Log in

Investigation of the Production of Anhydrite from Technogeneous Gypsum and the Possibility of its Use in the Production of Filling Mixture (Backfill Blend) for the Conditions of the Talnakh Mines

Number of journal: 8-2023
Autors:

Kosov Ya.I.,
Rumyantsev D.V.,
Popov М.S.,
Trofimov А.V.,
Devochkin А.I.,
Tozik V.М.,
Kelexsaev А.V.

DOI: https://doi.org/10.31659/0585-430X-2023-816-8-26-34
УДК: 666.913

 

AbstractAbout AuthorsReferences
The results of studies on the development of a technology for the production of calcium sulfate anhydrite by roasting technogenic gypsum obtained from the neutralization of sulfuric acid during the disposal of sulfur-containing gases from the pyro-metallurgical processing of ores and concentrates of PJSC MMC Norilsk Nickel are presented. The granulometric, phase, and chemical compositions of technogenic gypsum and roasting products of technogenic secondary raw materials were studied in the temperature range from 600 to 1200оC. The moisture-absorbing capacity of gypsum and roasting products was analyzed. The possibilities of using the obtained anhydrite instead of natural raw materials in the technology of backfilling the mined-out area of the mine are shown. The results of tests of filling mixtures with the use of artificial anhydrite are presented.
Ya.I. KOSOV1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
D.V. RUMYANTSEV1, head of laboratory of pyrometallurgy;
М.S. POPOV1, Engineer;
А.V. TROFIMOV1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
А.I. DEVOCHKIN2, Deputy Director for Scientific and Technical Development;
V.М. TOZIK2, former chief engineer;
А.V. KELEXSAEV3, Candidate of Sciences (Engineering)

1 “Gipronickel Institute” LLC (11, Grazhdansky Avenue, St. Petersburg, 195220, Russian Federation)
2 “MMC “Norilsk Nickel” Polar Branch PJSC (15, 1st Krasnogvardeisky passage, Moscow, 123100, Russian Federation)
3 “MMC “Norilsk Nickel” Technical expert examination center PJSC (15, 1st Krasnogvardeisky passage, Moscow, 123100, Russian Federation)

1. Fedorchuk Yu.M., Pokholkov Yu.P., Tsygankova T.S., Mikheev V.N. The method of utilization and application of technogenic anhydrite obtained from waste sulfur-containing gases. Ekologiya i promyshlennost’ Rossii. 2012. No. 7, pp. 34–35. (In Russian). https://doi.org/10.18412/1816-0395-2012-7-34-35
2. Fedorchuk Yu.M. Evaluation of the influence of impurities on the properties of technogenic anhydrite. Stroitel’nye Materialy. [Construction Materials]. 2004. No. 3, pp. 56–57. (In Russian).
3. Gurevich B.I., Tyukavkina V.V. Utilization of sulfate wastes of sulfuric acid processing of metallurgical raw materials. Tsvetnye metally. 2012. No. 6, pp. 69–72. (In Russian).
4. Montyanova A.N., Trofimov A.V., Rumyantsev A.E., Vilchinsky V.B., Nagovitsin Yu.N. Experience and effectiveness of the use of plasticized stowing mixtures. Vestnik of the Nosov Magnitogorsk State Technical University. 2019. Vol. 17. No. 1, pp. 18–25. (In Russian).
5. Galtseva N.A., Buryanov A.F., Buldyzhova K.N., Solovyov V.G. The use of synthetic calcium sulfate anhydrite for the preparation of backfill mixtures. Stroitel’nye Materialy [Construction Materials]. 2015. No. 6, pp. 76–77. (In Russian).
6. Bondarenko S.A. Prospects for the use of anhydrite binder in the building materials industry. Materials of the 60th Anniversary Scientific Conference of SUSU. Chelyabinsk. 2008. (In Russian).
7. Ozerov S.S., Tsemekhman L.Sh., Tozik V.M. Pakhomov R.A. Investigation of the process of continuous conversion of sulfide copper-nickel materials with the production of “raw” copper. Tsvetnye metally. 2020. No. 12, pp. 70–76. (In Russian).
8. Krupnov L.V., Pakhomov R.A., Starykh R.V., Talanov V.A. Changes in the dynamics of the gas and dust flow in the flash smelting furnace of the Nadezhda Metallurgical Plant during the installation of a protective cap. Part 1. Model calculations. Tsvetnye metally. 2021. No. 10, pp. 63–80. (In Russian).
9. Kisel A.A., Guzanov P.S., Lytneva A.E., Gets O.A. Results of laboratory studies of filling mixtures using artificial components. Gornyy zhurnal. 2020. No. 6, pp. 69–75. (In Russian).

For citation: Kosov Ya.I., Rumyantsev D.V., Popov М.S., Trofimov А.V., Devochkin А.I., Tozik V.М., Kelexsaev А.V. Investigation of the Production of anhydrite from technogeneous gypsum and the possibility of its use in the production of filling mixture (backfill blend) for the conditions of the Talnakh mines. Stroitel’nye Materialy [Construction Materials]. 2023. No. 8, pp. 26–34. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-816-8-26-34

Influence of Activated Bentonite on the Properties of Alkaline Binders

Number of journal: 8-2023
Autors:

Murtazaev S.-A.Yu.,
Salamanova M.Sh.,
Gatsaev Z.Sh.

DOI: https://doi.org/10.31659/0585-430X-2023-816-8-18-24
УДК: 691.32

 

AbstractAbout AuthorsReferences
With the development of the building materials industry, significant efforts have been made to obtain high-strength and durable composites using mineral powders, nano-additives, superplasticizers based on polycarboxylate esters, etc., which significantly improve the properties and structure of concrete, thereby increasing the life cycle of structural elements of buildings and structures. Natural bentonite, otherwise called nanoclay, with a nominal size of microparticles of approximately 6-8 microns, consisting of bundles of plates, is a promising additive for obtaining an impermeable and durable concrete composite, which allows minimizing inconsistencies in the pore structure of cement stone. The analysis of the features of the use of bentonite of various modifications as a filler in binder compositions made it possible to note the positive effect of the influence of this material on the properties of cement stone. The present study is aimed at studying the effect of nanoclay on the structure and properties of alkaline binders “aspiration dust–bentonite–Na2O∙SiO2” activated with both an alkaline aggregator and modified bentonite. The conducted studies made it possible to fully evaluate the effect of activated and organically modified bentonite additives in the composition of the binder on the processes of formation of the structure and properties of concrete stone. The organomodification of bentonite with the cationic additive alkyldimethylbenzylammonium chloride contributed to the creation of a dense packing of the composite, moreover, with the effect of hydrophobization, which had a positive effect on the properties of concrete. The obtained patterns of structure formation and the dependence of the properties of cement stone on the degree of saturation of the binder composition will make it possible to obtain high-quality products, determining the role and possibilities of alkaline activation of aluminosilicate powders in the construction segment.
S.-A.Yu. MURTAZAEV1,2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
M.Sh. SALAMANOVA1,2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
Z.Sh. GATSAEV1,2, Еngineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Grozny State oil technical university named after M.D. Millionshikov (100, Avenue Isaev, Grozny, 364021, Russian Federation)
2 Kh. Ibragimov Complex Institute of the Russian Academy of Sciences (21а, Staropromyslovskoe highway, Grozny, 364021, Russian Federation)

