Log in

Water-Mineral Suspensions for Repair Bituminous Pastes

Number of journal: 11-2023
Autors:

Ayupov D.A.,
Kazakulov R.I.

DOI: https://doi.org/10.31659/0585-430X-2023-819-11-104-108
УДК: 691.16

 

AbstractAbout AuthorsReferences
The optimal emulsifier (zeolite) for the preparation of bitumen pastes was selected, the main mineral of which is clinoptilolite, which has both an external and internal adsorption surface, provides both high hydrophilicity and low water demand of the zeolite, which makes it possible to obtain homogeneous viscous suspensions with a low water-solid ratio for bitumen pastes. The viscosity ranges of the water-mineral suspension necessary to obtain bituminous paste for emulsifiers of various nature and dispersion have been determined. It is shown that the zeolite-containing rock (ZSP) has the lowest water demand among the selected emulsifiers. The influence of the water-reducing effect of the plasticizer on the structure of bituminous pastes has been established.
D.A. AYUPOV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
R.I. KAZAKULOV, Graduate student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Kazan State University of Architecture and Engineering (1, Zelenaya Street, 420043, Kazan, Russian Federation)

1. Tyrtyshov Yu.P., Pecheny B.G., Kurbatov V.L., Eshchenko A.I. Optimization of compositions, technologies for preparing bitumen pastes and mastics. Stroitel’nye Materialy [Construction Materials]. 2013. No. 1, pp. 70–73. (In Russian).
2. Skorikov S.V. The use of solid emulsifiers in building materials based on emulsified bitumen. Vestnik of the North Caucasus Federal University. 2013. No. 2 (35), pp. 82–84. (In Russian).
3. Tsokur O.S. Povysheniye resursosberezheniya utilizatsiyey neftesoderzhashchikh otkhodov reagentnym sposobom s polucheniyem ekologicheski bezopasnykh produktov [Increasing resource conservation by recycling oil-containing waste using a reagent method to obtain environmentally friendly products]. Krasnodar: Kuban State Technological University. 2015. 183 p.
4. Yukhneevsky P.I., Shirokiy G.T. Stroitel’nyye materialy i izdeliya [Construction materials and products]. Minsk: Technoprint. 2004. 478 p.
5. Fridland S.V., Galantseva L.F., Nurullin A.A. Application of the lime method for treating wastewater from phosphorus compounds. Prirodoobustroystvo. 2009. No. 5, pp. 44–47. (In Russian).
6. Xiaohu Lu, Ulf Isacsson. Chemical and rheological evaluation of ageing properties of SBS polymer modified bitumens. Fuel. 1998. Vol. 77. No. 9–10, pp. 961–972. https://doi.org/10.1016/S0016-2361(97)00283-4
7. Isacsson, U. Characterization of bitumens modified with SEBS, EVA and EBA polymers. Journal of Materials Science. 1999. Vol. 34. No. 15, pp. 3737–3745.
8. Xiaohu Lu, Ulf Isacsson. Modification of road bitumens with thermoplastic polymers. Polymer Testing. 2000. Vol. 20. No. 1, pp. 77–86. https://doi.org/10.1016/S0142-9418(00)00004-0
9. Dubina S.I., Lobachev V.A., Dzhafarov R.M. et al. Composite rubber-polymer binder in the design and construction of Amur bridge. In: Sinitsyn, A. (eds) Sustainable Energy Systems: Innovative Perspectives. SES 2020: Sustainable Energy Systems: Innovative Perspectives, pp. 119–128 https://doi.org/10.1007/978-3-030-67654-4_14
10. Abdrakhmanova L.A., Khantimirov A.G., Nizamov R.K., Khozin V.G. Wood-polymer nanomodified polyvinyl chloride building composites. Vestnik of MUCE. 2018. Vol. 13. Iss. 4 (115), pp. 426–434. (In Russian).
11. Popchenko S.N. Gidroizolyatsiya sooruzheniy i zdaniy [Waterproofing of structures and buildings]. Leningrad: Stroyizdat. 1981. 304 p.
12. Khantimirov A.G., Abdrakhmanova L.A., Nizamov R.K., Khozin V.G. Study of the properties of nanomodified wood-polymer composites based on polyethylene. Nanotekhnologii v Stroitel’stve. 2023. Vol. 15. No. 2, pp. 110–116. (In Russian).
13. Kiski S.S., Ageev I.V., Ponomarev A.N., Kozeev A.A., Yudovich M.M. Study of the possibility of modifying carboxylate plasticizers in the composition of modified fine-grained concrete mixtures. Magazine of Civil Engineering. 2012. No. 8 (34), pp. 42–46. DOI: 10.5862/MCE.34.6

For citation: Ayupov D.A., Kazakulov R.I. Water-mineral suspensions for repair bituminous pastes. Stroitel’nye Materialy [Construction Materials]. 2023. No. 11, pp. 104–108. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-819-11-104-108

A Promising Additive Based on the TiO2–Bi2O3 System for Cement Compositions

Number of journal: 11-2023
Autors:

Kozlova I.V.,
Dudareva M.O.

DOI: https://doi.org/10.31659/0585-430X-2023-819-11-100-103
УДК: 666.971.4

 

AbstractAbout AuthorsReferences
One of the central tasks of the development of modern building materials science is the search, development and synthesis of new modifying components for cement composites that can provide traditional materials with new unique characteristics. The current environmental situation worldwide contributes to the fact that building materials must safe for nature, humans and animals. This article considers the possibility of using bismuth titanates as a fine additive to cement composites, which can provide traditional cement based materials with bactericidal properties, as well as the ability to self-cleaning due to the mineralization of organic and inorganic pollutants adsorbed on the surface of the material. During the experiment the additive was synthesized by citrate technology and introduced into the cement composition in the form of a stabilized suspension instead of mixing water. The optimal methods of processing to stabilize suspensions of bismuth titanates particles were studied, which is an important factor for achieving uniform particle distribution in the volume of the cement composite. There was an increase in compressive strength on the first and third days of hardening from 29 to 42 MPa (by 31, 38 and 45%) and from 53 to 70 MPa (by 28, 30 and 32%), respectively. At 28 days age the compressive strength increased from 83 to 97 MPa (by 2, 9 and 14%) compared with the control sample.
I.V. KOZLOVA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
M.O. DUDAREVA, Senior Lecturer, Graduate Student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Elbony F., Gad S. Nanotechnology for energy efficient building materials embodied energy for the cement based building materials. International Design Journal. 2022. Vol. 12, pp. 273–283.
2. Kaliprasanna S, Nanda S. Impact of ultrafine ground granulated blast furnace slag on the properties of high strength durable concrete. IOP Conference Series: Materials Science and Engineering. 2020. 970. DOI: 10.1088/1757-899X/970/1/012016.
3. Нго Суан Хунг, Танг Ван Лам, Булгаков Б. И., Александрова О. В., Ларсен О. А. Влияние содержания золы-уноса на прочность бетонов на основе сульфатостойкого портландцемента // Промыш-ленное и гражданское строительство. 2021. № 1. C. 51–58. DOI: 10.33622/0869-7019.2021.01.51-58
3. Ngo H., Tang L., Bulgakov B. I., Aleksandrova O.V., Larsen O. Effect of fly ash content on strength of concretes based on sulfate-resistant Portland cement. Promyshlennoye i Grazhdanskoye Stroitel’stvo. 2021. No. 1, pp. 51–58. DOI: 10.33622/0869-7019.2021.01.51-58.01/2021
4. Артамонова О.В., Шведова М.А. Влияние наноразмерных добавок на формирование структуры и прочностные характеристики цементного камня при длительном твердении // Техника и технология силикатов. 2021. Т. 28. № 4. С. 159–164.
4. Artamonova O.V., Shvedova M.A. The influence of nano-sized additives on the formation of the structure and strength characteristics of cement stone during long-term hardening. Tekhnika i Tekhnologiya Silika-tov. 2021. Vol. 28. No. 4, pp. 159–164. (In Russian).
5. Samchenko S., Kozlova I., Zemskova O. Model and mechanism of carbon nanotube stabilization with plasticizer. MATEC Web of Conferences. 2018. Vol. 193. DOI: 10.1051/matecconf/201819303050
6. Samchenko S.V., Kozlova I.V., Zemskova O.V. Model and mechanism of stabilization of carbon nanotubes with placticizer on the basis of sulfonated naphthalene formaldehyde resins. Materials Science Forum, MSF. 2018. Vol. 931, pp. 481–488. DOI: 10.4028/www.scientific.net/MSF.931.481
7. Слдозьян Р.Д., Михалева З.А., Ткачев А.Г. Физико-механические свойства композитов строительного назначения с углеродными наноструктурами // Материаловедение. Энергетика. 2020. Т. 26. № 2. С. 103–113. DOI: 10.18721/JEST.26208
7. Sldozyan R.D., Mikhaleva Z.A., Tkachev A.G. Physico-mechanical properties of composites for construction purposes with carbon nanostructures. Materialovedeniye. Energetika. 2020. Vol. 26. No. 2, pp. 103–113. DOI: 10.18721/JEST.26208
8. Samchenko S., Kozlova I., Zemskova O., Zamelin D., Pepelyaeva A. Complex method of stabilizing slag suspension. In: Murgul V., Pasetti M. International Scientific Conference Energy Management of Municipal Facilities and Sustainable Energy Technologies EMMFT 2018. EMMFT-2018. Advances in Intelligent Systems and Computing. 2019. Vol. 983. https://doi.org/10.1007/978-3-030-19868-8_80
9. Кансеитов А.Ю., Начинкин С.А., Акулова М.В. Влияние добавки золы-уноса на физико-химические свойства тяжелого бетона. Экологические аспекты современных городов: Сборник материалов IX Межрегионального семинара. Иваново, 2022. С. 25–27.
9. Kanseitov A.Yu., Nachinkin S.A., Akulova M.V. The influence of the addition of fly ash on the physical and chemical properties of heavy concrete. Environmental aspects of modern cities: Collection of materials from the IX interregional seminar. Ivanovo. 2022, pp. 25–27. (In Russian).
10. Maagi M.T., Lupyana S.D., Gu J. Effect of Nano-SiO2, Nano-TiO2 and nano-Al2O3 addition on fluid loss in oil-well cement slurry. International Journal of Concrete Structures and Materials. 2019. Vol. 13 (1). 62. DOI: 10.1186/s40069-019-0371-y
11. Feng H., Zhao X., Chen G., Miao C., Zhao X., Gao D., Sun G. The effect of nano-particles and water glass on the water stability of magnesium phosphate cement based mortar. Materials. 2019. Vol. 12 (22). 3755. DOI: 10.3390/ma12223755
12. Wang J., Guo R., Bi Zh., Chen X., Hu X., Pan W. A review on TiO2-x-based materials for photocatalytic CO2 reduction. Nanoscale. 2022. DOI: 10.1039/D2NR02527B
13. Bersch J., Flores-Colen I., Masuero A.B., Dal Molin D. Photocatalytic TiO2-based coatings for mortars on facades: a review of efficiency, durability, and sustainability. Buildings. 2023. Vol. 13 (1). 186. DOI: 10.3390/buildings13010186
14. Liua Y., Zhua G., Gaoa J., Hojamberdieva M., Zhub R., Wei X., Guoc Q., Liua P. Enhanced photocatalytic activity of Bi4Ti3O12 nanosheets by Fe3+-doping and the addition of Au nanoparticles: Photodegradation of Phenol and bisphenol A. Applied catalysis B: Environmental. 2017. Vol. 200 (217), рр. 72–82. https://doi.org/10.1016/j.apcatb.2016.06.069
15. Correya A., Nampoori V. P. N., Mujeeb A. Microwave assisted synthesis of bismuth titanate nanosheets and its photocatalytic effects. PeerJ Materials Science. 2023. 5: e26. DOI: 10.7717/peerj-matsci.26
16. Arumugam G.K., Durairaj S., Kalimuthu V., Anbazhagan V., Raju P., Dineshkumar S., San-thanam P., Ramalingam V., Rajaram R. Sunlight-irradiated bismuth titanate nanoparticles mediated degradation of methylene blue – Ecological perspectives. Environmental Technology & Innovation. 2022. Vol. 27. DOI: 10.1016/j.eti.2022.102749

