the Belgorod State Technological University named after V.G. Shukhov. 2016. No. 1, pp. 26–30. (In Russian).
18. Shekhovtsova S.Yu., Vysotskaya M.A. Influence of carbon nanotubes on the properties of PBB and asphalt concrete. Vestnik MSUCE. 2015. No. 11, pp. 110–119. (In Russian).
19. Bespalov V.L. Bitumen-polymer binders and asphalt-polymer concretes modified with Elvaloy AM and styrene-butadiene rubber SKMS-30. Sovremennoye promyshlennoye i grazhdanskoye stroitel’stvo. 2015. Vol. 11. No. 1, pp. 27–33. (In Russian).
20. Khozin V.G., Nizamov R.K., Starovoitova I.A., Zykova E.S., Ayupov D.A., Elrefai A.E.M.M. Anomalous effects of changes in the viscosity of epoxy resins and the plasticity of bitumen when introducing carbon nano-tubes. Stroitel’nye Materialy [Construction Materials]. 2019. No. 1–2, pp. 11–15. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-11-15
21. S.I.A. Characterization of asphalt binders blended with nanomaterial and polymer. IOP Conference Series: Materials Science and Engineering. Vol. 800. 012002. DOI: 10.1088/1757-899X/800/1/012002

For citation: Ayupov D.A., Kazakulov R.I. Nanomodified polymer-bitumen binders. Stroitel’nye Materialy [Construction Materials]. 2023. No. 1–2, pp. 82–86. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-810-1-2-82-86

Composite Materials Based on Organic Raw Materials with Nanosized Additives

Number of journal: No.1-2-2023
Autors:

Smirnova O.E.,
Pichugin A.P.,
Khritankov V.F.

DOI: https://doi.org/10.31659/0585-430X-2023-810-1-2-76-81
УДК: 691.327:666.973:539.4

 

AbstractAbout AuthorsReferences
The possibility of using vegetable raw materials for obtaining heat-insulating materials is considered, the material composition of organic raw materials flax processing waste and woodworking waste (sawdust) is considered. The results of an infrared spectroscopic study of raw materials with polymer-silicate binders modified with nanosized additives are presented. It has been established that the modified binder interacts at the chemical level with the hydroxyl groups of cellulose and the carboxyl groups of lignin of the organic filler. The influence of nanosized additives on the efficiency of interaction of the polymer silicate binder with flax waste and sawdust has been determined. At the same time, the mechanism of interaction with the carboxyl groups of lignin and the hydroxyl groups of the cellulose of flaxseed and pine sawdust is different.
O.E. SMIRNOVA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.P. PICHUGIN, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.F. KHRITANKOV, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Novosibirsk State University of Architecture and Civil Engineering (113, Leningradskaya Street, Novosibirsk, 630008, Russian Federation)