1. Basheer L., Kropp J., Cleland D. J. Assessment of the durability of concrete from its permeation properties: A review. Construction and Building Materials. 2001. Vol. 15. No. 2–3, рр. 93–103. https://doi.org/10.1016/S0950-0618(00)00058-1
2. Segad M., Jönsson B., Åkesson T., Cabane B. Ca/Na montmorillonite: Structure, forces and swelling properties. Langmuir. 2010. Vol. 26. No. 8, рр. 5782–5790. DOI: 10.1021/la9036293
3. Yang H., Long D., Zhenyu L. Effects of bentonite on pore structure and permeability of cement mortar. Construction and Building Materials. 2019. Vol. 224, рр. 276–283. https://doi.org/10.1016/j.conbuildmat.2019.07.073
4. Висханов С.С., Сапаев Х.Х., Слонов А.Л. Органо-модификация и исследование свойств природного бентонита месторождения Чеченской Республики // Известия Кабардино-Балкарского государственного университета. 2022. Т. 12. № 3. С. 47–51.
4. Viskhanov S.S., Sapaev Kh. Kh., Slonov A. L. Organomodification and study of the properties of natural bentonite from the deposit of the Chechen Republic. Izvestiya of the Kabardino-Balkarian State University. 2019. No. 7, рр. 32–40. (In Russian).
5. Патент № 2595125 C1. Российская Федерация, МПК C04B 33/04. Способ получения активированного порошкообразного бентонита: № 2015133276/03. Заявл. 07.08.2015. Опубл. 20.08.2016 / В.Х. Межидов, С.С. Висханов, А.Л. Даудова, А.С. Эльдерханов; заявитель Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Грозненский государственный нефтяной технический университет имени академика М.Д. Миллионщикова».
5. Patent No. 2595125 C1 Russian Federation, IPC C04B 33/04. Method for producing activated powdered bentonite: No. 2015133276/03: Appl. 08/07/2015. Publ. 08.20.2016 / V.Kh. Mezhidov, S.S. Viskhanov, A.L. Daudova, A.S. Elderkhanov; applicant Federal State Budgetary Educational Institution of Higher Professional Education «Grozny State Oil Technical University named after Academician M.D. Millionshchikov».
6. Муртазаев С.-А.Ю., Сайдумов М.С., Саламанова М.Ш., Гацаев З.Ш. Перспективы использования бентонитовых глин в составах бетонных композитов // Вестник Грозненского государственного нефтяного технического университета. Технические науки. 2020. Т. 4. № 22. С. 70–76.
6. Murtazaev S.-A.Yu., Saidumov M.S., Salamanova M.Sh., Gatsaev Z.Sh. Prospects for the use of bentonite clays in the composition of concrete composites. Vestnik of the Grozny State Oil Technical University. Technical science. 2020. Vol. 4. No. 22, рр. 70–76. (In Russian).
7. Саламанова М.Ш., Гацаев З.Ш., Сызранцев В.В. Исследование свойств щелочных вяжущих материалов с добавкой тонкодисперсного бентонита // Вестник Московского государственного строительного университета. 2022. Т. 17. № 8. С. 1017–1026.
7. Salamanova M.Sh., Gatsaev Z.Sh., Syzrantsev V.V. Investigation of the properties of alkaline binders with the addition of finely dispersed bentonite. Vestnik of the Moscow State University of Civil Engineering. 2022. Vol. 17. No. 8, рр. 1017–1026. (In Russian).
8. Chesnene Yu., Baltushnikas A., Lukosyute I. Influence of organoclay structural characteristics on properties and hydration of cement pastes. Construction and Building Materials. 2018. Vol. 166, рр. 59–71. https://doi.org/10.1016/j.conbuildmat.2018.01.099
9. Liu M., Hu Y., Lai Z. Influence of various bentonites on the mechanical properties and impermeability of cement mortars. Construction and Building Materials. 2020. Vol. 241. 118015. https://doi.org/10.1016/j.conbuildmat.2020.118015
10. Jlassi K., Krupa I., Chehimi M.M. Chapter 1 – Overview: clay preparation, properties, modification. Clay-Polymer Nanocomposites. Elsevier. 2017, рр. 1–28. https://doi.org/10.1016/B978-0-323-46153-5.00001-X
11. Kuo W.Y., Huang J.S., Lin C.H. Effects of organo-modified montmorillonite on strengths and permeability of cement mortars. Cement and Concrete Research. 2006. Vol. 36. No. 5, рр. 886–895. https://doi.org/10.1016/j.cemconres.2005.11.013
12. Li H.A., Gang Xiao H., Hing Ou J. Study on mechanical and pressure-sensitive properties of cement mortar with nanophase materials. Cement and Concrete Research. 2004. Vol. 34. No. 3, рр. 435–438. https://doi.org/10.1016/j.cemconres.2003.08.025
13. Liu L. Prediction of swelling pressures of different types of bentonite in dilute solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2013. Vol. 434, рр. 303–318. https://doi.org/10.1016/j.colsurfa.2013.05.068
14. Lothenbach B., Scrivener K., Hooton R.D. Supple-mentary cementitious materials. Cement and Concrete Research. 2011. Vol. 41. No. 12, рр. 1244–1256. https://doi.org/10.1016/j.cemconres.2010.12.001
15. Norhasri M.S.M., Hamidah M.S., Fadzil A.M. Applications of using nano material in concrete: A review. Construction and Building Materials. 2017. Vol. 133, рр. 91–97. https://doi.org/10.1016/j.conbuildmat.2016.12.005
16. Jiang J., Lu Z., Li J. Preparation and properties of nanopore-rich lightweight cement paste based on swelled bentonite. Construction and Building Materials. 2019. Vol. 199, рр. 72–81. https://doi.org/10.1016/j.conbuildmat.2018.11.278
17. Трофимова Ф.А., Демидова М.И., Лыгина Т.З. и др. Технология активации бентонитовых глин, их модификация и результаты применения органобентонитов в качестве перспективных термостабилизаторов эластомеров. Новые методы технологической минералогии при оценке руд металлов и промышленных минералов. Петрозаводск: Геологический институт КНЦ РАН, 2009. С. 121–126.
17. Trofimova F.A., Demidova M.I., Lygina T.Z. et al. Technology of activation of bentonite clays, their modification and the results of the use of organobentonites as promising thermal stabilizers for elastomers. New methods of technological mineralogy in the evaluation of metal and industrial ores minerals. Petrozavodsk: Geological Institute of KSC RAS. 2009, рр. 121–126. (In Russian).
18. Саламанова М.Ш., Муртазаев С.-А.Ю. Цементы щелочной активации: возможность снижения энергоемкости получения строительных композитов // Строительные материалы. 2019. № 7. С. 32–40. DOI: https://doi.org/10.31659/0585-430X-2019-772-7-32-40
18. Salamanova M.Sh., Murtazaev S.-A.Yu. Cements of alkaline activation the possibility of reducing the energy intensity of building composites. Stroitel’nye Materialy [Construction Materials]. 2019. No. 7, рр. 32–40. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-772-7-32-40
19. Муртазаев С.-А.Ю., Саламанова М.Ш. Перспективы использования термоактивированного сырья алюмосиликатной природы // Приволжский научный журнал. 2018. Т. 46. № 2. С. 65–70.
19. Murtazayev S-A.Yu., Salamanova M.Sh. Prospects of the use of thermoactivated raw material of alumosilicate nature. Privolzhskii nauchnyi zhurnal. 2018. Vol. 46. No. 2, рр. 65–70. (In Russian).
20. Саламанова М.Ш., Алиев С.А., Муртазаева Р.С.-А. Структура и свойства вяжущих щелочной активации с использованием цементной пыли // Вестник Дагестанского государственного технического университета. Технические науки. 2019. Т. 46. № 2. С. 148–158.
20. Salamanova M.Sh., Aliyev S.A., Murtazayev R.S-A. The structure and properties of binders alkaline activation using cement dust. Vestnik of the Dagestan State Technical University. Technical science. 2019. Vol. 46. No. 2, рр. 148–158. (In Russian).

For citation: Murtazaev S.-A.Yu., Salamanova M.Sh., Gatsaev Z.Sh. Influence of activated bentonite on the properties of alkaline binders. Stroitel’nye Materialy [Construction Materials]. 2023. No. 8, pp. 18–24. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-816-8-18-24[

Analysis of Russian Regulatory Documents Regulating the use and Development of Building Additive Technologies

Number of journal: 8-2023
Autors:

Slavcheva G.S.

DOI: https://doi.org/10.31659/0585-430X-2023-816-8-10-17
УДК: 624.51

 

AbstractAbout AuthorsReferences
An analysis of the current general construction and special standards is presented, from the point of view of their use for the development of building additive technologies (AT). The possibilities and limitations of the application of general construction standards in this area are considered. It is shown that the limitations in the application of existing standards of technical requirements and test methods are due to the fact that they do not take into account the layered structure and anisotropy of the properties of composites obtained by layer-by-layer 3D printing. The content is analyzed, shortcomings of the normative documents put into effect for building additive technologies are revealed. The directions for the development of the regulatory framework in the field of building AT are outlined. It is shown that the primary issues of regulation are related to the definition of requirements for the complex of technological characteristics of mixtures, parametric series of material properties, methods of testing and quality control; determination of requirements for the set of design resistances of layered composites, taking into account the anisotropy of their strength characteristics. To realize the potential of additive technologies, it is simultaneously necessary to solve the issues of design and calculation of bionic hollow 3D printed structures with a given bearing capacity. This will ensure the transition from traditional solid building structures to hollow ones, in which the material will be located only along the lines of acting stresses, and its volume will be no more than 10–20% of the structure volume.
G.S. SLAVCHEVA, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Voronezh State University of Architecture and Civil Engineering (84 20-letija Octjabrja Street, Voronezh, 394006, Russian Federation)

1. Rehman A.U., Kim J.H. 3D concrete printing: A systematic review of rheology, mix designs, mechanical, microstructural, and durability characteristics. Materials. 2021. Vol. 14. No. 14. DOI: 10.3390/ma14143800
2. Mechtcherine V., Bos F.P., Perrot A., Leal da Silva W.R., Nerella V.N., Fataei S., Wolfs R.J.M., Sonebi M., Roussel N. Extrusion-based additive manufacturing with cement-based materials – Production steps, processes, and their underlying physics: A review. Cement and Concrete Research. 2020. No. 132. 106037. DOI: 10.1016/j.cemconres.2020.106037
3. Perrot A., Pierre A., Nerella V.N., Wolfs R.J.M., Keita E., Nair S.A.O., Neithalath N., Roussel N., Mechtcherine V. From analytical methods to numerical simulations: A process engineering toolbox for 3D concrete printing. Cement and Concrete Composites. 2021. No. 122. 104164. DOI: 10.1016/j.cemconcomp.2021.104164
4. Liu Z., Li M., Weng Y., Wong T. N., Tan M. J., Mixture Design Approach to optimize the rheological properties of the material used in 3D cementitious material printing. Construction and Building Materials. 2018. Vol. 198, pp. 245–255. DOI: 10.1016/j.conbuildmat.2018.11.252
5. Panda B., Mohamed N.A. N., Paul S.C., Singh G.V.P.B., Tan M.J., Šavija B. The effect of material fresh properties and process parameters on buildability and interlayer adhesion of 3D printed concrete. Materials. 2019. Vol. 12. No. 13. DOI: 10.3390/ma12132149
6. Roussel N., Bessaies-Bey H., Kawashima S., Marchon D., Vasilic K., Wolfs R. Recent advances on yield stress and elasticity of fresh cement-based materials. Cement and Concrete Research. 2019. No. 124. 105798. DOI: 10.1016/j.cemconres.2019.105798
7. Song H., Li X. An overview on the rheology, mechanical properties, durability, 3D printing, and microstructural performance of nanomaterials in cementitious composites. Materials. Vol. 14. No. 11. DOI: 10.3390/ma14112950
8. Le T.T., Austin S.A., Lim S., Buswell R.A., Law R., Gibb A.G.F., Thorpe T. Hardened properties of high-performance printing concrete. Cement and Concrete Research. 2012. No. 42 (3), pp. 558–566. DOI: 10.1016/j.cemconres.2011.12.003
9. Wang L., Jiang H., Li Z., and Ma G. Mechanical behaviors of 3D printed lightweight concrete structure with hollow section. Archives of Civil and Mechanical Engineering. Vol. 20. No. 1. DOI: 10.1007/s43452-020-00017-1
10. Chen Y., Jansen K., Zhang H., Romero Rodriguez C., Gan Y., Çopuroğlu O., Schlangen E. Effect of printing parameters on interlayer bond strength of 3D printed limestone-calcined clay-based cementitious materials: An experimental and numerical study. Construction and Building Materials. 2020. No. 262. 120094. DOI: 10.1016/j.conbuildmat.2020.120094
11. Marchment T., Sanjayan J., Xia M. Method of enhancing interlayer bond strength in construction scale 3D printing with mortar by effective bond area amplification. Materials & Design. 2019. No. 169. 107684. DOI: 10.1016/j.matdes.2019.107684
12. Keita E., Bessaies-Bey H., Zuo W., Belin,P., Roussel N. Weak bond strength between successive layers in extrusion-based additive manufacturing: measurement and physical origin. Cement and Concrete Research. 2019. No. 123. 105787. DOI: 10.1016/j.cemconres.2019.105787
13. Zareiyan B., Khoshnevis B. Effects of interlocking on interlayer adhesion and strength of structures in 3D printing of concrete. Automation in Construction. 2017. No. 83, pp. 212–221. DOI: 10.1016/j.autcon.2017.08.019
14. Panda B., Chandra Paul S., Jen Tan M. Anisotropic mechanical performance of 3D printed fiber reinforced sustainable construction material. Materials Letters. 2017. Vol. 209, pp. 146–149. DOI: 10.1016/j.matlet.2017.07.123
15. Panda B., Paul S.C., Mohamed N.A.N., Tay Y.W.D., Tan M.J. Measurement of tensile bond strength of 3D printed geopolymer mortar. Measurement (Lond). 2017. Vol. 113, pp. 108–116. DOI: 10.1016/j.measurement.2017.08.051
16. Paul S.C., Tay Y.W.D., Panda B., Tan M.J. Fresh and hardened properties of 3D printable cementitious materials for building and construction. Archives of Civil and Mechanical Engineering. 2018. Vol. 18. No. 1, pp. 311–319. DOI: 10.1016/j.acme.2017.02.008
17. Ducoulombier N., Demont L., Chateau C., Bornert M., Caron J.F. Additive manufacturing of anisotropic concrete: A flow-based pultrusion of continuous fibers in a cementitious matrix. Procedia Manufacturing. 2020. No. 47, pp. 1070–1077. DOI: 10.1016/j.promfg.2020.04.117

For citation: Slavcheva G.S. Analysis of the Russian regulatory documentation regulating the use and development of construction additive technologies. Stroitel’nye Materialy [Construction Materials]. 2023. No. 8, pp. 10–17. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-816-8-10-17

Decrease in the Quality of Construction Due to the Imperfection of the Regulatory Framework

Number of journal: 8-2023
Autors:

Sebelev I.M.,
Smirnova O.E.,
Soloveva O.N.,
Shakhov S.A.