For citation: Kozlova I.V., Dudareva M.O. A promising additive based on the TiO2-Bi2O3 system for cement compositions. Stroitel’nye Materialy [Construction Materials]. 2023. No. 11, pp. 100–103. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-819-11-100-103

Modeling and Experimental Study of Packing Density of Foam Glass Concrete

Number of journal: 11-2023
Autors:

Panchenko A.I.,
Mikhailov V.A.

DOI: https://doi.org/10.31659/0585-430X-2023-819-11-95-99
УДК: 666.189.3

 

AbstractAbout AuthorsReferences
The paper deals with the process of production and properties of foam glass concrete – a composite material consisting of modified gypsum binder and granulated foam glass as an aggregate. Foam glass concrete has high strength, durability, environmental friendliness and low thermal conductivity, which makes it a promising material for wall structures. Optimal packing densities were obtained by using programs developed by the authors in the Python programming language to calculate the optimal diameters of three fractions of granular foam glass in an orthogonal or hexagonal packing model. The compressive and flexural strength and thermal conductivity coefficient were investigated on samples of different compositions. The value of the thermal conductivity coefficient of the foam glass concrete was reduced due to the air-entraining additive. In conclusion, the optimum composition of foam glass concrete was proposed taking into account all investigated parameters.
A.I. PANCHENKO, Doctor of Sciences (Engineering), Professor (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.A. MIKHAILOV, Postgraduate student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Zakrevskaya L.V., Popov M.Yu. Lightweight concretes on the basis of granulated foam glass. Arhitektura. Stroitel’stvo. Obrazovanie. 2015. No. 1, pp. 26–31. (In Russian).
2. Awham M., Hamada Ruqaya F. Hameed using the glass and rubber waste as sustainable materials to prepare foamed concrete with improved properties. IOP Conf. Series: Materials Science and Engineering. 2020. No. 881. DOI: https://doi.org/10.1088/1757-899X/881/1/012188
3. Ivanova S.M., Chulkova I.L. Composite cement foam glass concrete Stroitel’nye Materialy [Construction Materials]. 2005. No. 10, pp. 22–28. (In Russian).
4. Orlov A.D. Granulated glass-ceramic foam as a promising aggregate for a new generation of energy-efficient concrete Promyshlennoe i grazhdanskoe stroitel’stvo. 2016. No. 12, pp. 13–15. (In Russian).
5. Sopegin G.В. Influence of ground fractionated foam glass on the properties of gypsum binder and dry building mixtures. Molodye Uchenye – Razvitiju Nacional’noj Tehnologicheskoj Iniciativy (POISK). 2020. No. 1, pp. 626–629. (In Russian).
6. Orlov A.D., Nezhikov A.V. Glass-ceramic foam as n aggregate of high-tech lightweight concrete. Vestnik NIC Stroitelstvo. 2017. No. 3, pp. 163–171. (In Russian).
7. Chulkova I.L., Kadtsyn R.A., Kadtsyn A.R. Foam-glass and foam-ceramics as aggregates for cellular concrete. Collection of international scientific and practical conference «Architectural-building and road-transport complexes: problems, prospects, innovations». Omsk. 2019, pp. 469–472. (In Russian).
8. Ilyina L.V., Tatsky L.N., Molodin V.V., Kolesova T.D. Lightweight concrete with foam-glass-crystalline aggregate modified with micro- and nano-silica. Ekspert: teoriya i praktika. 2023. No. 3 (22), pp. 80–85. (In Russian).
9. Ketov Yu.A., Slovikov S.V. Syntactic polymercomposites highly filled with granulated foamglass. Computational Nanotechnology. 2019. No. 3. pp. 39–46. (In Russian).
10. Rezaev R.O., Borodulya N.A., Sebelev I.M., Smirnova E.I., Karasev N.P. Selection of concrete composition taking into account the coating thickness and packing density of aggregates. Izvestiya Vuzov. Stroitel’stvo. 2020. No. 4. pp. 22. (In Russian).
11. Stefanenko I.V., Gnedash E.E., Akchurin T.K. Optimization of granulometric composition of aggregates of heat-resistant concrete of fine-grained structure. Vestnik of Volgograd State University of Architecture and Civil Engineering. 2020. No. 4. С. 205–213. (In Russian).
12. Certificate of state registration of computer program 2023665187 Russian Federation. Calculation of optimal diameters of three fractions of granulated foam glass to achieve maximum packing densityof foam glass concrete / Mikhailov V.A., Panchenko A.I.; applicant and right holder NationalResearch Moscow State Construction University. No. 2023663616. Applied 29.06.2023; Published 12.07.2023. (In Russian).
13. Puzrenkov A.N., Salnikov I.I. Methods of packing bulk materials consisting of elements of spherical shape. Nauchnoe Obozrenie. Pedagogicheskie Nauki. 2019. No. 3 (part 2), pp. 79–82. (In Russian).
14. Bazhenova O.O. Optimization of packing density of aggregates in concrete. International Scientific and Technical Conference of Young Scientists. Belgorod. 2020, pp. 1938–1941. (In Russian).
15. Chen C., Bai S., Huang Y., Lam L., Yao Y., Keer L.M. 3D random packing algorithm of ellip-soidal particles based on the Monte Carlo method. Magazine of Concrete Research. 2021. Vol. 73. No. 7, pp. 343–355. DOI: https://doi.org/10.1680/jmacr.20.00228

For citation: Panchenko A.I., Mikhailov V.A. Modeling and experimental study of packing density of foam glass concrete. Stroitel’nye Materialy [Construction Materials]. 2023. No. 11, pp. 95–99. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-819-11-95-99

Metallurgical Waste as a Raw Material Reserve for Achieving Carbon Neutrality of the Construction Industry.Part 1. Ability of Metallurgical Waste to Bind CO2

Number of journal: 11-2023
Autors:

Lyubomirsky N.V.,
Bakhtin A.S.,
Bakhtina T.A.,
Nikolaenko V.V.,
Bilenko G.R.

DOI: https://doi.org/10.31659/0585-430X-2023-819-11-80-94
УДК: 691.335

 

AbstractAbout AuthorsReferences
The solution to global environmental problems is to reduce the anthropogenic impact on the environment through the utilization of carbon dioxide emissions and the use of industrial waste to produce new materials and products. Technogenic wastes of the metallurgical industry are considered as raw materials for the production of building materials and products with the ability to bind gaseous CO2. The analysis and selection of waste from metallurgical enterprises located in the Central and North-Western Federal Districts of the Russian Federation is carried out. The results of studies of environmental friendliness, chemical, material and phase-mineralogical compositions of technogenic metallurgy waste, their hydration activity and ability to bind carbon dioxide are presented. It is shown that the most promising raw materials for the production of building materials and products are steelmaking slags and nepheline sludge from the processing of alumina raw materials. The greatest ability to absorb and bind CO2 is distinguished by nepheline sludge (up to 12% CO2 by weight of sludge), steelmaking (converter and electric steelmaking) slags (up to 8.8 and 9.2% CO2 by weight of slag, respectively). The compressive strength of the prototypes on these types of slags depends on the degree of their carbonation and reaches values of 100 MPa or more after 6 hours of forced carbonation. It is concluded that the material obtained from man-made metallurgical waste by carbonation hardening technology can be used as a matrix substance for various building materials and products.
N.V. LYUBOMIRSKY, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.S. BAKHTIN, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
T.A. BAKHTINA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.V. NIKOLAENKO, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
G.R. BILENKO, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

V.I. Vernadsky Crimean Federal University (4, Academician Vernadskiy Avenue, Simferopol, 295007, Republic of Crimea, Russian Federation)