1. Yakovlev G.I., Ginchitskaya Yu.N., Buryanov A.F. Kostromit based on cement-silicate binder. Integration, partnership and innovation in building science and education: collection of materials of the international scientific conference. Moscow. 2017, pp. 655–656. (In Russian).
2. Smirnova O., Pichugin A., Sebelev I. Research of pressed thermal insulation materials, based on organic waste. IOP Conference Series: Materials Science and Engineering. XIII International Scientific Conference Architecture and Construction 2020. Bristol. 2020. P. 012051.
3. Batova М.D., Semenova Yu.А., Gordina А.F., Yakovlev G.I., Elrefai А.E.М.М., Saidova Z.S., Khazeev D.R. Сomplex mineral additives for the modification of calcium sulphate based materials. Stroitel’nye Materialy [Construction Materials]. 2021. No. 1–2, pp. 13–21. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-788-1-2-13-21
4. Pichugin A.P., Khritankov V.F. Strength of granules of large porous filler from vegetable raw materials in lightweight concrete. Izvestiya vuzov. Stroitel’stvo. 2020. No. 11, pp. 28–41. (In Russian).
5. Lesovik V., Tolstoy A., Fediuk R., Amran M., Azevedo A., Ali M., Ali Mosaberpanah M., Asaad M.A. Four-component high-strength polymineral binders. Construction and Building Materials. 2022. Vol. 316. 125934. https://doi.org/10.1016/j.conbuildmat.2021.125934
6. Patent RF 2775585. Nano-modifying high-strength lightweight concrete based on composite binder / Grishina A.N., Inozemtsev A.S., Korolev E.V. Appl. 12.10.2021. Published 07.05.2022. Bull. No. 2. (In Russian).
7. Matveeva L.Yu., Mokrova M.V., Khirkhasova V.I., Baranets I.V. A study by high-resolution optical microscopy of the structure and morphology of nanocellulose – microadditives of building composites. Vestnik grazhdanskikh inzhenerov. 2021. No. 1 (84), pp. 109–116. (In Russian).
8. Proshin A.P., Volkova E.A., Beregovoi A.M., Soldatov S.N. New thermal insulated materials. Problems and protects in ecological engineering Program, report and information at International scientific and technical conference. 25 May 2001. Tenerife, Spain, pp. 108–110.
9. Smirnova O.E. Effektivnye tekhnologii pri ispol’zovanie vegetative’noi rychnoi v stroitel’stve: monografiya [Effective technologies when using vegetable raw materials in construction: a monograph]. Novosibirsk: NGASU (Sibstrin). 2020. 224 p.
10. Abdrakhmanova L.A., Galeev R.R., Khantimirov A.G., Khozin V.G. Efficiency of carbon nanostructures in the composition of wood-polymer composites based on polyvinyl chloride. Nanotekhnologii v stroitel’stve: nauchnyy internet-zhurnal. 2021. Vol. 13. No. 3, pp. 150–157. (In Russian).
11. Ibragimov R.A., Potapova L.I., Korolev E.V. Study of the structure formation of activated nanomodified cement stone by IR spectroscopy. Izvestiya Kazanskogo gosudarstvennogo arkhitekturno-stroitel’nogo universiteta. 2021. No. 3 (57), pp. 41–49. (In Russian).
12. Patent RF 2701911. Method for obtaining a hydrosol of monodisperse nanosilica for the manufacture of concrete / Baskakov P.S., Strokova V.V., Kuzmin E.O. Appl. 03.20.2019. Published 02.10.2019. Bull. No. 7. (In Russian).
13. Pichugin A.P., Khritankov V.F., Smirnova O.E., Pimenov E.G., Nikitenko K.A. Protective and finishing compositions and compositions for repair work and ensuring the durability of buildings. Izvestiya vuzov. Stroitel’stvo. 2019. No. 9, pp. 109–120. (In Russian).
14. Pichugin A.P., Khritankov V.F., Smirnova O.E., Pimenov E.G. Cracking in large-porous concrete with an integral arrangement of large aggregate. Ekspert: teoriya i praktika. 2020. No. 4 (7), pp. 47–51. (In Russian).
15. Nanazashvili I.Kh., Minas A.I., Sklizkov N.I. Influence of specific properties of wood filler on the structural strength of wood concrete. Trudy of TsNIIEPselstroy. 1975. No. 12, pp. 98–105. (In Russian).

For citation: Smirnova O.E., Pichugin A.P., Khritankov V.F. Composite materials based on organic raw materials with nanosized additives. Stroitel’nye Materialy [Construction Materials]. 2023. No. 1–2, pp. 76–81. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-810-1-2-76-81

The Effect of Mineral Additives on the Corrosion Resistance of Steel Reinforcement in Reinforced Concrete Structures

Number of journal: No.1-2-2023
Autors:

Aleksandrova O.V.,
Nguyen Duc Vinh Quang,
Bulgakov B.I.

DOI: https://doi.org/10.31659/0585-430X-2023-810-1-2-69-75
УДК: 666.97

 

AbstractAbout AuthorsReferences
One of the main reasons for the loss of operability of reinforced concrete structures during their operation is the corrosion of steel reinforcement. The process of reinforcement corrosion causes damage to building structures as a result of a decrease in the adhesion of concrete cement stone with reinforcement as a result of cracking and peeling of the protective concrete layer from the surface of reinforcement rods. The article examines the effect of the introduction of finely dispersed active mineral additives into the concrete mixture of heavy concrete, which have a high pozzolanic activity due to the high content of amorphous silicon dioxide in their composition, in the form of microsilicon and low-calcium acid fly ash, as well as nanodispersed silica together with a water-reducing polycarboxylate superplasticizer on the corrosion resistance of steel reinforcement in concrete with a structure, modified by the specified additives. An assessment was made of the corrosion resistance of steel reinforcement in a reinforced concrete structure exposed to aggressive environments containing high concentrations of chlorine ions. Partial replacement of sulfate-resistant Portland cement as part of the developed multicomponent binder with finely dispersed mineral additives increases the corrosion resistance of steel reinforcing bars and reduces the weight loss of reinforcing steel, as well as the length, width and depth of pitting cracks on the surface of the reinforcement caused by corrosion as a result of compaction of the structure of modified concrete with used chemical, as well as nano- and finely dispersed mineral additives.
O.V. ALEKSANDROVA1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
NGUYEN DUC VINH QUANG2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
B.I. BULGAKOV1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)
2 Hue Industrial College (70, Nguyen Hue Street, Hue, 530000, Vietnam)