DOI: https://doi.org/10.31659/0585-430X-2023-816-8-4-9
УДК: 624.51

 

AbstractAbout AuthorsReferences
The problem of quality control and evaluation in construction is becoming particularly relevant today, since the efficiency of quality management services in the construction complex is not high enough. At all stages of the life cycle of construction products, the main goal of the participants in the construction process is to create a safe and reliable capital construction facility, and all actions should be aimed at optimizing business processes and reducing risks at all stages of the life cycle of buildings, etc. The current regulatory requirements for quality control in construction, in particular for concrete and concrete mix, their indicators, permissible deviations and stability of quality indicators were investigated. The absence of the use of statistical tools to ensure the stability of the production of concrete mixtures, control of quality indicators of products and processes producing products has been revealed. The requirements for cement quality indicators, in particular the activity and strength of cement, were also analyzed. It was found that in the latest versions of regulatory documents there are no methods for controlling the strength and uniformity of concrete to achieve the constancy of the production process and the indicators adopted for the concrete grade. Operational control is carried out by filling out electronic forms provided for in the control plan for each type of work and participant in the construction process, including on the basis of operational quality control schemes of technological documentation of construction/ But, the regulatory document does not specify who develops the control plan, questionnaires and in what volume, etc. This must be stipulated in the contract for the performance of work. As a result, the availability of standards approved and applied on a voluntary basis for the manufacture and use of construction materials, the production of construction and installation works due to existing shortcomings does not fully guarantee the creation of a reliable and safe capital construction facility.
I.M. SEBELEV1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
O.E. SMIRNOVA1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
O.N. SOLOVEVA1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
S.A. SHAKHOV2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Novosibirsk state university of architecture and civil engineering (Sibstrin) (159, Turgeneva Street, Novosibirsk, 630008, Russian Federation)
2 Siberian State University of Communications (191, Dusi Kovalchuk Street, Novosibirsk, 630049, Russian Federation)

1. Lapidus A.A., Makarov A.N. Application of a risk-based approach when performing the functions of construction control of a technical customer. Vestnik MUCI. 2020. Vol. 17, Iss. 2, pp. 232–241. DOI: https://doi.org/10.22227/1997-0935.2022.2.232-241 (In Russian).
2. Lapidus A.A., Motylev R.V., Sokolnikov V.V. Development of a methodology underlying a deterministic model of construction work arrangements on the basis of the concept of an organizational and technological platform for construction. Vestnik MUCI. 2023; 18(1):116-131. (In Russian). DOI: 10.22227/1997- 0935.2023.1.116-131
3. Zhou H., Zhao Y., Shen Q., Yang L., Cai H. Risk assessment and management via multi-source information fusion for undersea tunnel construction. Automation in Construction. 2020. Vol. 111, pp. 103050. DOI: 10.1016/j.autcon.2019.103050
4. Wang T., Gao S., Li X., Ning X. A meta-network-based risk evaluation and control method for industrialized building construction projects. Journal of Cleaner Production. 2018. Vol. 205, pp. 552–564. DOI: 10.1016/j.jclepro.2018.09.127
5. Belan V.I., Kudyakov A.I., Fischer G.B. Quality control of building materials. Improving the quality and efficiency of building and special materials. Collection of the National Scientific and Technical Conference with international participation (Novosibirsk, February 18–22, 2019). Novosibirsk. 2019, pp. 12–19. (In Russian).
6. Sebelev I.M., Karasev N.P., Smirnova O.E. Com-parison of the assessment of classes on the strength of cement and concrete. Izvestiya vysshikh uchebnykh zavedenii. Stroitel’stvo. 2020. No. 5 (737), pp. 78–85. DOI: https://doi.org/10.32683/0536-1052-2020-737-5-78-85 (In Russian).
7. Podmazova S.A. Ensuring the quality of concrete of monolithic structures in terms of strength, frost resistance and water resistance. GUP «NIIMosstroi» Nauka – Moskovskomu stroitel’stvu. Sbornik tekhnicheskoi informatsii. 2007. No. 3. (In Russian).
8. Podmazova S.A., Sokolov B.S., Glushkova M.V., Dmitriev N.S. Issues of application in construction of Russian standards identical to European ones. Vestnik NIC Stroitel’stvo. 2020. No. 4 (27), pp. 84–96. (In Russian).
9. Malinina L.A. On the issue of evaluating the effectiveness of cements for heat treatment of concrete. Beton i Zhelezobeton. 2007. No. 4, pp. 9–10. (In Russian).
10. Podmazova S.A., Glushkova M.V. On the need for incoming control of concrete at the construction site. Vestnik NIC Stroitel’stvo. 2019. No. 3, pp. 85–89. (In Russian).

For citation: Sebelev I.M., Smirnova O.E., Soloveva O.N., Shakhov S.A. Decrease in the quality of construction due to the imperfection of the regulatory framework. Stroitel’nye Materialy [Construction Materials]. 2023. No. 8, pp. 4–9. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-816-8-4-9

Numerical Solution of the Filtration Problem with Three Types of Particles

Number of journal: 7-2023
Autors:

Safina G.L.

DOI: https://doi.org/10.31659/0585-430X-2023-815-7-73-78
УДК: 625.861

 

AbstractAbout AuthorsReferences
Road strengthening consists of increasing their strength and stability by reinforcing the construction components. This process can involve a variety of methods and techniques. One such method is the injection method of soil stabilization, in which special compositions are injected under the road bed to increase its strength and resistance to breakage. This method is used to strengthen roads that are deformed or cracked, resulting in increased wear and reduced performance. The study of suspension filtration during the strengthening of soils is the important problem to determine the effectiveness and efficiency of the technology used. Filtration of a suspension of suspended particles in a porous medium is a process whereby the particles of the suspension penetrate through the pores in the porous medium, causing them to be trapped on the surface of the pores, thereby forming a deposit. This paper considers the motion of a fluid containing three kinds of particles that differ in size from each other. It is assumed that the deposition of larger particles is more likely than that of smaller particles. Concentrations of retained particles for each type of particles and concentrations of total deposit as a function of problem parameters are investigated, their graphs for different values of time are plotted. It is shown that concentrations of the largest retained particles are always monotonically decreasing functions. Concentrations of smallest retained particles are always monotonically decreasing functions up to a certain point of time, then they become non-monotonous, having a maximum point, and concentrations of medium retained particles can be both monotonous and non-monotonous.
G.L. SAFINA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Moscow State University of Civil Engineering Branch in Mytishchi (50, Olympic Avenu, Mytishchi, Moscow Region, 141060)