1. Специальный доклад МГЭИК. Улавливание и хранение двуокиси углерода. 2005. (редакторы Берт Метц, Огунладе Дэвидсон Хелен де Конинк, Мануэла Лоос, Лео Мейер), 2005. Версия в электронном виде доступна на веб-сайте Секретариата МГЭИК: www.ipcc.ch (дата обращения 12.06.2023).
1. IPCC Special Report. Capture and storage of carbon dioxide. 2005. (eds. Bert Metz, Ogunlade Davidson Helen de Koninck, Manuela Loos, Leo Meyer), 2005. An electronic version is available on the IPCC Secretariat website: www.ipcc.ch (Date of access 12.06.23).
2. Технологический обзор. Улавливание, использование и хранение углерода (CCUS). 2022. [Technology Brief. Carbon Capture, Use And Storage (CCUS)]. https://shop.un.org (дата обращения 12.06.2023).
2. Technology Brief. Carbon Capture, Use And Storage (CCUS). 2022. https://shop.un.org (Date of access 12.06.23).
3. Bui Mai, Adjiman Claire S., Bardow André and others. Carbon capture and storage (CCS): the way forward. Energy & Environmental Science. 2018. 11, рр. 1062–1176. DOI: 10.1039/c7ee02342a
4. D’Alessandro Deanna M., Smit Berend, Long Jeffrey R. Carbon dioxide capture: prospects for new materials. Angewandte Chemie International Edition. 2010. Vol. 49, рр. 6058–6082. DOI: 10.1002/anie.201000431
5. Gulzar A., Gulzar A., Ansari M.B. He F., Gai S., Yang P. Carbon dioxide utilization: A paradigm shift with CO2 economy. Chemical Engineering Journal Advances. 2020. Vol. 3. 100013. DOI: 10.1016/j.ceja.2020.100013
6. Fatima S.S., Borhan A., Ayoub M., Ghani N.A. Development and progress of functionalized silica-based adsorbents for CO2 capture. Journal of Molecular Liquids. 2021. Vol. 338. 116913. DOI: 10.1016/j.molliq.2021.116913
7. CO2 Emissions in 2022. International Energy Agency (IEA). Flagship report March 2023. https://www.iea.org/reports/co2-emissions-in-2022 (дата обращения 12.06.2023).
8. Сазанов Ю.Н., Грибанов А.В. Карбонизация полимеров. СПб.: Научные основы и технологии, 2013. 296 с.
8. Sazanov Yu.N., Gribanov A.V. Carbonizatsiya polimerov [Сarbonization of polymers]. Saint Petersburg: Scientific foundations and technologies, 2013. 296 p.
9. Ушеров-Маршак А.В. Бетоноведение: лексикон. М.: РИФ «Стройматериалы», 2009. 112 с.
9. Usherov-Marshak A.V. Betonovedeniye: lexicon [Concrete science: lexicon]. Moscow: RIF Stroymate-rialy, 2009. 112 p.
10. Proctor D.M., Fehling K.A., Shay E.C., Wittenborn J.L., Green J.J., Avent C., Bigham R.D., Connolly M., Lee B., Shepker T.O. and Zak M.A. Physical and chemical characteristics of blast furnace, basic oxygen furnace, and electric arc furnace steel industry slags. Environmental Science and Technology. 2000. Vol. 34, рр. 1576–1582. DOI: 10.1021/ES9906002
11. Lin B., Wang H., Zhu X., Liao Q., Ding B. Crystallization properties of molten blast furnace slag at different cooling rates. Applied Thermal Engineering. 2016. Vol. 96, рр. 432–440. DOI: 10.1016/j.applthermaleng.2015.11.075
12. Sanjuаn M.А., Estеvez E., Argiz C., del Barrio D. Effect of curing time on granulated blast-furnace slag cement mortars carbonation. Cement and Concrete Composites. 2018. Vol. 90, рр. 257–265. DOI: 10.1016/j.cemconcomp.2018.04.006
13. Seo J., Kim S., Park S., Yoon H.N., Lee H.K. Carbonation of calcium sulfoaluminate cement blended with blast furnace slag. Cement and Concrete Composites. 2021. Vol. 118. Article 103918. DOI: 10.1016/j.cemconcomp.2020.103918
14. Uliasz-Bocheńczyk A., Mokrzycki E. CO2 mineral sequestration with the use of ground granulated blast furnace slag. Gospod. Surowcami Miner. 2017. Vol. 33, рр. 111–124. DOI: 10.1515/gospo-2017-0008
15. You K.S., Lee S.H., Hwang S.H., Kim H.S., Ahn J.W. CO2 sequestration via a surface –modified ground granulated blast furnace slag using NaOH solution. Materials Transactions. 2011. Vol. 52, рр. 1972–1976. DOI: 10.2320/matertrans.M2011110
16. Ren E., Tang S., Liu C., Yue H., Li C., Liang B. Carbon dioxide mineralization for the disposition of blast-furnace slag: reaction intensification using NaCl solutions. Greenhouse Gases: Science and Technology. 2020. Vol. 10, рр. 436–448. DOI: https://doi.org/10.1002/ghg.1837
17. Huijgen W.J., Witkamp G.J., Comans R.N.J. Mechanisms of aqueous wollastonite carbonation as a possible CO2 sequestration process. Chemical Engineering Science. 2006. Vol. 61, рр. 4242–425. DOI: 10.1016/j.ces.2006.01.048
18. Huijgen W.J., Witkamp G.J., Comans R.N. Mineral CO2 sequestration by steel slag carbonation. Environmental Science & Technology. 2005. Vol. 39, рр. 9676–9682. DOI: 10.1021/es050795f
19. Zhong X., Li L., Jiang Y., Ling T.-C. Elucidating the dominant and interaction effects of temperature, CO2 pressure and carbonation time in carbonating steel slag blocks. Construction and Building Materials. 2021. Vol. 302. Article 124158. DOI: 10.1016/j.conbuildmat.2021.124158
20. Shi C., Wu Y. Studies on some factors affecting CO2 curing of lightweight concrete products. Resources, Conservation and Recycling. 2008. Vol. 52 (8–9), рр. 1087–1092. DOI: https://doi.org/10.1016/j.resconrec.2008.05.002
21. Mahoutian M., Ghouleh Z., Shao Y. Carbon dioxide activated ladle slag binder. Construction and Building Materials. 2014. Vol. 66, рр. 214–221. DOI: 10.1061/(ASCE)MT.1943 –5533.0001055
22. Siriwardena D.P. Quantification of СО2 sequestration capacity and carbonation rate of alkaline industrial byproducts. Construction and Building Materials. 2015. Vol. 19, рр. 216–224. DOI: 10.1016/j.conbuildmat.2015.05.035
23. Yadav S., Mehra A. Experimental study of dissolution of minerals and СО2 sequestration in steel slag. Waste Management. 2017. Vol. 64, рр. 348–357. DOI: 10.1016/j.wasman.2017.03.032
24. Ukwattage N.L., Ranjith P.G., Li X. Steel-making slag for mineral sequestration of carbon dioxide by accelerated carbonation. Measurement. 2017. Vol. 97, рр. 15–20. DOI: 10.1016/j.measurement.2016.10.057
25. Mo L., Zhang F., Deng M. Mechanical performance and microstructure of the calcium carbonate binders produced by carbonating steel slag paste under СО2 curing. Cement and Concrete Research. 2016. Vol. 88, рр. 217–226. DOI: 10.1016/j.cemconres.2016.05.013
26. Mai U., Rein K., Lale A., Kalle K. The СО2-binding by Сa-Mg-silicates in direct aqueous carbonation of oil shale ash and steel slag. Energy Procedia. 2011. Vol. 4, рр. 925–932. DOI: 10.1016/j.egypro.2011.01.138
27. Santos R.M., Van Bouwel J., Vandevelde E., Mertens G., Elsen J., Van Gerven T. Accelerated mineral carbonation of stainless steel slags for СО2 storage and waste valorization: effect of process parameters on geochemical properties. International Journal of Greenhouse Gas Control. 2013. Vol. 17, рр. 32–45. DOI: 10.1016/j.ijggc.2013.04.004
28. Salman M., Cizer Ö., Pontikes Y., Santos R.M., Snellings R., Vandewalle L., Blanpain B., Van Balen K. Effect of accelerated carbonation on and stainless steel slag for its valorisation as a CO2-sequestering construction material. Chemical Engineering Journal. 2014. Vol. 246, рp. 39–52. DOI: 10.1016/J.CEJ.2014.02.051
29. Kaliyavaradhan S.K., Ling T.-C., Mo K.H. Valorization of waste powders from cement-concrete life cycle: a pathway to circular future. Journal of Cleaner Production. 2020. Vol. 268. Article 122358. DOI: 10.1016/j.jclepro.2020.122358
30. Mehdizadeh H., Jia X., Mo K.H., Ling T.-C. Effect of water-to-cement ratio induced hydration on the accelerated carbonation of cement pastes. Environmental Pollution. 2021. Vol. 280. Article 116914. DOI: 10.1016/j.envpol.2021.116914

For citation: Lyubomirsky N.V., Bakhtin A.S., Bakhtina T.A., Nikolaenko V.V., Bilenko G.R. Metallurgical waste as a raw material reserve for achieving carbon neutrality of the construction industry. Part 1. Ability of metallurgical waste to bind CO2. Stroitel’nye Materialy [Construction Materials]. 2023. No. 11, pp. 80–94. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-819-11-80-94

Market of Finishing and Thermal Insulation Materials in 2023

Number of journal: 11-2023
Autors:

Yumasheva E.I.

DOI: https://doi.org/10.31659/0585-430X-2023-819-11-75-79
УДК: 66.045.3

 

AbstractAbout AuthorsReferences
The 15th annual conference of the Construction Information company took place in St. Petersburg on October 12–13, 2023. More than 120 representatives from 72 organizations from three countries took part in its work – commercial directors, heads of marketing departments, dealer centers, supply and sales specialists. Traditionally, the conference examines the results of the work of the Russian construction complex as a whole over the past year, as well as a number of sub-sectors of the building materials industry. The main results of the work of the industry of dry building mixtures, gypsum finishing materials, mineral and polymer-based thermal insulation materials, facade systems, paint and varnish materials, voiced in the reports of conference participants, are presented. The forecast for the development of these sub-sectors for the short term is also shown.
E.I. YUMASHEVA, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

APC «STROJMATERIALY» (3 build, 9, Dmitrovskoe Highway, 127343, Moscow, Russian Federation)

For citation: Yumasheva E.I. Market of finishing and thermal insulation materials in 2023. Stroitel’nye Materialy [Construction Materials]. 2023. No. 11, pp. 75–79. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-819-11-75-79

Integrated Development of Technogenic Resources

Number of journal: 11-2023
Autors:

Butkevich G.R.

DOI: https://doi.org/10.31659/0585-430X-2023-819-11-70-74
УДК: 622.268

 

AbstractAbout AuthorsReferences
Overburden and host rock deposits typically contain by-products. If selective mining is not applied, these aggregates are moved to dumps and deposited haphazardly. To preserve mineral resources, it is necessary to create man-made technogenic deposits. This article explores the prospects of comprehensive mineral resource development. Examples of creating technogenic mineral deposits in exhausted quarry spaces are provided. We emphasize the need for the enactment of laws that promote the formation of technogenic deposits.
G.R. BUTKEVICH, Candidate of Sciences (Engineering)
1. Razvitie idei N.V. Mel’nikova v oblasti kompleksnogo osvoeniya nedr [Development of ideas N.V. Melnikov in the field of integrated subsoil development]. Moscow: URAN IPKON RAN. 2009 (Collection of articles for the 100th anniversary of birth).
2. Trubetskoi K.E., Barskii L.A. Technogenic deposits. Gornaya entsiklopediya [Mountain encyclopedia]. Vol. 1/5. 1991. P. 120.
3. Pit and Quarry, 2023, May.
4. Arkhipov A.V., Reshetnyak S.P. Tekhnogennye mestorozhdeniya. Razrabotka i formirovanie [Techno-genic deposits. Development and formation], under scientific ed. N.N. Melnikova. Apatites: KNTs RAN. 2017. 175 p.