1. Hans Böhni. Corrosion in reinforced concrete structures. A Volume in Woodhead Publishing Series in Civil and Structural Engineering. 2005. 264 p.
2. Carnot A. Corrosion mechanisms of steel concrete moulds in the presence of a demoulding agent. Journal of Applied Electrochemistry. 2002. Vol. 32, pp. 865–869.
3. Trần Đ.H., Nguyễn Q.H. Đánh giá chất lượng nước vùng cửa sông và biển ven bờ để định hướng giải pháp công nghệ xử lý phù hợp cho mục đích cấp nước sinh hoạt. Tạp chí khoa học công nghệ Xây dựng. 2019. Vol. 10, pp. 89–98.
4. Степанов С.Н. Прогнозирование долговечности железобетонных конструкций, работающих в агрессивных средах с учетом коррозионного износа рабочей арматуры: Дис. ... канд. техн. наук. Н. Новгород, 2005. 213 с.
4. Stepanov S.N. Forecasting the durability of reinforced concrete structures operating in aggressive environments, taking into account the corrosion wear of working fittings. Diss… Candidate of Sciences (Engineering). N. Novgorod. 2005. 213 p. (In Russian).
5. Li C., Chen Q., Wang R., Wu M., Jiang Z. Corrosion assessment of reinforced concrete structures exposed to chloride environments in underground tunnels: Theoretical insights and practical data interpretations. Cement and Concrete Composites. 2020. Vol. 112. 103652. DOI: 10.1016/j.cemconcomp.2020.10365
6. Федосов С.В., Румянцева В.Е., Коновалова С.В., Караваев И.В. Скорость проникновения хлорид-ионов к поверхности стальной арматуры в гидрофобизированных бетонах // Современные наукоемкие технологии. 2018. № 4 (56). С. 93–99.
6. Fedosov S.V., Rumyantseva V.E., Konovalova S.V., Karavaev I.V. The rate of penetration of chloride ions to the surface of steel reinforcement in hydrophobized concrete. Sovremennyye naukoyemkiye tekhnologii. 2018. No. 4 (56), pp. 93–99. (In Russian).
7. Amir Poursaee. Corrosion of steel in concrete structures. Elsevier Ltd. 2016. 294 p.
8. Булгаков Б.И., Танг Ван Лам. Исследование ускоренным методом коррозионной стойкости стальной арматуры в зависимости от структуры мелкозернистого бетона // Промышленное и гражданское строительство. 2016. № 5. C. 26–30.
8. Bulgakov B.I., Tang Van Lam. Investigation by accelerated method of corrosion resistance of steel reinforcement depending on the structure of fine-grained concrete. Promyshlennoye i grazhdanskoye stroitel’stvo. 2016. No. 5, pp. 26–30. (In Russian).
9. Said A.M., Zeidan M.S., Bassuoni M., Tian Y. Properties of concrete incorporating nano-silica. Construction and Building Materials. 2012. Vol. 36, pp. 838–844. https://doi.org/10.1016/j.conbuildmat.2012.06.044
10. Каюмов Р.А., Федосов С.В., Румянцева В.Е., Хрунов В.А., Манохина Ю.В., Красильников И.В. Математическое моделирование коррозионного массопереноса гетерогенной системы «жидкая агрессивная среда – цементный бетон». Частные случаи решения // Известия КГАСУ. 2013. № 4 (26). С. 343–348.
10. Kayumov R.A., Fedosov S.V., Rumyantseva V.E., Khrunov V.A., Manohina Yu.V., Krasilnikov I.V. Mathematical modeling of corrosion mass transfer of the heterogeneous system «corrosive liquids – cement concrete». Special cases of the solutions. Izvestiya KGASU. 2013. No. 4 (26), pp. 343–348. (In Russian).
11. Lei M., Peng L., Shi C., W S. Experimental study on the damage mechanism of tunnel structure suffering from sulfate attack. Tunnelling and Underground Space Technology. 2013. Vol. 36, pp. 5–13. https://doi.org/10.1016/j.tust.2013.01.007
