Evaluation of Elastic Modulus of Mixtures of Wood-Polymer Composites with Mineral Filler

Number of journal: No.1-2-2023
Autors:

Zhdanova T.V.,
Matseevich T.A.,
Askadskii A.A.

DOI: https://doi.org/10.31659/0585-430X-2023-810-1-2-106-111
УДК: 676.022

 

AbstractAbout AuthorsReferences
The method for predicting the elasticity modulus of materials based on wood-polymer composites containing CaCO3 as the filler is described. These materials contain fine dispersions of PVC, wood flour and calcite. Moduli of elasticity under uniaxial compression, shear moduli and moduli of bulk elasticity are analyzed. The dependences of elastic moduli under uniaxial loading, shear moduli, and bulk elasticity moduli on CaCO3 content are plotted. The introduction of a mineral filler in the form of CaCO3 leads to an increase in the modulus of elasticity under uniaxial loading under compression conditions E up to 3230 MPa at a CaCO3 content of 42% relative to the wood filler. The prediction of the modulus of elasticity for composites containing moso bamboo as wood filler shows that with the wood filler content of 42%, the modulus of elasticity E can increase to 4400 MPa. The shear modulus G at the same CaCO3 content is 1320 MPa, and the bulk modulus K is 3120 MPa.
T.V. ZHDANOVA1, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
T.A. MATSEEVICH1, Doctor of Sciences (Physics and Mathematics) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.A. ASKADSKII1,2, Doctor of Sciences (Сhemistry) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)
2 A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS) (28, Vavilova Street, Moscow, 119991, Russian Federation)