1. Pankov V.Yu. New procedure to calculate the load on the roadway. World of Transport and Transportation. 2022. Vol. 20. Iss. 1 (98), pp. 81–95. DOI: https://doi.org/10.30932/1992-3252-2022-20-1-10
2. Корочкин А.В. Анализ силового воздействия транспортных средств на дорожную одежду // Строительная механика инженерных конструкций и сооружений. 2015. № 6. С. 40–46.
2. Korochkin A.V. Analysis of the force influence of transport vehicles on the road clothing. Stroitel’naja mehanika inzhenernyh konstrukcij i sooruzhenij. 2015. No. 6, pp. 40–46. (In Russian)
3. Алексеев С.В., Симонов Д.Л., Катикова А.С. Воздействие природных факторов на состояние дорог в различных регионах России // Инновационные транспортные системы и технологии. 2022. № 4. С. 14–30. DOI: https://doi.org/10.17816/transsyst20228414-30
3. Alekseev S.V., Simonov D.L., Katikova A.S. The impact of natural factors on the condition of roads in different regions of Russia. Innovacionnye transportnye sistemy i tehnologii. 2022. No. 4, pp. 14–30. (In Russian). DOI: https://doi.org/10.17816/transsyst20228414-30
4. Baykal T., Ergezer F., Terzi S. Prediction of highway pavement surface condition based on meteorological parameters using Deep Learning Method. Journal of Intelligent Transportation Systems and Applications. 2022. Vol. 5. Iss. 2, pp. 81–88. DOI: https://doi.org/10.51513/jitsa.1152377
5. Barros R., Yasarer H., Sultana S. Performance evaluation of composite pavements on Mississippi highways via machine learning. Eleventh International Conference on the Bearing Capacity of Roads, Railways and Airfields. 2022. Vol. 4, pp. 527–534. DOI: https://doi.org/10.1201/9781003222897-49
6. Barros R., Yasarer H., Najjar Y.M. Mechanical and physical properties of recycled Concrete aggregates for road base materials. Journal of Physics Conference Series. 2021. Vol. 1973 (1). 012236. https://doi.org/10.1088/1742-6596/1973/1/012236
7. Loktev A., Korolev V., Ulanov I., Savulidi M., Klekovkina N., Kuznetsov A. Theoretical approaches for modeling and calculating the consolidation of a composite weak bottom. Transportation Research Procedia. 2022. Vol. 63 (4), pp. 938–945. DOI: https://doi.org/10.1016/j.trpro.2022.06.092
8. Salnyi I., Stepanov M., Karaulov A. Experience in strengthening foundations and foundations on technogenic soils. E3S Web of Conferences. 2022. Vol. 363 (5). 02004. DOI: https://doi.org/10.1051/e3sconf/202236302004
9. Han P., Zhang C., He X., Wang X., Qiao Y. A. DEM fluid–solid coupling method for progressive failure simulation of roadways in a fault structure area with water-rich roofs. Geomechanics and Geophysics for Geo-Energy and Geo-Resources. 2022. Vol. 8. 194. DOI: https://doi.org/10.1007/s40948-022-00517-9
10. Christodoulou D., Lokkas P., Droudakis A., Spiliotis X., Kasiteropoulou D., Alamanis N. The development of practice in permeation grouting by using fine-grained cement suspensions. Asian Journal of Engineering and Technology. 2021. Vol. 9. Iss. 6, pp. 92–101. DOI: https://doi.org/10.24203/ajet.v9i6.6846
11. Smirnova O.M., Glazev M.V., Komolov V.V., Vilenskii M.Yu. Micro-cement for injection consolidation of base soils. International Journal of Innovative Technology and Exploring Engineering. 2019. Vol. 9 (2), pp. 2173–2177. DOI: https://doi.org/10.35940/ijitee.A6142.129219
12. Christodoulou D. Evaluation of cement gradation effect on the injectability of cement suspensions for soil grouting – a review. Austin Environ Science. 2022. Vol. 7 (3). 1081.
13. Кузьмина Л.В., Осипов Ю.В., Шайдуллина А.М. Динамика частиц в пористой среде // Промышленное и гражданское строительство. 2021. № 10. С. 72–77. DOI: https://doi.org/10.33622/0869-7019.2021.10.72-77
13. Kuz’mina L.V., Osipov Yu.V., Shajdullina A.M. Particle dynamics in a porous medium. Promyshlennoe i grazhdanskoe stroitel’stvo. 2021. No. 10, pp. 72–77. (In Russian). DOI: https://doi.org/10.33622/0869-7019.2021.10.72-77
14. Safina G.L. Filtration problem with nonlinear filtration and concentration functions. International Journal for Computational Civil and Structural Engineering. 2022. Vol. 18 (1), pp. 129–140. DOI: https://doi.org/10.22337/2587-9618-2022-18-1-129-140
15. Кузьмина Л.В., Осипов Ю.В., Соседка М.Г. Фильтрация в пористой среде с двумя механизмами захвата // Промышленное и гражданское строительство. 2022. № 10. С. 48–53. DOI: https://doi.org/10.33622/0869-7019.2022.07.48-53
15. Kuz’mina L.V., Osipov Yu.V., Sosedka M.G. Filtration in a porous medium with two capture mechanisms. Promyshlennoe i grazhdanskoe stroitel’stvo. 2022. No. 10, pp. 48–53. (In Russian). DOI: https://doi.org/10.33622/0869-7019.2022.07.48-53
16. Сафина Г.Л. Расчет профилей осадка двухчастичной суспензии в пористой среде // Промышленное и гражданское строительство. 2020. № 11. С. 110–114. DOI: https://doi.org/10.33622/0869-7019.2020.11.110-114
16. Safina G.L. Calculation of deposit profiles of a two-particle suspension in a porous medium. Promyshlennoe i grazhdanskoe stroitel’stvo. 2020. No. 11, pp. 110–114. (In Russian). DOI: https://doi.org/10.33622/0869-7019.2020.11.110-114
17. Сафина Г.Л. Моделирование фильтрации двухчастичной суспензии в пористой среде // Промышленное и гражданское строительство. 2022. № 2. С. 31–35. DOI: https://doi.org/10.33622/0869-7019.2022.02.31-35
17. Safina G.L. Modelling of filtration of a two-particle suspension in a porous medium. Promyshlennoe i grazhdanskoe stroitel’stvo. 2022. No. 2, pp. 31–35. (In Russian). DOI: https://doi.org/10.33622/0869-7019.2022.02.31-35
18. Kuzmina L., Osipov Y., Astakhov M.D. Filtration of 2-particles suspension in a porous medium. Journal of Physics: Conference Series. 2021. Vol. 1926. 012001. DOI: https://doi.org/10.1088/1742-6596/1926/1/012001
19. You Z., Osipov Y., Bedrikovetsky P., Kuzmina L. Asymptotic model for deep bed filtration. Chemical Engineering Journal. 2014. Vol. 258, pp. 374–385. DOI: https://doi.org/10.1016/j.cej.2014.07.051
20. Kuzmina L.I., Osipov Y.V., Astachov M.D. Bidisperse fltration problem with non-monotonic retention profles. Annali di Matematica Pura ed Applicata (1923). 2022. Vol. 201, pp. 2943–2964. DOI: https://doi.org/10.1007/s10231-022-01227-5

For citation: Safina G.L. Numerical solution of the filtration problem with three types of particles. Stroitel’nye Materialy [Construction Materials]. 2023. No. 7, pp. 73–78. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-815-7-73-78

Features of Bitumen Changes in the Recovery Process

Number of journal: 7-2023
Autors:

Khokhlova N.V.,
Shestakov N.I.,
Fedosov S.V.,
Titova I.I.,
Syachinova N.V.

DOI: https://doi.org/10.31659/0585-430X-2023-815-7-67-72
УДК: 625.7

 

AbstractAbout AuthorsReferences
The needs of sustainable development form an urgent request for the effective disposal of construction waste, however, if the issues of the use of mineral materials and metal are studied in sufficient detail, then the processing of composite bitumen-containing waste requires additional study. The article deals with the issues of changing the composition and structure of bitumens extracted from rolled roofing materials using various organic solvents. Among the solvents considered are: technical kerosene, trichlorethylene, chloroform and carbon tetrachloride. The composition and structure were studied using scanning electron microscopy, IR spectroscopy, and simultaneous thermal analysis. Based on the results obtained, the activation energy was calculated for various compositions of the extracted bitumen. It has been established that according to the results of the chemical composition and IR spectroscopy, the closest composition of the extracted bitumen to the control sample is the bitumen extracted using trichlorethylene. According to the results of TGA and DSC processing, it was found that the most thermally stable bitumen sample extracted using trichlorethylene is the less stable bitumen extracted using kerosene.
N.V. KHOKHLOVA1, Postgraduate Student (This email address is being protected from spambots. You need JavaScript enabled to view it.),
N.I. SHESTAKOV1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
S.V. FEDOSOV1, Doctor of Science (Engineering), Academician of RAACS (This email address is being protected from spambots. You need JavaScript enabled to view it.);
I.I. TITOVA2, Candidate of Sciences (Engineering), Head of the Progress Collective Use Center (This email address is being protected from spambots. You need JavaScript enabled to view it.),
N.V. SYACHINOVA2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 National Research Moscow State University of Civil Engineering (26, Yaroslavskoye Highway, Moscow, 129337, Russian Federation)
2 East Siberian State University of Technology and Management (40B/1, Klyuchevskaya Street, Ulan-Ude, 670013, Russian Federation)

1. Korotkova L.N., Ivanova O.V., Khalikov R.M., Vorobyev N.A. Recuperative use of bitumen-polymer waste of soft roofs in the construction of highways. The Scientific Heritage. 2021. No. 72–1 (72), pp. 71–75. (In Russian).
2. Netfullova L.Sh., Murafa A.V., Makarov D.B., Khozin V.G., Rakhmatullina A.P. Bitumen emulsions based on a mixture of anionactive surfactants for roofing and waterproofing purposes. Stroitel’nye Materialy [Construction Materials]. 2005. No. 3, pp. 52–54. (In Russian).
3. Sangarieva E.N., Musostov Sh.I., Ibragimov A.A. The relationship of the dispersed structure and properties of petroleum bitumen obtained by various technologies. Vestnik magistratury. 2021. No. 4–1 (115), pp. 22–28. (In Russian).
4. Sukhovilo N.P., Tkachev S.M. Features of the structure and properties of road bitumen obtained by various technologies. Vestnik of Polotsk State University. Series B. Industry. Applied sciences. 2016. No. 3, pp. 153–159. (In Russian).
5. Rudakov E.O., Urkhanova L.A., Shadrinov N.V., Borisova A.A. Structural and morphological analysis of bituminous binder modified with colloidal additive. Stroitel’nye Materialy [Construction Materials]. 2019. No. 11, pp. 26–29. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-776-11-26-29
6. Vysotskaya M.A., Shekhovtsova S.Yu., Obukhov A.G., Esipova Yu.Yu. Resistance of modified binders based on oxidized and residual bitumen to thermal degradation Vestnik of the Siberian State Automobile and Road University. 2017. No. 6 (58), pp. 140–147. (In Russian).
7. Kleshnin N.A. Investigation of the structure and properties of a bitumen-polymer binder with the addition of an adhesive additive. Scientific Research Center “Technical Innovations”. 2022. No. 9–1, pp. 548–551. (In Russian).
8. Ondar S. A., Soldup Sh. N., Mikhailenko M. A., Tasool L. H. Investigation of products of supercritical extraction of coal from the Chadan deposit by methods of thermogravimetry and IR spectroscopy. Khimiya tverdogo topliva. 2019. No. 2, pp. 10–14. (In Russian).
9. Ermolaev D.V., Mingaleeva G.R. Determination of thermodynamic properties of bitumen by modeling their structure. Trudy Akademenergo. 2008. No. 4, pp. 77–87. (In Russian).
10. Israilova Z.S., Strakhova N.A. The influence of thermal effects on the structure and properties of petroleum bitumen. Estestvennye i tekhnicheskie nauki. 2012. No. 1 (57), pp. 385–386.
11. Berg G.G. Vvedenie v termografiyu [Introduction to thermography]. Moscow: Nauka. 1969. 396 p.
12. Teitelbaum B.Ya. Termomekhanicheskii analiz polimerov [Thermomechanical analysis of polymers] Moscow: Nauka. 1979. 236 p.
13. Wendlandt U. Termicheskie metody analiza [Thermal methods of analysis] Moscow: Mir. 1978. 528 p.
14. Shestak Ya. Teoriya termicheskogo analiza: Fiziko-khimicheskie svoistva tverdykh neorganicheskikh veshchestv [Theory of thermal analysis: Physico-chemical properties of solid inorganic substances]. Moscow: Mir. 1987. 456 p.
15. Kutyanin G.N., Ostashenko A.S., Study of collagen heat resistance by differential thermal and thermographic methods. Reports of the Academy of Sciences of the USSR. 1971. No. 4.
16. Kondratiev V.N., Frankevich E.L. Energii razryva khimicheskikh svyazey. Potentsialy ionizatsii i srodstvo k elektronu. Spravochnik. [The energy of breaking chemical bonds. Ionization potentials and electron affinity. Directory]. Moscow: Publishing House of the Academy of Sciences of the USSR. 1962. 216 p.

For citation: Khokhlova N.V., Shestakov N.I., Fedosov S.V., Titova I.I., Syachinova N.V. Features of bitumen changes in the recovery process. Stroitel’nye Materialy [Construction Materials]. 2023. No. 7, pp. 67–72. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-815-7-67-72

Modification Specifics of Perlite-Based Geopolymer as Eco-Friendly Cement

Number of journal: 7-2023
Autors:

Kozhukhova N.I.