12. Синицин Д.А., Халиков Р.М., Булатов Б.Г., Галицков К.С., Недосеко И.В. Технологичные подходы направленного структурообразования нанокомпозитов строительного назначения с повышенной коррозионной устойчивостью // Нанотехнологии в строительстве: научный интернет-журнал. 2019. Т. 11. № 2. С. 153–164.
12. Sinitsin D.A., Khalikov R.M., Bulatov B.G., Galitskov K.S., Nedoseko I.V. Technological approaches to directed structure formation of building nanocomposites with increased corrosion resistance // Nanotekhnologii v stroitel’stve: nauchnyy internet-zhurnal. 2019. Vol. 11. No. 2, pp. 153–164. (In Russian).
13. Fedosov S., Bulgakov B., Ngo H.X., Aleksandrova O., Solovev V. Theoretical and experimental models to evaluate the possibility of corrosion resistant concrete for coastal offshore structures. Materials. 2022. Vol. 15 (13). 4697. https://doi.org/10.3390/ma15134697/
14. Хунг Н.С., Булгаков Б.И., Александрова О.В. Влияние минеральных добавок на прочность сцепления цементного камня бетона со стальной арматурой // Промышленное и гражданское строительство. 2022. № 6. С. 25–31. DOI: 10.33622/0869-7019.2022.06.25-31
14. Hung N.S., Bulgakov B.I., Aleksandrova O.V. Influence of mineral additives on the adhesion strength of cement stone concrete with steel reinforcement. Promyshlennoye i grazhdanskoye stroitel’stvo. 2022. No. 6, pp. 25–31. DOI: 10.33622/0869-7019.2022.06.25-31. (In Russian).
15. Федосов С.В., Александрова О.В., Нгуен Дык Винь Куанг, Федосеев В.Н., Логинова С.А. Физико-математическое обоснование теоретических и инженерных изысканий по разработке коррозионно-стойких материалов для заглубленных сооружений прибрежных зон // Техника и технология силикатов. 2022. Т. 29. № 1. С. 45–54.
15. Fedosov S.V., Aleksandrova O.V., Nguyen Duc Vinh Quang, Fedoseev V.N., Loginova S.A. Physico-mathematical substantiation of theoretical and engineering surveys for the development of corrosion-resistant materials for buried structures in coastal zones. Tekhnika i tekhnologiya silikatov. 2022. Vol. 29. No. 1, pp. 45–54. (In Russian).
16. Нгуен Дык Винь Куанг, Баженов Ю.М., Александрова О.В. Влияние кварцевого порошка и минеральных добавок на свойства высокоэффективных бетонов // Вестник МГСУ. 2019. Т. 14. Вып. 1. С. 102–117. DOI: 10.22227/1997-0935.2019.1.102-117
16. Nguyen Duc Vinh Quang, Bazhenov Y.M., Aleksandrovna O.V. Effect of quartz powder and mineral admixtures on the properties of high-performance concrete. Vestnik MGSU. Vol. 14. No. 1, 2019. pp. 102–117. doi:10.22227/1997–0935.2019.1.102-117
17. Petropavlovskaya V., Novichenkova Т., Petropavlovskii K., Aleksandrova O.V., Fischer H.B. Application of Fuel ash as a microfiller in cement dispersion systems. Materials Science Forum. 2021. Vol. 1037. pp. 729–736. https://doi.org/10.4028/www.scientific.net/msf.1037.729
18. Wang L. Zheng D., Zhang S., Cui H., Li D. Effect of nano-SiO2 on the hydration and microstructure of Portland cement. Nanomaterials (Basel). 2016. Vol. 6 (12). 241. DOI: 10.3390/nano6120241
19. Feng H., Wang Z., Sheikh M.N., Zhao X., Gao D., Hadi M.N. The effect of nano-SiO2, nano-Al2O3, and nano-Fe2O3 on the compressive strength and workability of magnesium phosphate cement-based mortar. Advance Civil Engineering Materials. 2019. Vol. 8, pp. 192–208. DOI: 10.1520/ACEM20190014
20. Snehal K., Das B., Akanksha M. Early age, hydration, mechanical and microstructure properties of nano-silica blended cementitious composites. Construction and Building Materials. 2020. Vol. 233. 117212. https://doi.org/10.1016/j.conbuildmat.2019.117212