For citation: Butkevich G.R. Integrated development of technogenic resources. Stroitel’nye Materialy [Construction Materials]. 2023. No. 11, pp. 70–74. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-819-11-70-74

Aerated Concrete with Geopolymer Binder from Technogenic Waste

Number of journal: 11-2023
Autors:

Tang Van Lam,
Pham Duc Luong,
Nguyen Ba Binh,
Bulgakov B.I.,
Bazhenova S.I.

DOI: https://doi.org/10.31659/0585-430X-2023-819-11-63-69
УДК: 691.327.332

 

AbstractAbout AuthorsReferences
Aerated concrete is a material widely used in Vietnam due to several advantages over heavy concrete. This article presents some results of experimental studies of the properties of aerated concrete produced using geopolymer binder from industrial waste generated in large quantities in Vietnam. The raw materials used included thermal power plant fly ash, blast furnace slag, ceramic powder, aluminum powder and an activating alkaline solution consisting of aqueous solutions of sodium hydroxide and sodium metasilicate. Testing of aerated concrete samples of the developed compositions was carried out in accordance with current Russian and Vietnamese standards. Experimental results confirmed the possibility of producing aerated concrete with a geopolymer binder based on large-tonnage technogenic waste, with an average dry density of less than 1600 kg/m3 and a compressive strength at the age of hardening of 28 days of 18.8–27.9 MPa. At the same time, aerated concrete containing 0.456 kg/m3 of aluminum powder and 50% wt. showed the greatest strength. blast furnace slag in the composition of the geopolymer binder, with a ratio of activating alkaline solution and active mineral additives equal to 0.4.
TANG VAN LAM1, Candidate of Sciences (Engineering), Lecturer-Researcher (This email address is being protected from spambots. You need JavaScript enabled to view it.),
PHAM DUC LUONG1, Master (This email address is being protected from spambots. You need JavaScript enabled to view it.);
NGUYEN BA BINH2, Master (This email address is being protected from spambots. You need JavaScript enabled to view it.);
B.I. BULGAKOV3, Candidate of Sciences (Engineering), Associate Professor (This email address is being protected from spambots. You need JavaScript enabled to view it.),
S.I. BAZHENOVA3, Candidate of Sciences (Engineering), Associate Professor (This email address is being protected from spambots. You need JavaScript enabled to view it. )

1 Hanoi University of Mining and Geology (18 Pho Vien, Duc Thang, Bac Tu Liem, Hanoi, Vietnam)
2 Joint Stock Company “Coninco3c” (Nhan Chinh, Thanh Xuan, Hanoi, Vietnam)
3 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Truong Thi Kim Xuan, Nguyen Duy Hieu, Nguyen Huu Nhan. Use of lightweight concrete in construction work in Vietnam. Faculty of Civil Engineering. University of Architecture, Hanoi, 2010, pp. 10–18. (In Vietnamese).
2. Nguyen Van Chanh. The use of lightweight concrete in housing construction for sustainable urban development. Faculty of Civil Engineering, Ho Chi Minh City University of Technology, 2012. 56 p. (In Vietnamese).
3. Vu Kim Dien, Tang Van Lam, Bazhenova S.I. Review of properties and applications of foam concrete. Proceedings of the National Conference on Land and Natural Resources with Sustainable Development (ERSD 2020). Hanoi. 11/12/2020. (In Vietnamese).
4. Nguyen Van Phi4u, Nguyen Van Chanh. Lightweight concrete technology. Ed. Construction. 2005. 100 p. (In Vietnamese).
5. Nguyen Cong Thang, Pham Huu Hanh. Research to improve the quality of autoclaved aerated concrete used for super-tall buildings in Vietnam. Journal of Construction Science and Technology. 2014. No. 21. pp. 75–80. (In Vietnamese).
6. Đao Van Đung. Textbook on the technology of new materials in construction. Ed. Construction. 2021. 210 p. (In Vietnamese).
7. Nguye Duy Hieu. Technology for the production of high-quality lightweight concrete with hollow aggregate. Ed. Construction. 2016. 175 p. (In Vietnamese).
8. Vilches J. The development of novel infill materials for composite structural assemblies. Doctoral dissertation. Auckland University of Technology. 2014. (In Vietnamese).
9. Saidani M., Ogbologugo U., Coakley E., George S. Lightweight cementetious (GEM-TECH) structural material. Conference: CITEDUB3 International Congress on Technology and Concrete Durability. Algiers, Algeria. September 2016, pp.186-195.
10. Chen G., Li F., Geng J., Jing P., Si, Z. Identification, generation of autoclaved aerated concrete pore structure and simulation of its influence on thermal conductivity. Construction and Building Materials. 2021. Vol. 294. 123572. https://doi.org/10.1016/j.conbuildmat.2021.123572
11. Nguyen Thanh Bang, Dinh Hoang Quan, Nguyen Tien Trung. Research into the use of an environmentally friendly combination of fly ash and blast furnace slag to produce concrete (without the use of cement) with an activated alkali binder suitable for irrigation and marine use. National level research project code KC.08.21/16-20.2021. 287 p. (In Vietnamese).
12. Tang Van Lam, Bulgakov B.I. The possibility of using ash-slag waste and rice husk ash on geopolymer concrete for the construction of structures in Vietnam. BDU Journal of Science & Technology. 2021. Vol. 03. No. 01, pp. 26–40. https://doi.org/10.1016/j.conbuildmat.2021.125218
13. Al Bakri Abdullah M.M., Hussin K., Bnhussain M., Ismail K.N., Yahya Z., and Razak R.A. Fly ash-based geopolymer lightweight concrete using foaming agent. International Journal of Molecular Sciences. 2012. Vol. 13. No. 6, pp. 7186–7198. Doi: 10.3390/ijms13067186
14. Nguyen Trong Lam, Pham Huu Hanh. Research to improve the quality of autoclaved aerated concrete used for super-tall buildings in Vietnam. Journal of Construction Science and Technology. No. 21. 2014, pp. 75–80. (In Vietnamese).
15. Tang Van Lam, Dien Vu Kim, Hung Ngo Xuan, Tho Vu Dinh, B. Bulgakov, S. Bazhenova. Effect of aluminium powder on light-weight aerated concrete properties. E3S Web of Conferences. 2019. Vol. 97. 02005. https://doi.org/10.1051/e3sconf/20199702005
16. Ву Ким Зиен. Ячеистые бетоны с использованием плазмомодифицированного доменного шлака: Дис. … канд. техн. наук. М., 2023. 168 c.
16. Wu Kim Zien. Cellular concrete using plasma-modified blast furnace slag. Cand. Diss. (Engineering). Moscow. 2023. 168 p. (In Russian).
17. Zhang J., Jiang N., Li H., Wu C. Study on mix proportion design of cement foam concrete. IOP Conference Series: Materials Science and Engineering. 2018. Vol. 439. No. 4. 2018. 042053. doi:10.1088/1757-899X/439/4/042053
18. Trinh Ngoc Duy. Study of mechanical and mechanical properties of geopolymer mortar for lightweight brick production. Thesis for the degree of Master of Technical Sciences. Ho Chi Minh City Technical Pedagogical University. Ho Chi Minh City, 2016. 87 p. (In Vietnamese).
19. ACI 211.4R-2008. Guide for selecting proportions for high-strength concrete using portland cement and other cementitious materials. 2010. 13 p.
20. Shi C. Composition of materials for use in cellular lightweight concrete and methods thereof. Advanced Materials and Technologies. LLC. 2002. Vol. 1. No. 12, pp. 3–7.
21. Kim D.V., Cong L.N., Van L.T., Bazhenova S.I. Foamed concrete containing various amounts of organic-mineral additives. Journal of Physics: Conference Series. Modelling and Methods of Structural Analysis. Vol. 1425. 2020, pp. 12–22. Doi:10.1088/1742-6596/1425/1/012199
22. Hamad J., Materials A., Production, properties and application of aerated lightweight concrete: review. International Journal of Materials Science and Engineering. 2014. Vol. 2, pp. 152–158.
23. Vietnam National Standard TCVN 9029:2017. Lightweight concrete. Products made from non-autoclaved foam and aerated concrete. Technical requirements. 16 p. (In Vietnamese).

For citation: Tang Van Lam, Pham Duc Luong, Nguyen Ba Binh, Bulgakov B.I., Bazhenova S.I. Aerated concrete with geopolymer binder from technogenic waste. Stroitel’nye Materialy [Construction Materials]. 2023. No. 11, pp. 63–69. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-819-11-63-69

Building Composite Based on Gypsum Binder and Sosnovsky’s Hogweed

Number of journal: 11-2023
Autors:

Samchenko S.V.,
Bruyako M.G.,
Ergenyan A.M.,
Shvetsova V.A.

DOI: https://doi.org/10.31659/0585-430X-2023-819-11-56-62
УДК: 666.914

 

AbstractAbout AuthorsReferences
Within the framework of this paper, gypsum composites of different densities and strengths were obtained. The influence of different hydrophobizers on the softening coefficient of gypsum composite reinforced with plant filler was investigated. The crushed stem of Sosnovsky’s hogweed was used as a plant filler. The plant filler was pre-dried, treated with organosilicon hydrophobizers by irrigation method followed by powdering with gypsum binder. From the obtained mass, 4х4х16 cm specimens were fabricated. The pressing pressure was varied from 0.2 to 0.8 MPa. The density, flexural strength, compressive strength, and softening coefficient were determined for the obtained specimens. Increasing the pressing pressure increases the density and strength characteristics of the gypsum composite. Modification of the plant filler did not affect the density and strength of the composite but allowed 1.3–2.3 times to increase its water resistance.
S.V. SAMCHENKO, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
M.G. BRUYAKO, Candidate of Sciences (Engineering),
A.M. ERGENYAN, postgraduate student (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.A. SHVETSOVA, Engineer, Head of Laboratory (This email address is being protected from spambots. You need JavaScript enabled to view it.)