DOI: https://doi.org/10.31659/0585-430X-2023-815-7-60-66
УДК: 666.9.022.6

 

AbstractAbout AuthorsReferences
The increase in the range of raw materials for geopolymer synthesis makes it possible to expand the potential areas of their practical application due to the availability of raw materials, as well as by identifying new properties of this group of free-of-cement eco-friendly or “green” materials. The effect of the following two factors: the type of mineral modifying component and the method of using an alkaline activating agent on some characteristics of a perlite geopolymer binder, such as water demand (W/T ratio), average density, and compressive strength, was studied in the article. The following materials were used as mineral modifying components: Portland cement, kaolinite, metakaolin, and citrogypsum. It has been found that a 24-hour aged alkaline solution of NaOH significantly reduces the water demand of the geopolymer by up to 46% compared to a freshly prepared alkali solution. The highest water demand is typical for mixes using mineral modifiers such as Portland cement, kaolinite, and metakaolin. It was found that the type of mineral modifier and the method of using an alkaline activating agent do not have a significant effect on the average strength of the geopolymer framework. Experimental studies have shown that the introduction of such modifiers as Portland cement and kaolinite into the perlite geopolymer matrix leads to its strengthening by 0.32–2 times.
N.I. KOZHUKHOVA1,2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Belgorod State Technological University named after V.G. Shukhov (46, Kostukov Street, Belgorod, 308012, Russian Federation)
2 Moscow Polytechnic University (38, Bolshaya Semyonovskaya Street, Moscow, Russian Federation)

1. Das O., Babu K., Shanmugam V., Sykam K., Tebyetekerwa M., Esmaeely Neisiany R., Försth M., Sas G., Gonzalez-Libreros J., Capezza A.J., Hedenqvist M.S., Berto F., Ramakrishna S. Natural and industrial wastes for sustainable and renewable polymer composites. Renewable and Sustainable Energy Reviews. 2022. Vol. 158. 112054. DOI: 10.1016/j.rser.2021.112054
2. Delzell E. Wood dust and formaldehyde. Lyon: IARC, 1995. 423 p. DOI: 10.1016/s0003-2670(96)90555-3
3. Das O., Neisiany R.E., Capezza A.J., Hedenqvist M.S., Försth M., Xu Q., et al. The need for fully bio-based facemasks to counter coronavirus outbreaks: a perspective. Sci. Total Environ. 2020. Vol. 736. 139611. DOI: 10.1016/j.scitotenv.2020.139611
4. Arumugaprabu V., Johnson R.D.J., Vigneshwaran S. Mechanical performance of nanocomposites and biomass-based composite materials and its applications: an overview. Handbook of nanomaterials and nanocomposites for energy and environmental applications. Cham: Springer International Publishing, Cham. 2020, pp. 1–14. DOI: 10.1007/978-3-030-11155-7_123-1
5. Алфимова Н.И., Пириева С.Ю., Елистраткин М.Ю., Кожухова Н.И., Титенко А.А. Обзорный анализ способов получения вяжущих из гипсосодержащих отходов промышленных производств // Вестник БГТУ им. В.Г. Шухова. 2020. № 11. С. 8–23. DOI: 10.34031/2071-7318-2020-5-11-8-23
5. Alfimova N.I., Pirieva S.Yu., Elistratkin M.Yu., Kozhukhova N.I., Titenko A.A. Overview analysis of methods for obtaining binders from gypsum-containing industrial waste. Vestnik BSTU named after V.G. Shukhov. 2020. No. 11, pp. 8–23. (In Russian). DOI: 10.34031/2071-7318-2020-5-11-8-23
6. Wu Q., Laixing L., Shubo Ch., Tahir I., Xianbin X., Changqing D. Efficient strategy of utilizing alkaline liquid waste boosting biomass chemical looping gasification to produce hydrogen. Fuel Processing Technology. 2021. Vol. 217. 106818. DOI: 10.1016/j.fuproc.2021.106818
7. Sumit H. Dhawane, Eslam G. Al-Sakkari, Deepak Yadav Cost-effective viable solutions for existing technologies. Hazardous Waste Management. 2022, pp. 381–395. DOI: 10.1016/B978-0-12-824344-2.00033-1
8. Urase T., Okumura H., Panyosaranya S., Inamura A. Emission of volatile organic compounds from solid waste disposal sites and importance of heat management. Waste Manag. Res. 2008. Vol. 26. № 6. P. 534–538. DOI: 10.1177/0734242X07084321
9. Sano Y., Williams S. Fluxes of mantle and subducted carbon along convergent plate boundaries. Geophys. Res. Lett. 1996. Vol. 23, pp. 2749–2752. DOI: 10.1029/96GL02260
10. Fomina E.V., Kozhukhova N.I., Sverguzova S.V., Fomin A.E. Application of mathematical model methods for optimization tasks in construction materials technology. Journal of Physics: Conference Series. 2018. Vol. 1015 (5). 052015. DOI: 10.1088/1742-6596/1015/5/052015
11. Bhardwaj M. The Advantages and disadvantages of green technology. Journal of Basic and Applied Engineering Research. 2021, pp. 1957–1960. https://www.researchgate.net/publication/357269773_The_Advantages_and_Disadvantages_of_Green_Technology
12. Mohammed S. Imbabi, Collette Carrigan, Sean McKenna. Trends and developments in green cement and concrete technology. International Journal of Sustainable Built Environment. 2012. Vol. 1 (2), pp. 194–216 DOI: 10.1016/j.ijsbe.2013.05.001
13. Qamar Muhammad Zaid, Noor Mariya, Ali Wahid, Qamar Mohammad. Green technology and its implications worldwide. Inquisitive Meridian. 2021. Vol. 3. Iss. 10. https://www.researchgate.net/publication/350443477_Green_Technology_and_its_Implications_Worldwide
14. Zhang J., Ouyang Y., Ballesteros-Pérez P., Li H., Philbin S.P., Li Zh., Skitmore M. Understanding the impact of environmental regulations on green technology innovation efficiency in the construction industry. Sustainable Cities and Society. 2021. Vol. 65. 102647. DOI: 10.1016/j.scs.2020.102647
15. Kozhukhova N.I., Alfimova N.I., Kozhukhova M.I., Nikulin I.S., Glazkov R.A., Kolomytceva A.I. Supplementary mineral additive on physical and mechanical performance of granulated blast furnace slag-based alkali-activated binders. Recycling. 2023. Vol. 8 (1). No. 22. DOI: 10.3390/recycling8010022
16. Voropaev V., Alfimova N., Nikulin I., Nikulicheva T., Titenko A., Nikulichev V. Influence of gypsum-containing waste on ammonia binding in animal waste composting. Agriculture. 2021. Vol. 11. 1153. DOI: 10.3390/agriculture11111153
17. Alfimova N.I., Pirieva S.Yu., Elistratkin M.Yu., Nikulin I.S., Titenko A.A. Binders from gypsum-containing waste and products based on them. IOP Conference Series: Materials Science and Engineering. 2020. Vol. 945 (1). 012057. DOI: 10.1088/1757-899X/945/1/012057
18. Трепалина Ю.Н., Кириллова Н.К. Керамический кирпич из сырья Якутии с добавлением тонкомолотого стеклобоя // Вестник БГТУ им. В.Г. Шухова. 2019. № 4. C. 138–143. DOI: 10.34031/article_5cb1e65d798f87.83499465
18. Trepalina Yu.N., Kirillova N.K. Ceramic brick from the raw materials of Yakutia with the addition of finely ground cullet. Vestnik of the BSTU named after V.G. Shukhov. 2019. No. 4, pp. 138–143. DOI: 10.34031/article_5cb1e65d798f87.83499465
19. Calera The Science. 2013. https://designerlee.com/portfolio/websites/calera-site/beneficial-reuse-of-co2/science.html
20. Kozhukhova N.I., Fomina E.V., Zhernovsky I.V., Strokova V.V., Chizhov R.V. The utilization efficiency of natural alumosilicates in composite binders. Applied Mechanics and Materials. 2014. Vol. 670–671, pp. 182–186. DOI: 10.4028/www.scientific.net/AMM.670-671.182
21. Espinoza-Hijazin Gaston, Paul Álvaro, Lopez Mauricio. Concrete containing natural pozzolans: new challenges for internal curing. Journal of Materials in Civil Engineering. 2012. Vol. 24, pp. 981–988. DOI: 10.1061/(ASCE)MT.1943-5533.0000421
22. Yu L.H., Ou H., Lee L.L. Investigation on pozzolanic effect of perlite powder in concrete. Cement and Concrete Research. 2003. Vol. 33, pp. 73–76. DOI: 10.1016/S0008-8846(02)00924-9
23. Erdem T.K., Meral Ç, Tokyay M., Erdoğan T.Y. Use of perlite as a pozzolanic addition in producing blended cements. Cement and Concrete Composites. 2007. 29 (1), pp. 13–21. DOI:10.1016/j.cemconcomp.2006.07.018
24. Erdogan S.T. Properties of ground perlite geopolymer mortars. Journal of Materials in Civil Engineering. 2014. Vol. 27 (7). 04014210. DOI: 10.1061/(ASCE)MT.1943-5533.0001172

For citation: Kozhukhova N.I. Modification specifics of perlite-based geopolymer as eco-friendly cement. Stroitel’nye Materialy [Construction Materials]. 2023. No. 7, pp. 60–66. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-815-7-60-66

Modification Transformations of Saponite-Containing Material During Mechanical Grinding

Number of journal: 7-2023
Autors:

Ayzenshtadt A.M.,
Frolova M.A.,
Danilov V.E.,
Drozdyuk T.A.,
Malygina M.A.