For citation: Aleksandrova O.V., Nguyen Duc Vinh Quang, Bulgakov B.I. The effect of mineral additives on the corrosion resistance of steel reinforcement in reinforced concrete structures. Stroitel’nye Materialy [Construction Materials]. 2023. No. 1–2, pp. 69–75. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-810-1-2-69-75 

Study of the Effect of Multicomponent Hardening Activators on the Properties of Natural Anhydrite

Number of journal: No.1-2-2023
Autors:

Fisher H.-B.,
Vtorov B.B.,
Buryanov A.F.

DOI: https://doi.org/10.31659/0585-430X-2023-810-1-2-63-68
УДК: 691.311

 

AbstractAbout AuthorsReferences
The application of complex activators of hardening of anhydrite binder obtained from natural anhydrite is considered. Such activators make it possible to expand the possibilities of using anhydrite binders in construction. The study used modern methods using mathematical planning of the experiment. Sulfate additives were used as experimental factors, giving the material the best operational and aesthetic properties: KAl(SO4)2.12H2O, CuSO4, ZnSO4.H2O. It has been established that multicomponent hardening activators directly regulate the properties of the anhydrite binder. It has been established that an increase in the concentrations of the hardening activators studied in this work always leads to an increase in the degree of hydration of the binder. The direct relationship between the degree of hydration and compressive strength is preserved only in the area of small and medium concentrations of activating additives.
H.-B. FISHER1, Doctor-Engineer;
B.B. VTOROV2, Candidate of Sciences (Engineering);
A.F. BURYANOV3, Doctor of Sciences (Engineering)

1 Bauhaus- Universität Weimarei (Coudraystraβe, 11, 99421, Weimar, Deutschland)
2 BAUMIT LLC (11, Universitetskaja Street, Dubna, 141982, Moscow Region, Russian Federation)
3 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Israel D. Untersuchungen über den Zusammenhang zwischen Hydratationsgrad, Biegezugfestigkeit, und Gefüge abbindenden Anhydrits. ZKG INTERNATIONAL. 49 (1996). No. 4, pp. 228–234.
2. Grandans Yu.A., Girsh E.V., Moiseeva E.V., Mednis I.A., Klyavinya A.P. Self-levelling floor screeds based on anhydrite binder made of phosphogypsum. Stroitel’nye Materialy [Construction Materials]. 1989. No. 12. (In Russian).
3. Galtseva N.A., Buryanov A.F., Buldyzhova E.N., Soloviev V.G. The use of synthetic calcium sulfate anhydrite for the production of backfill mixtures. Stroitel’nye Materialy [Construction Materials]. 2015. No. 6, pp. 76–77. (In Russian).
4. Klimenko V.G. The role of double salts based on sulfates Na+, K+, Ca2+, NH4+ in the technology of obtaining anhydrite binders. Vestnik BSTU named after V.G. Shukhov. 2017. No. 12, pp. 119–125. (In Russian).
5. Galtseva N.A., Buryanov A.F., Soloviev V.G., Tkachenko D.I. Modified binder based on synthetic anhydrite for filling mixtures. Stroitel’nye Materialy [Construction Materials]. 2017. No. 7, pp. 74–76. (In Russian).
6. Buryanov A.F., Fisher H.-B., Gal’tseva N.A., Machortov D.N., Hasanshin R.R. Research in the influence of various activating additives on the properties of anhydrite binder. Stroitel’nye Materialy [Construction Materials]. 2020. No. 7, pp. 4–9. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-782-7-4-9
7. Buryanov A.F., Fisher H.-B., Gal’tseva N.A., Buldyzhova E.N. Investigation of the role of potassium sulfate in the design of a hardening activator. Stroitel’nye Materialy [Construction Materials]. 2021. No. 8, pp. 34–38. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-794-8-34-38
8. Wtorov B.; Fischer H.-B.; Stark J. Zur Anregung von Naturanhydrit. Weimar, 2000. 14. ibausil, Tagungsband 1. S. 1069–1082.
9. Grimme H. In Mitteldeutschland entwickelte Anhydritbinderarten. Zement-Kalk-Gips. 1962. No. 7.
10. Fisher H.-B., Vtorov B. Influence of hardening activators on the properties of natural anhydrite. II Inter-national Conference on Chemistry and Technology of Cement. Vol. 2. Moscow. 2000, pp. 53–61. (In Russian).
11. Vtorov B., Fisher H.-B. Selection and optimization of the anhydrite binder composition. Modeling and Optimization in Materials Science: Proceedings for the 40th International Seminar on Modeling and Optimization of Composites. Odessa. 2001, pp. 66–67. (In Russian).

For citation: Fisher H.-B., Vtorov B.B., Buryanov A.F. Study of the effect of multicomponent hardening activators on the properties of natural anhydrite. Stroitel’nye Materialy [Construction Materials]. 2023. No. 1–2, pp. 63–68. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-810-1-2-63-68

Steelmaking Slags as an Effective Raw Material in Road Construction

Number of journal: No.1-2-2023
Autors:

Аgamov R.E.,
Goncharova M.A.,
Mraev A.V.