National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Smirnova O.E., Pichugin A.P., Khritankov V.F. Composite materials based on organic raw materials with nanosized additives. Stroitel’nye Materialy [Construction Materials]. 2023. No. 1–2, pp. 76–81. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-810-1-2-76-81
2. Fedosov S.V., Lapidus A.A., Sokolov A.M., Sarkisov D.A., Samir Faraun, Isachenko S.L. Indicators of the technology of manufacturing products from arbolite using electric heat treatment. Stroitel’nye Materialy [Construction Materials]. 2023. No. 3, pp. 4–10. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-811-3-4-10
3. Tsepaev V.A., Panyuzhev E.M. Composition and strength of sawdust concrete with low-quality gypsum binder. Izvestiya vysshikh uchebnykh zavedeniy. Stroitel’stvo. 2003. No. 2 (530), pp. 55–58. (In Russian).
4. Tsepaev V.A., Lebedev M.A. On the maximum level of compressive stress in sawdust concrete masonry Zhilishchnoye stroitel’stvo [Housing Construction]. 2008. No. 9, pp. 8–10. (In Russian).
5. Ryzhikov D.M. Monitoring the growth zones of Sosnovsky’s hogweed by the spectral characteristics of reflected waves in the optical range. Diss... Candidate of Sciences (Engineering). Saint Petersburg. 2019. 221 p. (In Russian).
6. Vurasko A.V., Ageev M.A., Sivakov V.P. Preparation and properties of technical cellulose from hogweed by the oxidative-organosolv method. Khimiya rastitel’nogo syr’ya. 2022. No. 1, pp. 289–298. DOI: 10.14258/jcprm.20220110121
7. Patent RF No. 2458106. IPC C10L 1/02 (2006.01), C07C 31/08 (2006.01). Bioetanol iz borshchevika kak dikorastushchego, tak i kul’tiviruyemogo [Bioethanol from hogweed, both wild and cultivated]. Strebkov D.S., Dorzhiev S.S., Bazarova E.G., Pateeva  I.B. Application 09/21/2010; Publ. 08/10/2012. Bull. No. 22. (In Russian).
8. Patent RF No. 2761239. IPC D21C 5/00 (2006.01), D21C 3/04 (2006.01), D21C 1/04 (2006.01), C08B 37/00 (2006.01), (52) SPK D21C 5/00 (2021.08), D21C 1/04 (2021.08), D21C 3/04 (2021.08), C08B 37/00 (2021.08). Sposob polucheniya tsellyulozy [Method for producing cellulose]. Tokbaeva A.A., Barakova M.B., Dobrinov A.V., Romanov V.A., Pronin A.S. Application 06/21/2021; Publ. 06.12.2021. Bull. No. 34. (In Russian).
9. Patent RF No. 2458148. IPC C13B 50/00 (2011.01). Sposob polucheniya belogo sakhara iz borshchevi-ka [Method for producing white sugar from hog-weed]. Strebkov D.S., Dorzhiev S.S., Bazarova E.G., Pateeva  I.B. Application 09.21.2021; Publ. 08/10/2012. Bull. No. 22. (In Russian).
10. Patent RF No. 2618281. IPC B09C 1/02 (2006.01), A01B 79/02 (2006.01), C22B 11/00. Sposob izvlecheniya metallov iz pochvy s ispol’zovaniem biomassy rastenii [Method for extracting metals from soil using plant biomass]. Chertov V.V. Application 12/16/2015; Publ. 05/03/2017. Bull. No. 13. (In Russian).
11. Patent RF No. 2588271. IPC B03D 1/02 (2006.01), B03D 1/004 (2006.01), B03D 103/02 (2006.01), B03D 101/06 (2006.01). Sposob flotatsionnogo razdeleniya sul’fidnykh mineralov s ispol’zovaniyem rastitel’nogo modifikatora [Method of flotation separation of sulfide minerals using a plant modifier]. Ivanova T.A., Chanturia V.A., Matveeva T.N. and etc. Application 04/28/2015; Publ. 06/27/2016. Bull. No. 18.
12. Patent RF No. 2676612. IPC C09K 17/52 (2006.01), (52) SPK C09K 17/52 (2018.05). Polimersoderzhashchiy sostav pokrytiya [Polymer-containing coating composition]. Davydenko N.V. Application 04/10/2018; Publ. 01/09/2019. Bull. No. 1.
13. Barbash V.A., Trembus I.V., Oksentyuk N.N. Paper and cardboard from kenaf and sweet sorghum stems. Khimiya rastitel’nogo syr’ya. 2014. No. 4, pp. 271–278. DOI: 10.14258/jcprm.201404214
14. SN 549-82. Instruktsii po proyektirovaniyu, izgotovleniyu i primeneniyu konstruktsiy i izdeliy iz arbolita. [SN 549-82. Instructions for the design, manufacture and use of structures and products made of wood concrete]. Moscow: Gosstroy USSR. 1983. 46 p.
15. Musorina T.A., Naumova E.A., Shonina E.V., Petrichenko M.R., Kukolev M.I. Thermal properties of energy-efficient material based on plant additives (dry hogweed). Vestnik of MSUCE. 2019. Vol. 14. Iss. 12, pp. 1555–1571. (In Russian). DOI: 10.22227/1997-0935.2019.12.1555-1571
16. Delhommea F., Hajimohammadi A., Almeida A., Jiang C., Moreau D., Gan Y., Wang X., Castel A. Physical properties of Australian hurd used as aggregate for hemp concrete. Materials Today Communications. 2020. Vol. 24. 100986. https://doi.org/10.1016/j.mtcomm.2020.100986
17. Solovyov V.G., Shvetsova V.A. Study of the properties of concrete using calcium stearate Ca(C18H35O2)2. Tekhnika i tekhnologiya silikatov. 2021. Vol. 28. No. 1, pp. 20–26. (In Russian).
18. Potapova E.N., Isaeva I.V. Increase in water resistance of gypsum binder. Stroitel’nye Materialy [Construction Materials]. 2012. No. 7, pp. 20–22. (In Russian).
19. Nikitina O.V., Anikanova L.A., Kudyakov A.I., Diesendorf T.E., T. Sadyk Kyzy. Effective impregnations for gypsum-containing building materials. Vestnik of the Tomsk State University of Construction and Technology. 2014. No. 3, pp. 154–160. (In Russian).
20. Morozova N.N., Maisuradze N.V., Klokov V.V. Study of hydrophobization of gypsum and composite-gypsum materials. Vestnik of the Kazan Technological University. 2017. Vol. 20. No. 16, pp. 34–37. (In Russian).

For citation: Samchenko S.V., Bruyako M.G., Ergenyan A.M., Shvetsova V.A. Building composite based on gypsum binder and hydrofobized Sosnowsky’s hogweed. Stroitel’nye Materialy [Construction Materials]. 2023. No. 11, pp. 56–62. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-819-11-56-62

Geotechnical Technology for the Construction of Engineering Structures on Structurally Unstable Slopes

Number of journal: 11-2023
Autors:

Sokolov N.S.,
Sokolov S.N.,
Sokolov A.N.

DOI: https://doi.org/10.31659/0585-430X-2023-819-11-52-55
УДК: 624.154.1

 

AbstractAbout AuthorsReferences
The construction and reconstruction of buildings and structures on problematic engineering-geological and rugged territories with the presence of ravines, unstable slopes is an urgent task of modern geotechnical construction. It is further aggravated by the presence in the foundations of the designed objects of intermittent engineering-geological elements with reduced values of physical and mechanical characteristics. Often there are lenses, wedging out layers of soft soils with unstable physical and mechanical properties. The article considers the case of the construction of foundations using drill-injection piles ERT and monolithic reinforced concrete grillages for a mounted pressure pipeline with a diameter of 1020 mm.
N.S. SOKOLOV1,2, Candidate of Sciences (Engineering), Director (This email address is being protected from spambots. You need JavaScript enabled to view it.);
S.N. SOKOLOV2, Director, LLC «Stroitel Forst»,
A.N. SOKOLOV2, Director for Construction(This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Chuvash State University named after I.N. Ulyanov (15, Moskovsky Avenue, Cheboksary, 428015, Chuvash Republic, Russian Federation)
2 LLC NPF «FORST» (109a, Kalinina Street, Cheboksary, 428000, Chuvash Republic, Russian Federation)