1. Buthaina A. Ibrahim, Karrer M. Kadum. Influence of polymer blending on mechanical and thermal properties. Modern Applied Science. 2010. Vol. 4. No. 9, pp. 157–161. DOI: 10.5539/mas.v4n9p157
2. Аскадский А.А., Кондращенко В.И. Компьютерное материаловедение полимеров. Т. 1. Атомно-молекулярный уровень. М.: Издательство Науч-ный Мир, 1999. 543 c.
2. Askadsky A.A., Kondrashchenko V.I. Komp’yuternoye materialovedeniye polimerov. T. 1. Atomno-molekulyarnyy uroven’ [Computer materials science of polymers. T. 1. Atomic-molecular level]. Moscow: Nauchniy Mir Publishing House. 1999. 543 p.
3. Аскадский А.А., Попова М.Н., Кондращенко В.И. Физико-химия полимерных материалов и методы их исследования. М.: Издательство АСВ, 2015. 407 c.
3. Askadsky A.A., Popova M.N., Kondrashchenko V.I. Fiziko-khimiya polimernykh materialov i metody ikh issledovaniya [Physico-chemistry of polymeric materials and methods of their research]. Moscow: ASV Publishing House. 2015. 407 p.
4. Saxe P., Freeman C., Rigby D. Mechanical properties of glassy polymer blends and thermosets. Materials Design, Inc., Angel Fire, NM and San Diego, CA. LAMMPS Users’ Workshop and Symposium, Albuquerque, NM, August 8, 2013.
5. Doi M., Ohta T. Dynamics and rheology of complex interfaces. I. The Journal of Chemical Physics. 1991. Vol. 95, p. 1242. https://doi.org/10.1063/1.461156
6. Anastasiadis S.H., Gancarz I., Koberstein J.T. Interfacial tension of immiscible polymer blends: temperature and molecular weight dependence. Macromolecules. 1988. Vol. 21 (10), pp. 2980–2987.
7. Biresaw G., Carriere C., Sammler R. Effect of temperature and molecular weight on the interfacial tension of PS/PDMS blends. Rheologica Acta. 2003. Vol. 42. Iss. 1–2, pp. 142–147.
8. Ellingson P.C., Strand D.A., Cohen A., Sammler R.L., Carriere C.J. Molecular weight dependence of polystyrene/poly(methyl methacrylate) interfacial tension probed by imbedded-fiber retraction. Macromolecules. 1994. Vol. 27. Iss. 6, pp. 1643–1647.
9. Gramespacher H., Meissner J. Interfacial tension between polymer melts measured by shear oscillations of their blends. Journal of Rheology. 1992. Vol. 36, pp. 1127–1142. https://doi.org/10.1122/1.550304
10. Lacroix C., Bousmina M., Carreau P.J., Favis B.D., Michel A. Properties of PETG/EVA blends: 1. Viscoelastic, morphological and interfacial properties. Polymer. 1996. Vol. 37. Iss. 14, pp. 2939–2947. https://doi.org/10.1016/0032-3861(96)89389-X
11. Li R., Yu W., Zhou C. Rheological characterization of droplet-matrix versus co-continuous morphology. Journal of Macromolecular Science, Part B. Physics. 2006. Vol. 45. Iss. 5, pp. 889–898. https://doi.org/10.1080/00222340600777496
12. Chopra D., Kontopoulou M., Vlassopoulos D., Hatzikiriakos S.G. Effect of maleic anhydride content on the rheology and phase behavior of poly(styrene-co-maleic anhydride)/poly(methyl methacrylate) blends. Rheologica Acta. 2002. Vol. 41 (1), pp. 10–24. DOI: 10.1007/s003970200001
13. Guenther G.K., Baird D.G. An evaluation of the Doi-Ohta theory for an immiscible polymer blend. Journal of Rheology. 1996. Vol. 40, Iss. 1. https://doi.org/10.1122/1.550785
14. Hashimoto T., Takenaka M., Jinnai H. Scattering studies of self-assembling processes of polymer blends in spinodal decomposition. Journal of Applied Crystallography. 1991. Vol. 24. Iss. 5, pp. 457–466. https://doi.org/10.1107/S0021889891000444
15. Bicerano J. Prediction of polymer properties. New-York, Marcel Dekker, Inc. 1996. 669 p.
16. Аскадский А.А., Ван С., Курская Е.А., Кондращенко В.И., Жданова Т.В., Мацеевич Т.А. Возможности предсказания коэффициента термического расширения материалов на основе поливинилхлорида // Строительные материалы. 2019. № 11. С. 57–65. DOI: https://doi.org/10.31659/0585-430X-2019-776-11-57-65
16. Askadskii A.A., Wang C., Kurskaya E.A., Kondrashchenko V.I., Zhdanova T.V., Matseevich T.A. Possibilities for predicting the coefficient of thermal expansion of materials based on polyvinyl chloride. Stroitel’nye Materialy [Construction Materials]. 2019. No. 11, pp. 57–65. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-776-11-57-65
17. Azeez M.A., Orege J.I. Bamboo, its chemical modification and products. Bamboo: Current and Future Prospects. 2018. 25 p.
18. Li X. Physical, chemical, and mechanical properties of bamboo and its utilization potential for fiberboard manufacturing. LSU Master’s Theses. 2004. 866 p.
19. Болобова А.В., Аскадский А.А., Кондращенко В.И., Рабинович М.Л. Теоретические основы биотехнологии древесных композитов. Ферменты, модели, процессы. М.: Наука, 2002. 343 c.
19. Bolobova A.V., Askadsky A.A., Kondrashchenko V.I., Rabinovich M.L. Teoreticheskiye osnovy biotekhnologii drevesnykh kompozitov. Fermenty, modeli, protsessy [Theoretical bases of biotechnology of wood composites. Enzymes, models, processes]. Moscow: Nauka. 2002. 343 p.
20. Мюллер О.Д. Совершенствование технологии производства древесных гранул: Дис. ... д-ра техн. наук. Северодвинск, 2015. 289 с.
20. Muller O.D. Improving the technology of production of wood pellets. Diss. Doctor of Science (Engineering). Severodvinsk. 2015. 289 p. (In Russian).
21. Жданова Т.В. Структурообразование древесно-полимерных композитов и влияние жидких агрессивных сред на их физико-механические характеристики: Дис. … канд. техн. наук. М., 2022.
21. Zhdanova T.V. Structure formation of wood-polymer composites and the influence of liquid aggressive media on their physical and mechanical characteristics. Diss… Cand. of Sciences (Engineering). Moscow. 2022. (In Russian).

For citation: Zhdanova T.V., Matseevich T.A., Askadskii A.A. Evaluation of elastic modulus of mixtures of wood-polymer composites with mineral filler. Stroitel’nye Materialy [Construction Materials]. 2023. No. 1–2, pp. 106–111. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-810-1-2-106-111


Print   Email