DOI: https://doi.org/10.31659/0585-430X-2023-810-1-2-56-60
УДК: 625.861

 

AbstractAbout AuthorsReferences
It is shown that about 60% of metallurgical waste is a source of pollution of the urban ecosystem. The obvious solution to the “problem of solid waste” of metallurgical production is their construction and technological disposal. The problem of involving steelmaking slag in economic activity continues to be relevant for large metallurgical industries, whose annual production volumes of this by-product amount to millions of tons. Road construction is one of the priority sectors. It is established that in the process of further processing of slags (crushing and fractionation), it is recommended to provide additional measures for the separation of pulverized fractions to the value normalized by the current documents for the preparation of crushed stone-sand mixtures of type C5–C8. The implementation of the developed compositions for the construction of the bases of road pavements at the facilities of the Lipetsk region has been carried out. When splinting with slags of optimal granulometry, the modulus of elasticity of the road base increases slightly (by 5.1% compared to a conventional base without splinting). It has been proved that the organization of separate collection of the main components of mixed steelmaking slag will make it possible to produce ready-made active crushed stone-sand or sand mixtures, the introduction of more efficient design solutions for pavement structures, characterized by high transport and operational performance, with the use of steelmaking slags.
M.A. GONCHAROVA, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it. ),
R.E. АGAMOV, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it. ),
A.V. MRAEV, Master (This email address is being protected from spambots. You need JavaScript enabled to view it. )

Lipetsk State Technical University (30, Moskovskaya Street, Lipetsk, 398055, Russian Federation)

1. Goncharova M.A., Gorin R.A., Karaseva O.V. The formation of composite curing systems based on technogenic raw materials. Solid State Phenomena. 2018. Vol. 284, pp. 1058–1062. DOI: 10.4028/www.scientific.net/SSP.284.1058
2. Goncharova M.A., Simbaev V.V., Karaseva O.V. Optimization of fine-grained concrete composition in order to improve the quality of units’ front surface. Solid State Phenomena. 2018. Vol. 284, pp. 1052–1057. DOI: 10.4028/www.scientific.net/SSP.284.1052
3. Goncharova M.A., Karaseva O.V., Maklakov S.V., Bakhaev K.V. Refractory materials for steel-making equipment lining. Journal of Chemical Technology and Metallurgy. 2018. Vol. 53. No. 5, pp. 924–928.
4. Goncharova M.A., Korneev K.A., Dedyaev G.S. Improving construction engineering properties of soils stabilized by a cement binder with techno-genic products. Solid State Phenomena. 2020. Vol. 299, pp. 26–31. DOI: 10.4028/www.scientific.net/SSP.299.26
5. Goncharova M.A., Tkacheva I.A., Zagorulko M.G. The identification of the mineralogical composition of converter slags on the basis of testing and diagnostics. Materials Science Forum. 2020. Vol. 989, pp. 248–253. DOI: 10.4028/www.scientific.net/MSF.989.248
6. Гончарова М.А., Аль-Суррайви Х.Г.Х. Исследование цементных систем твердения на основе отсевов дробления бетонного лома. ALITinform: Цемент. Бетон. Сухие смеси. 2020. № 3 (60). С. 22–29.
6. Goncharova M.A., Al-Surraivi H.G.H. Investigation of cement hardening systems based on crushing screenings of concrete scrap. ALITinform: Cement. Concrete. Dry mixes. 2020. No. 3 (60), pp. 22–29. (In Russian).
7. Аль-Суррайви Х.Г.Х., Гончарова М.А., Заева А.Г. Синтез композитов на основе местного сырья при воздействии агрессивной среды. Строительные материалы. 2021. № 5. С. 69–74. DOI: 10.31659/0585-430X-2021-791-5-69-74
7. Al-Surraivi H.G.H., Goncharova M.A., Zaeva A.G. Synthesis of composites based on local raw materials under the influence of an aggressive environment. Stroitel’nye Materialy [Construction Materials]. 2021. No. 5, pp. 69–74. (In Russian). DOI: 10.31659/0585-430X-2021-791-5-69-74
8. Гончарова М.А., Мраев А.В., Пачин А.Р., Акчурин Т.К. Прогнозирование долговечности шлакобетонов в условиях агрессивной сульфатной среды. Вестник Волгоградского государственного архитектурно-строительного университета. Сер.: Строительство и архитектура. 2022. № 3 (88). С. 70–75.
8. Goncharova M.A., Mraev A.V., Pachin A.R., Akchurin T.K. Forecasting the durability of cinder blocks in an aggressive sulfate environment. Vestnik Volgogradskogo gosudarstvennogo arhitekturno-stroite’nogo universiteta. Seriya: Stroite’stvo i arhitektura. 2022. No. 3, pp. 70–75. (In Russian).
9. Гончарова М.А., Черноусов Н.Н., Стурова В.А., Ливенцева А.А. Способ подбора оптимального состава мелкозернистого сталефиброшлакопемзобетона. Известия высших учебных заведений. Строительство. 2021. № 11 (755). С. 64–72. DOI: 10.32683/0536-1052-2021-755-11-64-72
9. Goncharova M.A., Chernousov N.N., Sturova V.A., Liventseva A.A. Method for selecting the optimal composition of fine-grained steel-fiber-slash pum-concrete. Izvestiya Vysshikh Uchebnykh Zavedeniy. Stroitelstvo. 2021. No. 11 (755), pp. 64–72. (In Russian). DOI: 10.32683/0536-1052-2021-755-11-64-72
10. Goncharova M. A., Tkacheva I. A., Zagorulko M. G. The Identification of the Mineralogical Composition of Converter Slags on the Basis of Testing and Diagnostics. In Materials Science Forum: Trans Tech Publications, Ltd. 2020. Vol. 989, pp. 248–253. https://doi.org/10.4028/www.scientific.net/msf.989.248
11. Левкович Т.И., Мащенко Т.В., Мевлидинов З.А., Синявский Р.С. Об утилизации шлаков и освобождении занятых городских территорий промышленных зон с использованием шлака в дорожном строительстве // Биосферная совместимость: человек, регион, технологии. 2017. № 4 (20). С. 113–122.
11. Levkovich T.I., Mashchenko T. V., Mevlidinov Z. A., Sinyavskiy R. S. On the disposal of slag and the liberation of occupied territories in the city industrial zones, the use of slag in road construction. Biospheric compatibility: human, region, technologies. 2017. No. 4 (20), pp. 113–122. (In Russian).
12. Шешуков О.Ю., Михеенков М.А., Некрасов И.В., Метелкин А.А., Егиазарьян Д.К. Оптимизация состава шлака внепечной обработки стали с целью повышения стойкости огнеупоров и возможности утилизации шлака // Металлург. 2018. № 8. С. 9–12.
12. Sheshukov O.Yu., Mikheenkov M.A., Nekrasov I.V., Metelkin A.A., Egiazar’yan D.K. Optimization of slag composition of steel ladle treatment for the purpose of increasing refractories resistance and pos-sibility of slag utilization. Metallurg. 2018. No. 8, pp. 9–12. (In Russian).
13. Грейарт Э., Де Бели Н. Степень гидратации цемента и шлака в цементной пасте с добавками шлака // Цемент и его применение. 2012. № 1. С. 152–159.
13. Gruyaert E., Belie N. De. Hydration degree of cement and slag in slag blended cement pastes. Cement i ego primenenie. 2012. No. 1, pp. 152–159. (In Russian).
14. Tleugabulov S.M., Aitkenov N.B., Zhabalova G.G., Belichko A.G., Uleva G.A. Metallurgical processing of converter slag. Complex Use of Mineral Resources. 2021. Vol. 3. Is. 318, pp. 35–42. https://doi.org/10.31643/2021/6445.26
15. Liu G., Rong H., Wang J. Valorization of converter steel slag in sustainable mortars by a combined alkali and carbonation activation. Journal of Cleaner Production. 2022. Vol. 370. 133519. https://doi.org/10.1016/j.jclepro.2022.133519