1. Тер-Мартиросян А.З., Кивлюк В.П., Исаев И.О., Шишкина В.В. Анализ расчетных предпосылок геотехнического прогноза нового строительства на окружающую застройку // Жилищное строительство. 2022. № 9. С. 57–66. DOI: https://doi.org/10.31659/0044-4472-2022-9-57-66
1. Ter-Martirosian A.Z., Kivluik V.P., Isaev I.O., Shishkina V.V. Analysis of the calculated prerequisites for the geotechnical forecast of new construction on the surrounding buildings. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2022. No. 9, pp. 57–66. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2022-9-57-66
2. Мангушев Р.А., Никифорова Н.С. Технологические осадки зданий и сооружений в зоне влияния подземного строительства. М.: АСВ, 2017. 168 с.
2. Mangushev R.A., Nikiforova N.S. Ekhnologicheskie osadki zdanii i sooruzhenii v zone vliyaniya podzemnogo stroitel’stva [Technological precipitation of buildings and structures in the zone of influence of underground construction]. Moscow: ASV. 2017. 168 p.
3. Ilichev V.A., Konovalov P.A., Nikiforova N.S., Bulgakov L.A. Deformations of the retaining structures upon deep excavations in Moscow. Proc. Of Fifth Int. Conf on Case Histories in Geotechnical Engineering. April 3–17. New York. 2004, pp. 5–24.
4. Sokolov N., Ezhov S., Ezhova S. Preserving the natural landscape on the construction site for sustainable ecosystem. Journal of applied engineering science. 2017. Vol. 15. No. 4, pp. 518–523. DOI:10.5937/jaes15-14719
5. Nikiforova N.S., Vnukov D.A. Geotechnical cut-off diaphragms for built-up area protection in urban underground development. The pros, of the 7thI nt. Symp. «Geotechnical aspects of underground construction in soft ground». May 16–18, 2011. tc28 IS Roma, AGI, 2011, № 157NIK.
6. Nikiforova N.S., Vnukov D.A. The use of cut off of different types as a protection measure for existing buildings at the nearby underground pipelines installation. Proc. of Int. Geotech. Conf. dedicated to the Year of Russia in Kazakhstan. Almaty, Kazakhstan, September 23–25, 2004, pp. 338–342.
7. Petrukhin V.P., Shuljatjev O.A., Mozgacheva O.A. Effect of geotechnical work on settlement of surrounding buildings at underground construction. Proceedings of the 13th European Conference on Soil Mechanics and Geotechnical Engineering. Prague. 2003.
8. Соколов Н.С. Технологические приемы устройства буроинъекционных свай с многоместными уширениями // Жилищное строительство. 2016. № 10. С. 54–57.
8. Sokolov N.S. Technological methods of installation of bored-injection piles with multiple enlargements. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2016. No. 10, pp. 54–57. (In Russian).
9. Соколов Н.С. Технология увеличения несущей способности основания // Строительные материалы. 2019. № 6. С. 67–72. DOI: https://doi.org/10.31659/0585-430X-2019-771-6-67-71
9. Sokolov N.S. Technology of increasing a base bearing capacity. Stroitel’nye Materialy [Construction Materials]. 2019. No. 6, pp. 67–72. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-771-6-67-71
10. Соколов Н.С., Соколов А.Н., Соколов С.Н., Глушков В.Е., Глушков А.В. Расчет буроинъекционных свай ЭРТ повышенной несущей способности //Жилищное строительство. 2017. № 11. С. 20–25.
10. Sokolov N.S., Sokolov A.N., Sokolov S.N., Glushkov V.E., Glushkov A.V. Calculation of flight augering piles of high bearing capacity. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2017. No. 11, pp. 20–25. (In Russian).
11. Соколов Н.С., Соколов С.Н., Соколов А.Н. Опыт восстановления здания Введенского кафедрального собора в городе Чебоксары // Геотехника. 2016. № 1. С. 60–65.
11. Sokolov N.S., Sokolov S.N., Sokolov A.N. The experience of restoring the building of the Vvedensky Cathedral in Cheboksary. Geotechnicа. 2016. No. 1, pp. 60–65. (In Russian).
12. Никонорова И.В., Соколов Н.С. Строительство и территориальное освоение оползнеопасных склонов Чебоксарского водохранилища // Жилищное строительство. 2017. № 9. С. 13–19.
12. Nikonorova I.V., Sokolov N.S. Construction and territorial development of landslide slopes of the Cheboksary water reservoir. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2017. No. 9, pp. 13–19. (In Russian).
13. Соколов Н.С., Соколов С.Н., Соколов А.Н. Технология устройства монолитного железобетонного ростверка в стесненных условиях функционирующего объекта // Строительные материалы. 2023. № 7. С. 12–16. DOI: https://doi.org/10.31659/0585-430X-2023-815-7-12-16
13. Sokolov N.S., Sokolov S.N., Sokolov A.N. Technology for the installation of a monolithic reinforced concrete grillage in cramped conditions of a functioning facility. Stroitel’nye Materialy [Construction Materials]. 2023. No. 7, pp. 12–16. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-815-7-12-16
14. Соколов Н.С., Соколов С.Н., Соколов А.Н. Практика строительства в особо стесненных условиях // Жилищное строительство. 2023. № 9. С. 41–47. DOI: https://doi.org/10.31659/0044-4472-2023-9-41-47
14. Sokolov N.S., Sokolov S.N., Sokolov A.N. The practice of construction in particularly cramped conditions. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 9, pp. 41–47. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-9-41-47

For citation: Sokolov N.S., Sokolov S.N., Sokolov A.N. Geotechnical technology for the construction of engineering structures on structurally unstable slopes. Stroitel’nye Materialy [Construction Materials]. 2023. No. 11, pp. 52–55. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-819-11-52-55

Influence of the Amount of Conductive Component on the Electrical Resistivity of Fine-Grained Electrically Conductive Concrete

Number of journal: 11-2023
Autors:

Bahrah A.M.,
Larsen O.A.,
Samchenko S.V.

DOI: https://doi.org/10.31659/0585-430X-2023-819-11-46-51
УДК: 666.974

 

AbstractAbout AuthorsReferences
Approaches to the production of electrically conductive concrete and the possibility of its application through the use of electrical properties in various industries are considered. The results of testing the compositions of fine-grained self-compacting concrete based on Portland cement CEM I 52.5 N, sand with a size modulus Mk=2.43 and polycarboxylate plasticizer for changes in electrical resistivity during hardening are presented. The increase in specific electrical conductivity was provided by the introduction of conductive components in various quantities, such as construction soot, carbon black K-354, graphite EUT-2. The positive effect of increasing the amount of the conductive component on the electrical resistivity for 28 days of normal hardening of the samples and on the ability to resistive heating by changing the surface temperature of the samples when passing a direct current with a voltage of 30 V. is shown.
A.M. BAHRAH, Engineer, Graduate Student (This email address is being protected from spambots. You need JavaScript enabled to view it.),
O.A. LARSEN, Candidate of Sciences (Engineering), Associate Professor (This email address is being protected from spambots. You need JavaScript enabled to view it.),
S.V. SAMCHENKO, Doctor of Sciences (Engineering), Professor

National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Гриневич С.В., Лысенко В.Е. Технология устройства антигололедного слоя покрытия на мостовых сооружениях с применением некоррозионно-активного антигололедного реагента // Дороги и мосты. 2009. № 2 (22). С. 151–159.
1. Grinevich S.V., Lysenko V.E. Technology for installing an anti-icing layer on bridge structures using a non-corrosive anti-icing reagent. Dorogi i mosty. 2009. No. 2 (22), pp. 151–159. (In Russian).
2. Кондаков Д.Ф., Фролова Е.А., Кудряшова О.С., Данилов В.П. Противогололедные реагенты на основе хлоридов натрия и кальция и формиата натрия // Химическая технология. 2020. Т. 21. № 7. С. 297–300.
2. Kondakov D.F., Frolova E.A., Kudryashova O.S., Danilov V.P. Anti-icing reagents based on sodium and calcium chlorides and sodium formate. Khimicheskaya tekhnologiya. 2020. Vol. 21. No. 7, pp. 297–300. (In Russian).
3. Ачкеева М.В., Романюк Н.В., Авдюшкина Л.И., Фролова Е.А., Кондаков Д.Ф., Данилов В.П., Хомяков Д.М., Быков А.В. Противогололедные реагенты на основе ацетатов и хлоридов магния и натрия // Химическая технология. 2013. Т. 14. № 4. С. 193–198.
3. Achkeeva M.V., Romanyuk N.V., Avdyushkina L.I., Frolova E.A., Kondakov D.F., Danilov V.P., Khomyakov D.M., Bykov A.V. Anti-icing reagents based on magnesium and sodium acetates and chlorides. Khimicheskaya tekhnologiya. 2013. Vol. 14. No. 4, pp. 193–198. (In Russian).
4. Титова Т.С., Сацук Т.П., Терехин И.А., Тарабин  И.В. Оценка условий электробезопасности при применении опор контактной сети в качестве естественных заземлителей // Электротехника. 2021. № 2. С. 7–11.
4. Titova T.S., Satsuk T.P., Terekhin I.A., Tarabin I.V. Assessment of electrical safety conditions when using contact network supports as natural grounding conductors. Elektrotekhnika. 2021. No. 2, pp. 7–11. (In Russian).
5. Самченко С.В. Формирование и генезис структуры цементного камня. М.: Национальный исследовательский Московский государственный строительный университет, 2020. 288 с.
5. Samchenko S.V. Formirovaniye i genezis struktury tsementnogo kamnya [Formation and genesis of the structure of cement stone]. Moscow: National Research Moscow State University of Civil Engineering. 2020. 288 p.
6. Урханова Л.А., Буянтуев С.Л., Урханова А.А., Лхасаранов С.А., Ардашова Г.Р., Федюк Р.С., Свинцов А.П., Иванов И.А. Механические и электрические свойства бетона, модифицированного углеродными наночастицами // Инженерно-строительный журнал. 2019. № 8 (92). С. 163–172. DOI: 10.18720/MCE. 92.1
6. Urkhanova L.A., Buyantuev S.L., Urkhanova A.A., Lkhasaranov S.A., Ardashova G.R., Fedyuk R.S., Svintsov A.P., Ivanov I.A. Mechanical and electrical properties of concrete modified with carbon nanoparticles. Magazine of Civil Engineering. 2019. No. 8 (92), pp. 163–172. DOI: 10.18720/MCE. 92.1
7. Яковлев Г.И., Черни В., Пудов И.А., Полянских И.С., Саидова З.С., Бегунова Е.В., Семёнова С.Н. Свойства цементных матриц с повышенной электропроводностью // Строительные материалы. 2022. № 1–2. С. 11–20. DOI: 10.31659/0585-430X-2022-799-1-2-11-20
7. Yakovlev G.I., Cherni V., Pudov I.A., Polyanskikh I.S., Saidova Z.S., Begunova E.V., Semyonova S.N. Properties of cement matrices with increased electrical conductivity. Stroitel’nye Materialy [Construction Materials]. 2022. No. 1–2, pp. 11–20. DOI: 10.31659/0585-430X-2022-799-1-2-11-20
8. Лопанов А.Н., Семейкин А.Ю., Фанина Е.А. Реология электропроводящих цементных паст и дисперсий графита // Цемент и его применение. 2009. № 5. С. 110–112.
8. Lopanov A.N., Semeikin A.Yu., Fanina E.A. Rheology of electrically conductive cement pastes and graphite dispersions. Tsement i yego primeneniye. 2009. No. 5, pp. 110–112. (In Russian).
9. Ларсен О.А., Бахрах А.М. Изменение удельного электрического сопротивления токопроводящего бетона в процессе твердения // Строительные материалы. 2022. № 11. С. 10–14. DOI: https://doi.org/10.31659/0585-430X-2022-808-11-10-14
9. Larsen O.A., Bahrah A.M. Change in the specific electrical resistance of conductive concrete during the hardening process. Stroitel’nye Materialy [Construction Materials]. 2022. No. 11, pp. 10–14. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-808-11-10-14
10. Gao D., Sturm M., Mo Y.L., Electrical resistance of carbon-nanofiber concrete. Smart material construction. 2011. No. 20, pp. 101–112. DOI: 10.1088/0964-1726/18/9/095039
11. Wu J., Liu J., Yang F., Three-phase composite conductive concrete for pavement deicing. Construction and Building Materials. 2015. Vol. 75, pp. 129–135 https://doi.org/10.1016/j.conbuildmat.2014.11.004
12. Ilhwan Y., Doo-Yeol Y., Soonho K., Electrical and self-sensing properties of ultra-high-performance fiber-reinforced concrete with carbon nanotubes. Sensors. 2017. Vol. 17 (11). 2481. https://doi.org/10.3390/s17112481
13. Galao O., Banon L., Carmona J., Highly conductive carbon fiber reinforced concrete for icing prevention and curing. Materials. 2016. Vol. 9 (4). 281. https://doi.org/10.3390/ma9040281
14. Gomis J., Galao O., Gomis V., Zornoza P., Self-heating and deicing conductive cement. Experimental study and modeling. Construction and Building Materials. 2015. Vol. 75, pp. 442-449. https://doi.org/10.1016/j.conbuildmat.2014.11.042
15. Sircar A.K., Lamond T.G. Effect of carbon-black particle-size distribution on electrical-conductivity. Rubber Chemistry and Technology. 1978. Vol. 51 (1), pp. 126–132. https://doi.org/10.5254/1.3535720
16. Voet A., Cook F.R. Investigation of carbon chains in rubber vulcanizates by means of dynamic elecrical conductivity. Rubber Chemistry and Technology. 1968. Vol. 41 (5), pp. 1207–1214. https://doi.org/10.5254/1.3539186
17. Boonstra B.B., Dannenberg E.M. Performance of carbon blacks. Influence of surface roughness and porosity. Rubber Chemistry and Technology. 1955. Vol. 28 (3), pp. 878–890. https://doi.org/10.5254/1.3542849
18. Medalia A.I. Electrical conduction in carbon black composites. Rubber Chemistry and Technology. 1986. Vol. 59 (3), pp. 432–454. https://doi.org/10.5254/1.3538209
19. Verhelst W.F. et al. The role of morphology and structure of carbon blacks in the electrical conductance of vulcanizates. Rubber Chemistry and Technology. 1977. Vol. 50 (4), pp. 735–746. https://doi.org/10.5254/1.3535171