DOI: https://doi.org/10.31659/0585-430X-2023-815-7-54-59
УДК: 666.941.2

 

AbstractAbout AuthorsReferences
The saponite-containing material isolated from a suspension of recycled water of the enrichment process of kimberlite ores of the Arkhangelsk diamond province can be considered as a promising raw material for the production of magnesia cement. In this regard, an important stage in the chain of modification transformations of saponite is the transformation of its three-layer crystal lattice into a two-layer one, characteristic of serpentine. In this case, this process proceeds with mechanical grinding of the saponite-containing material. In order to confirm this fact, the analog value of the Hamaker constant calculated on the basis of experimental data was used. It has been established that with an increase in the duration of mechanical dispersion of experimental samples of saponite, this constant approaches the values characteristic of serpentine, and with a grinding time of 60 min, the values of the analog values of the Hamaker constants of serpentine and mechanically modified saponite differ only by 9%. The studies were carried out on pressed samples of powders of saponite-containing material and serpentine. To determine the analog value of the Hamaker constant of the surface of pressed samples, the method of G.A. Zisman, based on determining the contact angle of the surface of the analyzed samples formed by working fluids with a known value of surface tension was used. Aqueous ethanol solutions were used as working fluids.
A.M. AYZENSHTADT, Doctor of Sciences (Chemistry) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
M.A. FROLOVA, Candidate of Sciences (Chemistry) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.E. DANILOV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
T.A. DROZDYUK, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
M.A. MALYGINA, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Northern (Arctic) Federal University (NAFU) named after M.V. Lomonosov (22, Severnaya Dvina Embankment, Arkhangelsk, 163002, Russian Federation)

1. Malygina M.A, Ayzenshtadt A.M., Korolev E.V., Drozdyuk T.A., Frolova M.A. Electrolyte coagulation of saponite bearing water suspension for reuse by mining enterprises. Ekologiya i promyshlennost’ Rossii. 2022. Vol. 26. No. 11, pp. 27–33. (In Russian). https://doi.org/10.18412/1816-0395-2022-11-27-33
2. Shpilevaya (Verzhak), D.V., Garanin K.V. Diamond deposits of the Arkhangelsk region and environmental problems of their development. Vestnik of Moscow University. Series 4, Geology. 2005. No. 6, pp. 18–26. (In Russian).
3. Morozova M.V., Akulova M.V., Frolova M.A. Energy characteristics of sands of deposits in the Ivanovo region. IOP Conf. Series: Materials Science and Engineering. 2020. Vol. 945. 012045. DOI: 10.1088/1757-899X/945/1/012045
4. Morozova M.V., Ayzenshtadt A.M., Makhova T.A. Application of saponite-containing material for production of frost-resistant concretes. Promyshlennoe i grazhdanskoe stroitel’stvo. 2015. No. 1, pp. 28–31. (In Russian).
5. Morozova M.V., Ayzenshtadt A.M., Frolova M.A., Makhova T.A. The use of saponite-containing waste as a component of a dry mortar for fine-grained concrete with improved performance. Academia. Arkhitektura i stroitel’stvo. 2015. No. 4, pp. 137–141. (In Russian).
6. Drozdyuk T.A., Ayzenshtadt A.M., Frolova M.A. Effect of thermal modification of saponite-containing material on energy properties of its surface. Journal of Physics: Conference Series. 2019. Vol. 1400. 077053. DOI: 10.1088/1742-6596/1400/7/077056
7. Drozdyuk T.A., Ayzenshtadt A.M., Tutygin A.S., Frolova M.A. Inorganic binder for mineral wool thermal insulation. Stroitel’nye Materialy [Construction Materials]. 2015. No. 5, pp. 86–-88. (In Russian).
8. Zyryanova V.N., Berdov G.I. Magnesian binders from brucite waste. Stroitel’nye Materialy [Construction Materials]. 2006. No. 4, pp. 61–64. (In Russian).
9. Averina G.F., Chernykh T.N., Orlov A.A., Kramar L.Ya. Identification of the possibility of using magnesia waste from the mining and processing complex for the production of binders. Stroitel’nye Materialy [Construction Materials]. 2017. No. 5, pp. 86–49. (In Russian).
10. Drozdyuk T.A., Ayzenshtadt A.M., Korolev E.V. High-temperature modification of saponite-containing material. Stroitel’nye Materialy [Construction Materials]. 2021. No. 11, pp. 30–35. (In Russian). DOI:  https://doi.org/10.31659/0585-430X-2021-797-11-30-35
11. Arthur T. Colloid and surface properties of clays and related minerals. Hubbard. Santa Barbara science project. Santa Barbara. California. 2002. 296 p.
12. Betekhtin A.G. Kurs mineralogii [Mineralogy course]. Moscow: State publishing house of geological literature. 1951. 543 p.
13. Ayzenshtadt А.М., Korolev E.V., Malygina M.A., Drozdyuk T.A., Frolova M.A. Structural modification of fine powders of overburden saponitecontaining bentonite clay. Fizika i khimiya obrabotki materialov. 2023. No. 1, pp. 56–63. (In Russian).
14. Deryagin B.V., Abrikosova I.I., Lifshits E.M. Molecular attraction of condensed bodies. Uspekhi fizicheskikh nauk. 1958. Vol. 64. No. 3, pp. 493–528. (In Russian).
15. Boinovich L.B. Long-range surface forces and their role in the development of nanotechnology. Uspekhi khimii. 2007. Vol. 76. No. 5, pp. 510–528. (In Russian).
16. Veshnyakova L.A., Frolova M.A., Ayzenshtadt A.M., Lesovik V.S., Mikhailova O.N., Makhova T.A. Assessment of the energy state of raw materials for the production of building materials. Stroitel’nye Materialy [Construction Materials]. 2012. No. 10, pp. 53–55. (In Russian).
17. Ayzenshtadt А.М., Korolev E.V., Drozdyuk T.A., Danilov V.E., Frolova M.A. Possible approach to estimating the dispersion interaction in powder systems. Fizika i khimiya obrabotki materialov. 2021. No. 3, pp. 40–48. (In Russian). DOI: 10.30791/0015-3214-2021-3-40-48
18. Ayzenshtadt А.М., Korolev E.V., Drozdyuk T.A., Danilov V.E., Frolova M.A. Possible approach to estimating the dispersion interaction in powder systems. Inorganic Materials: Applied Research. 2022. Vol. 13. No. 3, pp. 793–799. DOI: 10.30791/0015-3214-2021-3-40-48
19. Danilov V.E., Korolev E.V., Ayzenshtadt A.M. Measuring the contact angles of powders by the sessile drop method. Inorganic Materials: Applied Research. 2021. Vol. 12. No. 3, pp. 794–798.

For citation: Ayzenshtadt A.M., Frolova M.A., Danilov V.E., Drozdyuk T.A., Malygina M.A. Modification transformations of saponite-containing material during mechanical grinding. Stroitel’nye Materialy [Construction Materials]. 2023. No. 7, pp. 54–59. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-815-7-54-59

New Possibilities for the Application of Unconditional Raw Materials in Construction

Number of journal: 7-2023
Autors:

Bondarev В.А.,
Salamanova M. Sh.,
Ismailova Z.Kh.

DOI: https://doi.org/10.31659/0585-430X-2023-815-7-49-53
УДК: 691.32

 

AbstractAbout AuthorsReferences
The desertification of vast territories in the south of the East European Plain, and in particular the northeastern part of the Chechen Republic, requires special attention to the possible use of dune sands, practically unused in construction, the volumes of which are in an unlimited number. The well-known world industrial experience in the introduction of dune sands, characterized by the presence of dusty fractions with a particle size of less than 0.1 mm, will make it possible to find fundamentally new approaches to obtain competitive and high-quality products. This is especially relevant for road construction, because in our country the implementation of new projects using non-traditional materials has not found practical application. The problems of roads have been at all times and occupy a key position in the development of the domestic economy, since they carry out up to 90% of the national economic transportation by various types of road transport. Therefore, the development of technology to strengthen the foundations of pavements with materials reinforced with composite binders on dune sands is undoubtedly an urgent task that allows expanding the raw material resource of the construction industry, thereby improving the technical condition of highways.
В.А. BONDAREV1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
M.Sh. SALAMANOVA2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
Z.Kh. ISMAILOVA2, Сandidatе of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Lipetsk State Technical University (30, Street Moskovskaya, Lipetsk, 398055, Russian Federation)
2 Grozny State Oil Technical University named after M.D. Millionshikov (100, Avenue Isaev, Grozny, 364021, Russian Federation)

1. Bazhenov Yu.M., Demyanova B.C., Kalashnikov V.I. Modifitsirovannye vysokokachestvennye betony [Modified high-quality concrete]. Moscow: ASV. 2006. 289 p.
2. Bazhenov Yu.M. Concrete: technologies of the future. Stroitel’stvo: novye tekhnologii – novoe oborudovanie. 2009. No. 8, рр. 29–32. (In Russian).
3. Hillemeier B., Buchenau G., Herr, R., Huttl R., Klubendorf St., Schubert K. Spezialbetone Beton-kalender. Ernst&Sohn. 2006. No. 1, рр. 534–549.
4. Murtazaev S.-A.Yu., Salamanova M.Sh., Bisultanov R.G. Influence of finely dispersed microfillers from volcanic ash on the properties of concrete. Collection of articles of the international scientific and practical conference dedicated to the 95th anniversary of GSTOU named after acad. M.D. Millionshchikov”. March 24–26, 2015. Grozny. Vol. 1, рр. 171–176. (In Russian).
5. Kalashnikov V.I. Industry of non-metallic building materials and the future of concrete. Stroitel’nye Materialy [Construction Materials]. 2008. No. 3, рр. 20–24. (In Russian).
6. Garkavi M.S., Yakubov V.I. Crushing screenings - an effective way to improve the quality of concrete. Stroitel’nye Materialy [Construction Materials]. 2006. No. 11, рр. 13–17. (In Russian).
7. Murtazayev S.-A.Yu., Salamanova M.Sh. Prospects of the use of thermoactivated raw material of alumosilicate nature. Privolzhskii nauchnyi zhurnal. 2018. Vol. 46. No. 2, рр. 65–70. (In Russian).
8. Kaprielov S.S. Modified high-strength concretes of classes B80 and B90 in monolithic structures. Part II. Stroitel’nye Materialy [Construction Materials]. 2008. No. 3, рр. 9–13. (In Russian).
9. Khater A., Nagar A.M. and Ezzat M. Optimization of alkali activated grog/ceramic wastes geopolymer bricks. International Journal of Innovative Research in Science, Engineering and Technology. 2016. No. 5 (1), рр. 37–46. DOI: 10.15680/IJIRSET.2015.0501005
10. Shlain I.B. Razrabotka mestorozhdenii nerudnogo syr’ya [Development of deposits of non-metallic raw materials] Moscow: Nedra. 1985. 344 p. (In Russian).
11. Murtazaev S.-A.Yu., Salamanova M.Sh., Saidumov M.S., Gishlakaeva M.I. Use of rock processing waste in fine-grained concrete. Proceedings of the All-Russian Scientific and Practical Conference “Science and Education in the Chechen Republic: Status and Prospects”, dedicated to the 10th anniversary of the formation of the СI RAS. Grozny. 2011, рр. 181–184. (In Russian).
12. Murtazayev S.-A.Yu., Salamanova M.Sh., Alashanov A., Ismailova Z. Features of production of fine concretes based on clinkerless binders of alkaline mixing. 14th International Congress for Applied Mineralogy (ICAM 2019) Belgorod State Technological University named after V.G. Shukhov. Belgorod. 23–27 September 2019, рр. 385-388.
13. Murtazayev S.-A.Yu., Salamanova M.Sh., Mintsaev M.Sh., Bisultanov R.G Fine-grained concretes with clinker-free binders on an alkali gauging. Proceedings of the International Symposium “Engineering and Earth Sciences: Applied and Fundamental Research” dedicated to the 85th anniversary of H.I. Ibragimov (ISEES 2019). Atlantis Highlights in Material Sciences and Technology (AHMST). April 2019. Vol. 1, pp. 500–503.
14. Khater A., and Gawwad H. Effect of firing temperatures on alkali activated Geopolymer mortar doped with MWCNT. Advances in Nano Research. 2015. Vol. 3. No. 4, рр. 225–242. DOI: https://doi.org/10.12989/anr.2015.3.4.225
15. Murtazaev S.-A.Yu., Salamanova M.Sh., Alaskhanov A.Kh., Murtazaeva T.S.-A. Prospects for the use of cement industry waste for the production of modern concrete composites. Stroitel’nye Materialy [Construction Materials]. 2021. No. 5, рр. 55–62. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-791-5-55-62

For citation: Bondarev В.А., Salamanova M. Sh., Ismailova Z.Kh. New possibilities for the application of unconditional raw materials in construction. Stroitel’nye Materialy [Construction Materials]. 2023. No. 7, pp. 49–53. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-815-7-49-53

Use of Ground Granulated Blast Furnace Slag in Cement Binder

Number of journal: 7-2023
Autors:

Surovtsov M.M.,
Khamidulina D.D.,
Nekrasova S.A.,
Moreva Y.A.