For citation: Agamov R.E., Goncharova M.A., Mraev A.V. Steelmaking slags as an effective raw material in road construction. Stroitel’nye Materialy [Construction Materials]. 2023. No. 1–2, pp. 56–60. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-810-1-2-56-60

Modification of Cement Hardening Systems by Using Energy-Efficient Technological Additives of Domestic Production

Number of journal: No.1-2-2023
Autors:

Goncharova M.A.,
Zamyshlyaeva L.V.,
Al-Surrayvi H.G.H.

DOI: https://doi.org/10.31659/0585-430X-2023-810-1-2-50-54
УДК: 666.94.052

 

AbstractAbout AuthorsReferences
A comprehensive assessment of the process of intensification of grinding of Portland cement clinker is given, as well as an analysis of the strength characteristics of early strength cement is presented. The basic physico-chemical properties and characteristics of modifying additives are considered. The influence of domestic grinding intensifiers on early strength in cement hardening systems has been established. Special attention is paid to the kinetics of the grinding capacity of Portland cement clinker depending on the specific surface of the particles. The greatest attention was paid to the study of the characteristics of samples containing additives of Polyplast LLC. The increase in the early strength of hardening systems containing additives IP-1 and IM-2 of Polyplast LLC is 3.7 MPa. In the proposed formulations, there is also a decrease in the coefficient of water separation.
M.A. GONCHAROVA, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
L.V. ZAMYSHLYAEVA, Master (This email address is being protected from spambots. You need JavaScript enabled to view it. ),
H.G.H. AL-SURRAYVI, Candidate of Sciences (Engineering)