For citation: Bahrah A.M., Larsen O.A., Samchenko S.V. Influence of the amount of conductive component on the electrical resistivity of fine-grained electrically conductive concrete. Stroitel’nye Materialy [Construction Materials]. 2023. No. 11, pp. 46–51. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-819-11-46-51

Determination of Adiabatic Temperature in Hardening Concrete According to Different Standards

Number of journal: 11-2023
Autors:

Nguyen T.C.,
Tang V.L.,
Bulgakov B.I.

DOI: https://doi.org/10.31659/0585-430X-2023-819-11-39-45
УДК: 666.972.165

 

AbstractAbout AuthorsReferences
The problem of thermal cracking in mass concrete structures still remains unsolved. There are many factors that influence the thermal regime in these concrete structures, the main ones being the type and content of cement in the concrete mixture, the thickness of the concrete layer, and the ambient temperature. However, the most important factor is the cause of the heat generated. Currently, there are a large number of standards and empirical formulas for determining the origin of a heat source using adiabatic equations. This paper provides a comparison of formulas for determining the adiabatic temperature in hardening concrete as the basis for determining the thermal regime in large-sized concrete structures.
T.C. NGUYEN1, Candidate of Sciences (Engineering), Lecturer-Researcher (This email address is being protected from spambots. You need JavaScript enabled to view it.);
V.L. TANG2, Candidate of Sciences (Engineering), Lecturer-Researcher (This email address is being protected from spambots. You need JavaScript enabled to view it.);
B.I. BULGAKOV3, Candidate of Sciences (Engineering), Associate Professor (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Le Quy Don Technical University (236 Hoang Quoc Viet Street, Ha Noi, Vietnam)
2 Hanoi University of Mining and Geology (18 Pho Vien, Duc Thang, Bac Tu Liem, Hanoi, Vietnam)
3 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Нгуен Чонг Чык. Термонапряженное состояние бетонных гравитационных плотин: Дис. … канд. техн. наук. М., 2020. 159 с.
1. Nguyen Trong Chuc. Thermal stress state of concrete gravity dams. Diss… Candidate of Sciences (Engineering). Moscow. 2020. 159 p. (In Russian).
2. Нгуен Чонг Чык, Танг Ван Лам, Булгаков Б.И., Александрова О.В., Ларсен О.А., Булычева А.С., Макарова М.Н. Оценка возможности появления трещин в мостовой опоре автомобильной эстакады в раннем возрасте твердения бетона // Вестник БГТУ им. В.Г. Шухова. 2018. № 10. С. 33–42. DOI: 10.12737/article_5bd95a725020e3.98104960
2. Nguyen Trong Chuc, Tang Van Lam, Bulgakov B.I., Alexandrova O.V., Larsen O.A., Bulycheva A.S., Makarova M.N. Assessment of the possibility of cracks in the bridge support of the road overpass in the early age concrete. Vestnik of BSTU named after V.G. Shukhov. 2018. No. 10, pp. 33–32. (In Russian). DOI: 10.12737/article_5bd95a725020e3.98104960
3. ACI Committee 207 – Mass and thermally controlled concrete. 2017. 34 p.
4. Лотов В.А. О взаимодействии частиц цемента с водой или вариант механизма процессов гидратации и твердения цемента // Известия Томского политехнического университета. Инжиниринг георесурсов. 2018. Т. 329. № 1. С. 99–110.
4. Lotov V.A. Interaction of cement particles with water or mechanism of hydration and hardening of cement. Vestnik of the Tomsk Polytechnic University. Geo Аssets Engineering. 2018. Vol. 329. No. 1, pp. 99–110. (In Russian).
5. Разумейчик В.С. Структурно-химическое моделирование гидратации цементного композита // Вестник Брестского государственного технического университета. Сер. Строительство и архитектура. 2006. № 1. С. 91–96.
5. Razumeychik V.S. Structural-chemical modeling of hydration of cement composite. Vestnik of Brest State Technical University. Series: Construction and architecture. 2006. No. 1, pp. 91–96. (In Russian).
6. Фомина Н.Н., Кебедов М.Б. Применение методов калориметрии в исследовании процессов гидратации портландцемента // Техническое регулирование в транспортном строительстве. 2016. № 1 (15). С. 26–28.
6. Fomina N.N., Kebedov M.B. Application by calorimetry in the study of cement hydration arts. Tekhnicheskoe regulirovanie v transportnom stroitel’stve. 2016. No. 1 (15), pp. 26–28. (In Russian).
7. Korea Concrete Institute. Thermal crack control of mass concrete (Manual). 2010. 234 p.
8. Barbara K., Maciej B., Maciej P., Aneta Z. Analysis of cracking risk in early age mass concrete with different aggregate types. Procedia Engineering. 2017. Vol. 193, pp. 234–241. https://doi.org/10.1016/j.proeng.2017.06.209
9. Nikolay Aniskin, Nguyen Trong Chuc, Hoang Quoc Long. Influence of size and construction schedule of massive concrete structures on its temperature regime. MATEC Web of Conferences. 2018. Vol. 251. 02014. https://doi.org/10.1051/matecconf/201825102014
10. Nguyen T.C., Bui A.K. Evaluation of the impact of parameter inputs of concrete mix on the distribution of temperature in the mass concrete structure. Structural Integrity and Life. 2019. Vol. 19. No. 1, pp. 8–12.
11. Japan Concrete Institute. Guidelines for control of cracking of mass concrete. 2016. 302 p.
12. Кузнецова Т.В., Талабер Й. Глиноземистый цемент. М: Стройиздат, 1988. 272 c.
12. Kuznetsova T.V., Talaber I. Glinozemnistyi tsement [Alumina cement]. Moscow: Stroiizdat. 1988. 272 p.
13. Panesar D.K., Zhang R. Performance comparison of cement replacing materials in concrete: Limestone fillers and supplementary cementing materials – A review. Construction and Building Materials. 2020. Vol. 251. 118866. DOI: https://doi.org/10.1016/j.conbuildmat.2020.118866
14. Баженов Ю.М. Технология бетона. М.: АСВ, 2011. 524 с.
14. Bazhenov Yu. M. Tekhnologiya betona [Concrete technology]. Moscow: ASV. 2011. 524 p.
15. Танг В.Л., Нгуен З.Т.Л., Самченко С.В. Влияние золошлакового отхода на свойства сульфоалюминатного портландцемента // Вестник МГСУ. 2019. № 8. С. 991–1003. DOI: 10.22227/1997-0935.2019.8.991-1003
15. Tang V.L., Nguyen D.T.L., Samchenko S.V. The influence of the addition of ash and slag waste on the properties of sulfoaluminate Portland cement. Vestnik of MSUCE. 2019. No. 8, pp. 991–1003. (In Russian). DOI: 10.22227/1997-0935.2019.8.991-1003

For citation: Nguyen T.C., Tang V.L., Bulgakov B.I. Determination of adiabatic temperature in hardening concrete according to different standards. Stroitel’nye Materialy [Construction Materials]. 2023. No. 11, pp. 39–45. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-819-11-39-45

Influence of Type and Volume Content of Steel Fiber on the Compressive Strength of Ultra-High Performance Fiber Reinforced Concrete

Number of journal: 11-2023
Autors:

Soloviev V.G.,
Matiushin E.V.,
Efishov L.I.

DOI: https://doi.org/10.31659/0585-430X-2023-819-11-20-27
УДК: 691.3

 

AbstractAbout AuthorsReferences
The paper presents the results of determining the compressive strength of various compositions of Ultra-High Performance Fiber Reinforced concrete (UHPFRC) with fiber volume content from 1 to 3%. Four types of fibers were used: corrugated fiber of 15/0.3 mm and 22/0.3 mm, straight fiber of 13/0.3 mm and hooked-end fiber of 30/0.5 mm. It was found that corrugated and hooked-end fiber leads to an increase in compressive strength by 10–30 MPa when its content is increased from 1 to 3%. Straight fiber has no noticeable effect on the mechanical properties of UHPFRC. Empirical equations for predicting the compressive strength of UHPFRC depending on the strength of concrete matrix, geometric dimensions and content of dispersed reinforcement for compositions with corrugated and hooked-end fibers have been obtained. It is found that increasing the volume content of aggregate in the concrete matrix composition from 0.2 to 0.4 m3/m3 leads to an increase in the strength of UHPFRC. The strength of specimens with corrugated fiber increased by 5.3–13.3 MPa, with hooked-end fiber – by 14–19.3 MPa, with straight fiber – 5–7 MPa. It is also noted that the most intensive growth of mechanical characteristics due to the increase in the aggregate volume content in the composition is observed at a higher percentage of fiber volume fraction.
V.G. SOLOVIEV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it. ),
E.V. MATIUSHIN, Lecturer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
L.I. EFISHOV, Lecturer (This email address is being protected from spambots. You need JavaScript enabled to view it. )