DOI: https://doi.org/10.31659/0585-430X-2023-815-7-43-48
УДК: 691.542

 

AbstractAbout AuthorsReferences
The article presents the results of studies of cement binder with the addition of fine ground granulated blast furnace slag and concretes on its basis. This material finds its use in construction as an active mineral additive that improves the structure of concrete, and also allows you to reduce the cost of its production. The results of the selection of the composition of concrete of class B25, both on cement binder and with the use of ground slag are presented. Physical and mechanical characteristics of concrete mixture and concrete are given. As a result of tests of control samples it has been revealed, that the addition of slag in the interval up to 30% allows to reach the required indicators of the limit of strength in compression. The kinetics of gain of strength of concrete shows, that at the initial stage of the introduction of slag in cement reduces speed of gain of strength (1–7 days), but further, by the vintage age of 28 days speed of gain of strength of samples without addition and with the addition of slag in cement in the range 10–50% gradually are leveled. It should be noted that at the age of 56 and 90 days the control specimens of all the series show the results corresponding to the vintage strength of the respective series. This circumstance allows to judge about the possibility of using ground granulated blast-furnace slag in concrete in the production of building structures both in the factory and in the production of monolithic works at the construction site.
M.M. SUROVTSOV, Candidate of Sciences (Engineering),
D.D. KHAMIDULINA, Candidate of Sciences (Engineering),
S.A. NEKRASOVA, Candidate of Sciences (Engineering),
Y.A. MOREVA, Candidate of Sciences (Engineering)

Nosov Magnitogorsk State Technical University (38, Lenin Avenue, Magnitogorsk, 455000, Russian Federation)

1. On the state and protection of the environment of the Russian Federation in 2021. Draft State Report. Moscow: Ministry of Natural Resources of Russia; Moscow State University named after M.V. Lomo-nosov, 2022. 685 p. (In Russian).
2. Vlasenko N.A., Zarubina E.V., Klevakina M.P. etc. Industrial production in Russia. 2021: Statistical compendium. Moscow: Rosstat; 2021. 305 p. (In Russian).
3. Voronin K.M., Khamidulina D.D., Nekrasova S.A., Trubkin I.S. Vibro-pressed elements of paving with the use of steelmaking slags. Stroitel’nye Materialy [Construction Materials]. 2017. No. 12, pp. 71–73. (In Russian).
4. Pochinkov I.V., Myaskov A.V. Analysis of existing methods for the use and processing of coal mining waste. Nauchnyy vestnik Moskovskogo gosudarstvennogo gornogo universiteta. 2013. No. 5, pp. 76–82. (In Russian).
5. Kornienko P.V., Gaksteter G.V. Production of modern highly functional concretes based on steel-smelting slags. Tekhnologii betonov. 2013. No. 3, pp. 47–49. (In Russian).
6. Mechai A.A., Baranovskaya E.I., Lasankin S.V. Autoclave cellular concrete using electric steel-smelting slag. Trudy BSTU (Minsk). 2011. No. 3 (141), pp. 84–87. (In Russian).
7. Chazov A.V., Shishmakova M.S. Slag-alkaline materials in road construction. Vestnik of the Perm National Research Polytechnic University. Construction and architecture. 2012. No. 1, pp. 114–117. (In Russian).
8. Ledenev A.A., Pertsev V.T., Sudani D.R.A. Complex modifiers of polyfunctional action to give concrete special properties. Scientific Bulletin of the Voronezh State University of Architecture and Civil Engineering. Series: Physico-chemical problems and high technologies of building materials science. 2014. No. 1 (8), pp. 56–63. (In Russian).
9. Pankova T.A., Dasaeva Z.Z. The use of granulated slags in the production of building materials. In the collection: Scientific discoveries in the era of globalization. Kazan. 2015, pp. 154–156. (In Russian).
10. Drobny O.F., Kharlov A.A., Proshkina O.B. Separate directions of utilization of technogenic resources of the Magnitogorsk industrial region. Mineralogiya tekhnogeneza. 2009. Vol. 10, pp. 228–234. (In Russian).
11. Artamonova A.V., Voronin K.M. Slag-alkaline binders based on blast-furnace granulated slags of centrifugal impact grinding. Tsement i yego primeneniye. 2011. No. 4, pp. 108–113. (In Russian).
12. Petrova T.M., Smirnova O.M., Frolov S.T. Properties of plasticized compositions of Portland cement-blast-furnace slag taking into account electrosurface phenomena. Vestnik grazhdanskikh inzhenerov. 2011. No. 2, pp. 118–123. (In Russian).
13. Rakhimova N.R. Influence of additives of ground broken ceramic bricks on the composition and microstructure of a composite slag-alkali binder stone. Bashkirskiy khimicheskiy zhurnal. 2007. Vol. 14. No. 4, pp. 83–86. (In Russian).
14. Kuzmenko A.M., Petlevany M.V., Usatii V.Yu. Influence of finely divided slag fractions on the strength properties of a hardening backfill. Conference: School of Underground Mining. Yalta. 2010. (In Russian).
15. Feldrappe F., Ehrenberg A. Development of new CEM X type cements based on ground granulated blast-furnace slag, fly ash and Portland cement clinker. Tsement i yego primeneniye. 2014. No. 4, pp. 34–39. (In Russian).
16. Rakhimova N.R., Rakhimov R.Z., Fatykhov G.A., Kuznetsov D.P. Influence of additives of ground components of fine-grained concrete on the properties of composite slag-alkali binders. Izvestiya vysshikh uchebnykh zavedeniy. Stroitel’stvo. 2009. No. 8, pp. 11–15. (In Russian).
17. Efremov A.N., Lishchenko A.N. Influence of additives of slag and fly ash from thermal power plants on the heat-resistant properties of Portland cement stone. Vestnik of the Donbass National Academy of Construction and Architecture. 2010. No. 1, pp. 221–225. (In Russian).
18. Shlyakhova E.A., Shlyakhov M.A. Influence of the type of mineral additive of microfiller on the properties of fine-grained concrete. Inzhenernyy vestnik Dona. 2015. Vol. 38. No. 4–1, p. 89.

For citation: Surovtsov M.M., Khamidulina D.D., Nekrasova S.A., Moreva Y.A. Use of ground granulated blast furnace slag in cement binder. Stroitel’nye Materialy [Construction Materials]. 2023. No. 7, pp. 43–48. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-815-7-43-48

Improving the Strength Characteristics of Cement Conglomerates with Directional Additives

Number of journal: 7-2023
Autors:

Il'ina L.V.,
Molodin V.V.,
Gichko N.O.,
Tulyaganov A.K.

DOI: https://doi.org/10.31659/0585-430X-2023-815-7-36-42
УДК: 666.971.1

 

AbstractAbout AuthorsReferences
Since the production of high-strength and ultra-high-strength artificial conglomerates is a paramount task in the development of building sciences, and the cement matrix is the main component responsible for the strength of cement-based artificial composites, increasing its strength is an urgent task. The authors consider the possibility of strengthening the cement matrix by using finely dispersed mineral additives (wollastonite, diabase, diopside and limestone), which are waste products from mining and processing industries. The studies were carried out on samples of cement stone with dimensions of 20х20х20 mm, made from cement paste of normal density. The studied finely dispersed additives were introduced in an amount of 2–11% by weight of cement. According to the results of the study of the effect of additives on the strength of the cement matrix, it was found that with the introduction of these additives, the compressive strength of the cement matrix increases. The paper substantiates the choice of mineral additives, both depending on their thermodynamic characteristics and chemical composition, and depending on their hardness. The concentration extreme dependences of the strength of the cement matrix on the type, quantity and dispersion of additives are obtained.
L.V. IL’INA, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.V. MOLODIN, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
N.O. GICHKO, Senior Lecturer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.K. TULYAGANOV, Senior Lecturer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Novosibirsk State Architectural and Construction University (Sibstrin) (113, Leningradskaya Street, Novosibirsk, 630008, Russian Federation)