Lipetsk State Technical University (30, Moskovskaya Street, Lipetsk, 398055, Russian Federation)

1. Goncharova M.A., Gorin R.A., Karaseva O.V. The formation of composite curing systems based on technogenic raw materials. Solid State Phenomena. 2018. Vol. 284, pp. 1058–1062. https://doi.org/10.4028/www.scientific.net/SSP.284.1058
2. Goncharova M.A., Korneev K.A., Dedyaev G.S. Improving construction engineering properties of soils stabilized by a cement binder with techno-genic products. Solid State Phenomena. 2020. Vol. 299, pp. 26–31. DOI: 10.4028/www.scientific.net/SSP.299.26
3. Федюк Р.С., Мочалов А.В., Лесовик В.С. Современные способы активации вяжущего и бетонных смесей (обзор) // Вестник Инженерной школы Дальневосточного федерального университета. 2018. № 4 (37). С. 85–99. DOI: 10.5281/zenodo.2008670
3. Fedyuk R.S., Mochalov A.V., Lesovik V.S. Modern methods of activation of binder and concrete mixtures (review). Vestnik Inzhenernoi shkoly DVFU, FEFU: School of Engineering Bulletin. 2018. No. 4 (37), pp. 85–99. (In Russian). DOI: 10.5281/zenodo.2008670
4. Аль-Суррайви Х.Г.Х., Гончарова М.А., Заева А.Г. Синтез композитов на основе местного сырья при воздействии агрессивной среды // Строительные материалы. 2021. № 5. С. 69–74. DOI: https://doi.org/10.31659/0585-430X-2021-791-5-69-74
4. Al-Surraivi H.G.H., Goncharova M.A., Zaeva A.G. Synthesis of composites based on local raw materials under the influence of an aggressive environment. Stroitel’nye Materialy [Construction Materials]. 2021. No. 5, pp. 69–74. (In Russian). DOI: 10.31659/0585-430X-2021-791-5-69-74
5. Zawal D., Grabiec A. M. Influence of selected mineral additives on properties of recycled aggregate concrete (RAC) considering eco-efficiency coefficients. Case Studies in Construction Materials. 2022. Vol. 17. e01405. https://doi.org/10.1016/j.cscm.2022.e01405
6. Prajna S.P., Anjum M.I., Lakshmi P.S., Gayathri G., Beulah M., Sudhir M.R. A comprehensive investigation of the effect of mineral additives to bituminous concrete. Materials Today: Proceedings. 2021. Vol. 46, pp. 714–721. https://doi.org/10.1016/j.matpr.2020.12.090.
7. Рахимов Р.З. Строительный комплекс. Экология и минеральные вяжущие вещества // Известия высших учебных заведений. Строительство. 2022. № 2 (758). С. 5–15. DOI: 10.32683/0536-1052-2022-758-2-5-15
7. Rakhimov R.Z. Building complex, Ecology and mineral binders. Izvestiya vysshikh uchebnykh zavedenii. Stroitel’stvo. 2022. No. 2 (758), pp. 5–15. (In Russian). DOI: 10.32683/0536-1052-2022-758-2-5-15
8. Golewski G.L. An extensive investigations on fracture parameters of concretes based on quaternary binders (QBC) by means of the DIC technique. Construction and Building Materials. 2022. Vol. 351. 128823. https://doi.org/10.1016/j.conbuildmat.2022.128823
9. Смирнова О.М., Казанская Л.Ф. Гибридные цементы на основе гранулированных доменных шлаков: основные направления исследований // Эксперт: теория и практика. 2022. № 3 (18). С. 59–65. DOI: 10.51608/26867818_2022_3_59
9. Smirnova O.M., Kazanskaya L.F. Hybrid cements based on granulated blast furnace slag: the main directions of research. Expert: theoriya i practika. 2022. No. 3 (18), pp. 59–65. (In Russian). DOI: 10.51608/26867818_2022_3_59
10. Russo F., Eskandarsefat S., Venturini L., Viscione N. A complete study on an asphalt concrete modified with graphene and recycled hard-plastics: A case study. Case Studies in Construction Materials. 2022.

For citation: Goncharova M.A., Zamyshlyaeva L.V., Al-Surrayvi H.G.H. Modification of cement hardening systems by using energy-efficient technological additives of domestic production. Stroitel’nye Materialy [Construction Materials]. 2023. No. 1–2, pp. 50–54. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-810-1-2-50-54

https://www.traditionrolex.com/10