National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Bajaber M.A., Hakeem I.Y. UHPC evolution, development, and utilization in construction: a review. Journal of Materials Research and Technology. 2021. Vol. 10, pp. 1058–1074. https://doi.org/10.1016/j.jmrt.2020.12.051
2. Azmee N.M., Shafiq N. Ultra-high performance concrete: from fundamental to applications. Case Studies in Construction Materials. 2018. Vol. 9. e00197 https://doi.org/10.1016/j.cscm.2018.e00197
3. Sharma R., Jang J.G., Bansal P.P. A comprehensive review on effects of mineral admixtures and fibers on engineering properties of ultra-high-performance concrete. Journal of Building Engineering. 2022. Vol. 45. 103314. https://doi.org/10.1016/j.jobe.2021.103314
4. Benson S.D.P., Karihaloo B.L. CARDIFRC® – development and mechanical properties. Part III: Uniaxial tensile response and other mechanical properties. Magazine of Concrete Research. 2005. Vol. 57, pp. 433–443. https://doi.org/10.1680/macr.2005.57.8.433
5. Yang J., Chen B., Nuti C. Influence of steel fiber on compressive properties of ultra-high performance fiber-reinforced concrete. Construction and Building Materials. 2021. Vol. 302. 124104. https://doi.org/10.1016/j.conbuildmat.2021.124104
6. Savino V., Lanzoni L., Tarantino A.M., Viviani M. An extended model to predict the compressive, tensile and flexural strengths of HPFRCs and UHPFRCs: Definition and experimental validation. Composites Part B: Engineering. 2019. Vol. 163, pp. 681–689. https://doi.org/10.1016/j.compositesb.2018.12.113
7. Yang J., Chen B., Wu X., Xu G. Quantitative analysis of steel fibers on UHPFRC uniaxial tensile behavior using X-CT and UTT. Construction and Building Materials. 2023. Vol. 368. 130349. https://doi.org/10.1016/j.conbuildmat.2023.130349
8. Paschalis S., Lampropoulos A. Fiber content and curing time effect on the tensile characteristics of ultra high performance fiber reinforced concrete. Structural Concrete. 2017. Vol. 18, pp. 577–588. https://doi.org/10.1002/suco.201600075
9. Wille K., El-Tawil S., Naaman A.E. Properties of strain hardening ultra high performance fiber reinforced concrete (UHP-FRC) under direct tensile loading. Cement and Concrete Composites. 2014. Vol. 48, pp. 53–66. https://doi.org/10.1016/j.cemconcomp.2013.12.015
10. Yoo D.Y., Lee J.H., Yoon Y.S. Effect of fiber content on mechanical and fracture properties of ultra high performance fiber reinforced cementitious composites. Composite Structures. 2013. Vol. 106, pp. 742–753. https://doi.org/10.1016/j.compstruct.2013.07.033
11. Roy M., Hollmann C., Wille K. Influence of volume fraction and orientation of fibers on the pullout behavior of reinforcement bar embedded in ultra high performance concrete. Construction and Building Materials. 2017. Vol. 146, pp. 582–593. https://doi.org/10.1016/j.conbuildmat.2017.04.081
12. Pyo S., Wille K., El-Tawil S., Naaman A.E. Strain rate dependent properties of ultra high performance fiber reinforced concrete (UHP-FRC) under tension. Cement and Concrete Composites. 2015. Vol. 56, pp. 15–24. https://doi.org/10.1016/j.cemconcomp.2014.10.002
13. Xue J., Briseghella B., Huang F., Nuti C., Tabatabai H., Chen B. Review of ultra-high performance concrete and its application in bridge engineering. Construction and Building Materials. 2020. Vol. 260. 119844. https://doi.org/10.1016/j.conbuildmat.2020.119844
14. Jia J., Ren Z., Bai Y., Li J., Sun Y., Zhang Z., Zhang J. Tensile behavior of UHPC wet joints for precast bridge deck panels. Engineering Structures. 2023. Vol. 283. 115826. https://doi.org/10.1016/j.engstruct.2023.115826
15. Марченко М.С., Чилин И.А., Селютин Н.М. Опыт применения сверхвысокопрочного сталефибробетона в элементах усиления железобетонных конструкций // Вестник НИЦ «Строительство». 2021. Т. 30. № 3. С. 41–50.
15. Marchenko M.S., Chilin I.A., Selyutin N.M. Experience in using ultra-high-strength steel-fiber concrete in reinforcement elements of reinforced concrete structures. Vestnik NITs «Stroitel’stvo». 2021. Vol. 30. No. 3, pp. 41–50 (In Russian).
16. Mash J.A, Harries K.A., Rogers C. Repair of corroded steel bridge girder end regions using steel, concrete, UHPC and GFRP repair systems. Journal of Constructional Steel Research. 2023. Vol. 207. 107975. https://doi.org/10.1016/j.jcsr.2023.107975
17. Zhang H., Ji T., Lin X. Pullout behavior of steel fibers with different shapes from ultra-high performance concrete (UHPC) prepared with granite powder under different curing conditions. Construction and Building Materials. 2019. Vol. 211, pp. 688–702. https://doi.org/10.1016/j.conbuildmat.2019.03.274
18. Yoo D.Y., Kim S. Comparative pullout behavior of half-hooked and commercial steel fibers embedded in UHPC under static and impact loads. Cement and Concrete Composites. 2019. Vol. 97, pp. 89–106. https://doi.org/10.1016/j.cemconcomp.2018.12.023
19. Qi J., Wu Z., Ma Z.J., Wang J. Pullout behavior of straight and hooked-end steel fibers in UHPC matrix with various embedded angles. Construction and Building Materials. 2018. Vol. 191, pp. 764–774. https://doi.org/10.1016/j.conbuildmat.2018.10.067
20. Kang S.H. Kim J.J., Kim D.J., Chung Y.S. Effect of sand grain size and sand-to-cement ratio on the interfacial bond. Construction and Building Materials. 2013. Vol. 47, pp. 1421–1430. https://doi.org/10.1016/j.conbuildmat.2013.06.064
21. Соловьев В.Г., Матюшин Е.В., Ефишов Л.И. Влияние объемного содержания стальной фибры и заполнителя на свойства ультравысокофункциональных фибробетонов // Техника и технология силикатов. 2022. Т. 29. № 1. С. 16–26.
21. Solov’ev V.G., Matyushin E.V., Efishov L.I. The influence of the volumetric content of steel fiber and filler on the properties of ultra-high-functional fiber-reinforced concrete. Tekhnika i tekhnologiya silikatov. 2022. Vol. 29. No. 1, pp. 16–26. (In Russian).
22. Соловьев В.Г., Матюшин Е.В., Веселов В.К. Изучение влияния вида и объемного содержания заполнителя на свойства сверхвысокопрочного мелкозернистого бетона // Техника и технология силикатов. 2022. Т. 29. № 4. С. 317–325.
22. Soloviev V.G., Matyushin E.V., Veselov V.K. Study of the influence of the type and volumetric content of aggregate on the properties of ultra-high-strength fine-grained concrete. Tekhnika i tekhnologiya silikatov. 2022. Vol. 29. No. 4, pp. 317–325.
23. Soloviev V., Matiushin E., Mihailov V., Efishov L. Effect of mixture flowability on strength and fiber distribution of Ultra High-Performance Fiber Reinforced Concrete. E3S Web of Conferences. Vol. 410. DOI:10.1051/e3sconf/202341001012
24. Тамов М.М., Салиб М.И.Ф., Абуизеих Ю.К.И., Софьяников О.Д. Подбор составов и исследование прочностных характеристик самоуплотняющегося сверхвысокопрочного сталефибробетона // Известия высших учебных заведений. Строительство. 2022. № 4. С. 25–39.
24. Tamov M.M., Salib M.I.F., Abuizeikh Yu.K.I., Sofyanikov O.D. Selection of compositions and study of the strength characteristics of self-compacting ultra-high-strength steel fiber concrete. Izvestiya vysshikh uchebnykh zavedeniy. Stroitel’stvo. 2022. No. 4, pp. 25–39. (In Russian).
25. Чилин И.А. Влияние технологических факторов на свойства сверхвысокопрочного сталефибробетона // Вестник НИЦ «Строительство». 2020. Т. 27. № 4. С. 135–157.
25. Chilin I.A. The influence of technological factors on the properties of ultra-high-strength steel fiber concrete. Vestnik NITs «Stroitel’stvo». 2020. Vol. 27. No. 4, pp. 135–157. (In Russian).
26. Yu R., Spiesz P., Brouwers H.J.H. Mix design and properties assessment of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC). Cement and Concrete Research. 2014. Vol. 565, pp. 29–39. https://doi.org/10.1016/j.cemconres.2013.11.002
27. Song Q., Yu R., Shui Z., Rao S., Wang X., Sun M., Jiang C. Steel fibre content and interconnection induced electrochemical corrosion of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC). Cement and Concrete Composites. 2018. Vol. 94, pp. 191–200. https://doi.org/10.1016/j.cemconcomp.2018.09.010
28. Дорф В.А., Красновский Р.О., Капустин Д.Е., Горбунов И.А. Влияние характеристик фибры на кубиковую и призменную прочность сталефибробетона с цементно-песчаной матрицей // Бетон и железобетон. 2013. № 6. С. 6–9.
28. Dorf V.A., Krasnovsky R.O., Kapustin D.E., Gorbunov I.A. The influence of fiber characteristics on the cubic and prismatic strength of steel-fiber concrete with a cement-sand matrix. Beton i zhelezobeton. 2013. No. 6, pp. 6–9. (In Russian).
29. Arel H.S. Effects of curing type, silica fume fineness, and fiber length on the mechanical properties and impact resistance of UHPFRC. Results in Physics. 2016. Vol. 6, pp. 664–674. https://doi.org/10.1016/j.rinp.2016.09.016
30. Lagne-Kornbak D., Karihaloo B.L. Design of fiber-reinforced DSP mixes for minimum brittleness. Advanced Cement Based Materials. 1998. Vol. 7, pp. 89–101. https://doi.org/10.1016/S1065-7355(97)00057-6
31. Li V.C. A simplified micromechanical model of compressive strength of fiber-reinforced cementitious composites. Cement and Concrete Composites. 1992. Vol. 14, pp. 131–141. https://doi.org/10.1016/0958-9465(92)90006-H
32. Abrishambaf A., Pimentel M., Nunes S. Influence of fibre orientation on the tensile behaviour of ultra-high performance fibre reinforced cementitious composites. Cement and Concrete Research. 2017. Vol. 97, pp. 28–40. https://doi.org/10.1016/j.cemconres.2017.03.007

For citation: Soloviev V.G., Matiushin E.V., Efishov L.I. Influence of type and volume content of steel fiber on the compressive strength of ultra-high performance fiber reinforced concrete. Stroitel’nye Materialy [Construction Materials]. 2023. No. 11, pp. 20–27. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-819-11-20-27

https://www.traditionrolex.com/10