1. Akhverdieva T.A., Dzhafarov R. Influence of finely ground mineral additives on the properties of concrete. Stroitel’nye materialy [Construction Materials]. 2019. No. 3, pp. 73–76. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-768-3-73-76
2. Vernigorova V.N., Sadenko S.M. On the non-stationarity of physical and chemical processes occurring in a concrete mix. Stroitel’nye materialy [Construction Materials]. 2017. No. 1–2, pp. 86–89. (In Russian).
3. Nguen D.V.K., Bazhenov Yu.M., Aleksandrova O.V. Influence of quartz powder and mineral additives on the properties of high-strength concretes. Vestnik of the MSTU. 2019. Vol. 14. No. 1 (124), pp. 102–117. (In Russian). DOI: https://doi.org/10.25686/2542-114X.2020.3.7
4. Khafizova E.N., Panchenko Yu.F., Panchenko D.A. The use of technological waste from crushing rocks in the development of cement concrete compositions. Vestnik of the Siberian State Automobile and Road University. 2021. Vol. 18. No. 6 (82), pp. 790–799. (In Russian). DOI: https://doi.org/10.26518/2071-7296-2021-18-6-790-799
5. Rakhimov R.Z. Building complex, ecology and mineral binders. Izvestiya vysshikh uchebnykh zavedenii. Stroitel’stvo. 2022. No. 2 (758), pp. 5–15. (In Russian). DOI: 10.32683/0536-1052-2022-758-2-5-15
6. Berra M., Mangialardi T. , Carassiti F. , Paolini A.E. Effects of nanosilica addition on workability and compressive strength of Portland cement pastes. Construction and Building Materials. 2012. Vol. 35, pp. 666–675. DOI: 10.1016/j.conbuildmat.2012.04.132
7. Ilina L.V., Mukhina I.N., Semenova M.M. Hardening cement conglomerates by mining industries waste. Solid State Phenomena. 2021. No. 316, pр. 1061–1066. DOI: 10.4028/www.scientific.net/SSP.316.1061
8. Ilina L., Mukhina I. and Teplov A. Modeling of Cement Activity Increase by Dispersed Mineral. AIP Publishing. Advanced Materials in Technology and Construction/ Proceedings of the II All-Russian Scientific Conference of Young Scientists «Advanced Materials in Technology and Construction», 2016. Vol. 1698. C. 070001. DOI: 10.1063/1.4937871
9. Stefanidou M., Papayianni I.Influence of nano-SiO2 on the cement pastes. Composites Part B: Engineering. 2012. Vol. 43, No. 6, pр. 2706–2710. DOI: 10.1016/j.compositesb.2011.12.015
10. Nadeem A., Shazim Ali Memon, Tommy Yiu Lo. Mechanical performance, durability, qualitative and quantitative analysis of microstructure of fly ash and Metakaolin concrete at elevated temperatures. Construction and Building Materials. 2013. Vol. 38, pр. 338–347. DOI: 10.1016/j.conbuildmat.2012.08.042
11. State report “On the state and protection of the environment of the Russian Federation in 2018”. Moscow: Ministry of Natural Resources of Russia; NIA-Priroda. 2019. 847 p. (In Russian).
12. Ilina L., Mukhina I. Dry Building Mixrure with Complex Dispersed Mineral Additives. AOP IOP Conference Series: Materials Science and Engineering. 2020. Vol. 953, Р. 012036. DOI: 10.1088/1757-899X/953/1/012036
13. Lesovik V.S., Fedyuk R.S., Liseitsev Yu.L., Panarin I.I., Voronov V.V. Influence of composition on the properties and structure of modified cement composites // Stroitel’nye materialy [Construction Materials]. 2022. No. 9, pp. 39–49. (In Russian). DOI: 10.31659/0585-430X-2022-806-9-39-49
14. Kharchenko A.I., Alekseev V.A., Kharchenko I.Ya., Bazhenov D.A. Structure and properties of fine-grained concretes based on composite binders. Vestnik of the MSTU. 2019. Vol. 14. Iss. 3, pp. 322–331. (In Russian). DOI: 10.22227/1997-0935.2019.3.322-331
15. Khozin V.G., Tsyganova E.A. The role of the construction industry in the implementation of the federal project “Circular Economy”. Ekspert: teoriya i praktika. 2023. No. 1 (20), pp. 147–159. (In Russian). DOI: 10.51608/26867818_2023_1_147
16. Volodchenko A.A., Zagorodnyuk L.Kh., Prosolova E.O., Akhmed A.A., Kulik N.V. The problem of rational nature management. Vestnik of the Belgorod State Technological University named after V.G. Shukhov. 2014. No. 6, pp. 7–10. (In Russian).
17. Kopanitsa N.O., Dem’yanenko O.V., Kulikova A.A. Complex additives based on secondary resources for the modification of cement compositions. Izvestiya of the Tomsk Polytechnic University theta. Engineering of georesources. 2023. Vol. 334. No. 1, pp. 136–144. (In Russian). DOI: 10.18799/24131830/2023/1/4045
18. Trofimov B.Y., Mahmudov A.M. The structure and properties of hardened cement paste with modifiers. IOP Conference Series: Materials Science and Engineering. Сер. “International Conference on Construction, Architecture and Technosphere Safety, ICCATS 2020 – Number 2”. 2020. Vol. 962, pp. 022011. DOI: 10.1088/1757-899X/962/2/022011
19. Shahova L.D., Chernositova E.S., Schelokova L.S., Uhaneva N.G. Influence of technological additives on the characteristics of cement powders. Digital Technologies in Construction Engineering. Selected Papers. Сер. “Lecture Notes in Civil Engineering”. 2022, pp. 259–265. DOI: 10.1007/978-3-030-81289-8_33
20. Kozlova V.K., Vol’f A.V., Manokha A.M., Kishitskii A.A. The role of carbonate additives in the processes of hydration and hardening of composite Portland cements. Polzunovskii al’manakh. 2021. No. 1, pp. 74–76. (In Russian).
21. Ilina L., Kudyakov A., Rakov M. Aerated dry mix concrete for remote northern territories. Magazine of Civil Engineering. 2022. No. 5 (113). Article No. 11310. DOI: 10.34910/MCE.113.10

For citation: Il'ina L.V., Molodin V.V., Gichko N.O., Tulyaganov A.K. Improving the strength characteristics of cement conglomerates with directional additives. Stroitel’nye Materialy [Construction Materials]. 2023. No. 7, pp. 36–42. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-815-7-36-42

Scientific Justification for Structural Modification of Foam Concrete Properties

Number of journal: 7-2023
Autors:

Morgun V.N.

DOI: https://doi.org/10.31659/0585-430X-2023-815-7-29-35
УДК: 666.973.6

 

AbstractAbout AuthorsReferences
The relevance of the development of the theory and practice of foam concrete, based on evolutionary changes in science and society, is reflected. A brief overview of the work confirming the possibility of improving their properties during dispersed reinforcement with fibers is given. The provision is made that the structural modification of foam concrete should be understood as technological and recipe techniques that ensure such use of the surface energy of dispersed raw materials, which is suitable for controlling the quality of mass transfer during the formation of its structure. The reasons that allow synthetic fibers to be effective initiators of mass transfer in non-autoclave foam concrete technology are listed. Scientific justification of these processes is given during homogenization of raw materials in turbulent mixers and during the period of predominance of viscous bonds between components of raw materials after placing of mixtures in formwork. A scientific analysis of the influence of mutually competing and mutually dependent mass transfer processes on the properties of foam concrete mixtures was performed, which makes it possible to predict the physical and mechanical properties of foam concrete depending on the formulation. The results of experimental evaluation of the effect of dispersed reinforcement of foam concrete mixtures by fibers on the rate of phase transition from viscous to solid and the physical and mechanical properties of foam concrete are given.
V.N. MORGUN, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Southern Federal University (105/42, Bolshaya Sadovaya Street, Rostov-on-Don, 344006, Russian Federation)

1. Bartenyeva E.A., Mashkin N.A. Research of properties of modified foam concrete. Stroitel’nye Materialy [Construction Materials]. 2017. No. 10, pp. 36–40. (In Russian)
2. Mikheev A.A., Shutikova E.A. Social problems of urbanization and city-mejment at the postmodern stage. Pravo i upravlenie. XXI vek. 2015. No. 2 (35), pp. 73–78. (In Russian).
3. Lobanov I.A. Fundamentals of the technology of dispersed reinforced concretes: fibrobetons. Doct. Diss. (Engineering). Leningrad. 1982. 384 p. (In Russian).
4. Pukharenko Yu.V. Principles of structure formation and prediction of fiber concrete strength. Vestnik grazhdanskikh inzhenerov. 2004. No. 1, pp. 98–103. (In Russian).
5. Magdeev W.H., Morozov V.I., Pukharenko Yu.V. Cracking of dispersed reinforced concrete from the standpoint of fracture mechanics. Izvestiya of the Kazan State University of Architecture and Civil Engineering. 2012. No. 1 (9), pp. 110–117. (In Russian).
6. Talantova K.V. Stalefibrobeton i konstruktsii na ego osnove [Steel fiber concrete and constructions based thereon]. Sankt-Peterburg: FGBOU VPO PGUPS. 2014. 276 p.
7. Morgun L.V. Penobeton: monografiya [Foam concrete: monograph]. Rostov-on-Don: RGSU. 2012. 154 p.
8. Roy S., Ghosh S., Bhowmick N. and Roychoudhury P.K. Study the effect of denier and fiber cutlength on zeta potential of nylon and polyester fibers for sustainable dyeing process. Journal of Environmental Research and Development. 2016. Vol. 11. Iss. 2, pp. 392–397.
9. Qin Xiaochun, Li Xiaoming, Cai Xiaopei. The applicability of alkaline-resistant glass fiber in cement mortar of road pavement: Corrosion mechanism and performance analysis. International Journal of Pavement Research and Technology. 2017. Vol. 10. Iss. 6, pp. 536–544. DOI: 10.1016/j.ijprt.2017.06.003
10. Shmitko E.I. Control of concrete structure formation hardening processes. Doct. Diss. (Engineering). Voronezh. 1994. 525 p. (In Russian).
11. Votrin D.A., Morgun L.V. Controlling the rate of phase transition in fibropene concrete mixtures using the length of reinforcing fiber. Nauka i biznes: puti razvitiya. 2018. No. 5 (83), pp. 47–52. (In Russian).
12. Bleshchik N.P. Strukturno-mekhanicheskie svoistva i reologiya betonnoi smesi i pressvakuumbetona [Structural-mechanical properties and rheology of concrete mixture and pressvacuum concrete]. Minsk: Nauka i tekhnika. 1977. 231 p.
13. Yurov V.M., Guchenko S.A., Laurinas V.C. Surface layer thickness, surface energy and atomic volume of the element. Physicochemical aspects of the study of clusters, nanostructures and nanomaterials: Intercollegiate collection of scientific papers. Tver. 2018. Iss. 10, pp. 691–699. (In Russian). DOI: 10.26456/pcascnn/2018.10.691
14. Terekhov S.V. Fraktaly i fizika podobiya [Fractals and physics of similarity]. Donetsk: Tsifrovaya tipografiya. 2011, 255 p.
15. Mandelbrot B. Les objects fractal. France: Flammanon. 1995. 200 p.
16. Pomazkov V.V. and etc. Upravlenie protsessami tekhnologii, strukturoi i svoistvami betonov: Metodologiya. Protsessy samoorganizatsii struktury. Mekhanika prochnosti i razrusheniya. Upravlenie protsessami strukturoobrazovaniya i svoistvami. Prikladnye voprosy tekhnologii. [Management of technology processes, structure and properties of concretes: Methodology. Processes of structure self-organization. Mechanics of strength and fracture. Manage structuring processes and properties. Applied issues of technology] Ed. by Chernyshov E.M., Shmit’ko E.I. Voronezh: VGASU. 2002. 343 p.
17. Blinov L.M. Zhidkie kristally: struktura i svoistva [Liquid crystals: structure and properties]. Moscow: Knizhnyi dom «Librokom». 2013. 480 p.
18. Rusanov A.I. Fazovye ravnovesiya i poverkhnostnye yavleniya [Phase equilibria and surface phenomena]. Leningrad: Khimiya. 1967. 388 p.
19. Mett’yuz F., Rolings R. Kompozitnye materialy. Mekhanika i tekhnologiya [Composite materials. Mechanics and technology]. Moscow: Tekhnosfera. 2004. 408 p.

For citation: Morgun V.N. Scientific justification for structural modification of foam concrete properties. Stroitel’nye Materialy [Construction Materials]. 2023. No. 7, pp. 29–35. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-815-7-29-35

https://www.traditionrolex.com/10