Numerical Solution of the Filtration Problem with Three Types of Particles

Number of journal: 7-2023
Autors:

Safina G.L.

DOI: https://doi.org/10.31659/0585-430X-2023-815-7-73-78
УДК: 625.861

 

AbstractAbout AuthorsReferences
Road strengthening consists of increasing their strength and stability by reinforcing the construction components. This process can involve a variety of methods and techniques. One such method is the injection method of soil stabilization, in which special compositions are injected under the road bed to increase its strength and resistance to breakage. This method is used to strengthen roads that are deformed or cracked, resulting in increased wear and reduced performance. The study of suspension filtration during the strengthening of soils is the important problem to determine the effectiveness and efficiency of the technology used. Filtration of a suspension of suspended particles in a porous medium is a process whereby the particles of the suspension penetrate through the pores in the porous medium, causing them to be trapped on the surface of the pores, thereby forming a deposit. This paper considers the motion of a fluid containing three kinds of particles that differ in size from each other. It is assumed that the deposition of larger particles is more likely than that of smaller particles. Concentrations of retained particles for each type of particles and concentrations of total deposit as a function of problem parameters are investigated, their graphs for different values of time are plotted. It is shown that concentrations of the largest retained particles are always monotonically decreasing functions. Concentrations of smallest retained particles are always monotonically decreasing functions up to a certain point of time, then they become non-monotonous, having a maximum point, and concentrations of medium retained particles can be both monotonous and non-monotonous.
G.L. SAFINA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Moscow State University of Civil Engineering Branch in Mytishchi (50, Olympic Avenu, Mytishchi, Moscow Region, 141060)

1. Pankov V.Yu. New procedure to calculate the load on the roadway. World of Transport and Transportation. 2022. Vol. 20. Iss. 1 (98), pp. 81–95. DOI: https://doi.org/10.30932/1992-3252-2022-20-1-10
2. Корочкин А.В. Анализ силового воздействия транспортных средств на дорожную одежду // Строительная механика инженерных конструкций и сооружений. 2015. № 6. С. 40–46.
2. Korochkin A.V. Analysis of the force influence of transport vehicles on the road clothing. Stroitel’naja mehanika inzhenernyh konstrukcij i sooruzhenij. 2015. No. 6, pp. 40–46. (In Russian)
3. Алексеев С.В., Симонов Д.Л., Катикова А.С. Воздействие природных факторов на состояние дорог в различных регионах России // Инновационные транспортные системы и технологии. 2022. № 4. С. 14–30. DOI: https://doi.org/10.17816/transsyst20228414-30
3. Alekseev S.V., Simonov D.L., Katikova A.S. The impact of natural factors on the condition of roads in different regions of Russia. Innovacionnye transportnye sistemy i tehnologii. 2022. No. 4, pp. 14–30. (In Russian). DOI: https://doi.org/10.17816/transsyst20228414-30
4. Baykal T., Ergezer F., Terzi S. Prediction of highway pavement surface condition based on meteorological parameters using Deep Learning Method. Journal of Intelligent Transportation Systems and Applications. 2022. Vol. 5. Iss. 2, pp. 81–88. DOI: https://doi.org/10.51513/jitsa.1152377
5. Barros R., Yasarer H., Sultana S. Performance evaluation of composite pavements on Mississippi highways via machine learning. Eleventh International Conference on the Bearing Capacity of Roads, Railways and Airfields. 2022. Vol. 4, pp. 527–534. DOI: https://doi.org/10.1201/9781003222897-49
6. Barros R., Yasarer H., Najjar Y.M. Mechanical and physical properties of recycled Concrete aggregates for road base materials. Journal of Physics Conference Series. 2021. Vol. 1973 (1). 012236. https://doi.org/10.1088/1742-6596/1973/1/012236
7. Loktev A., Korolev V., Ulanov I., Savulidi M., Klekovkina N., Kuznetsov A. Theoretical approaches for modeling and calculating the consolidation of a composite weak bottom. Transportation Research Procedia. 2022. Vol. 63 (4), pp. 938–945. DOI: https://doi.org/10.1016/j.trpro.2022.06.092
8. Salnyi I., Stepanov M., Karaulov A. Experience in strengthening foundations and foundations on technogenic soils. E3S Web of Conferences. 2022. Vol. 363 (5). 02004. DOI: https://doi.org/10.1051/e3sconf/202236302004
9. Han P., Zhang C., He X., Wang X., Qiao Y. A. DEM fluid–solid coupling method for progressive failure simulation of roadways in a fault structure area with water-rich roofs. Geomechanics and Geophysics for Geo-Energy and Geo-Resources. 2022. Vol. 8. 194. DOI: https://doi.org/10.1007/s40948-022-00517-9
10. Christodoulou D., Lokkas P., Droudakis A., Spiliotis X., Kasiteropoulou D., Alamanis N. The development of practice in permeation grouting by using fine-grained cement suspensions. Asian Journal of Engineering and Technology. 2021. Vol. 9. Iss. 6, pp. 92–101. DOI: https://doi.org/10.24203/ajet.v9i6.6846
11. Smirnova O.M., Glazev M.V., Komolov V.V., Vilenskii M.Yu. Micro-cement for injection consolidation of base soils. International Journal of Innovative Technology and Exploring Engineering. 2019. Vol. 9 (2), pp. 2173–2177. DOI: https://doi.org/10.35940/ijitee.A6142.129219
12. Christodoulou D. Evaluation of cement gradation effect on the injectability of cement suspensions for soil grouting – a review. Austin Environ Science. 2022. Vol. 7 (3). 1081.
13. Кузьмина Л.В., Осипов Ю.В., Шайдуллина А.М. Динамика частиц в пористой среде // Промышленное и гражданское строительство. 2021. № 10. С. 72–77. DOI: https://doi.org/10.33622/0869-7019.2021.10.72-77
13. Kuz’mina L.V., Osipov Yu.V., Shajdullina A.M. Particle dynamics in a porous medium. Promyshlennoe i grazhdanskoe stroitel’stvo. 2021. No. 10, pp. 72–77. (In Russian). DOI: https://doi.org/10.33622/0869-7019.2021.10.72-77
14. Safina G.L. Filtration problem with nonlinear filtration and concentration functions. International Journal for Computational Civil and Structural Engineering. 2022. Vol. 18 (1), pp. 129–140. DOI: https://doi.org/10.22337/2587-9618-2022-18-1-129-140
15. Кузьмина Л.В., Осипов Ю.В., Соседка М.Г. Фильтрация в пористой среде с двумя механизмами захвата // Промышленное и гражданское строительство. 2022. № 10. С. 48–53. DOI: https://doi.org/10.33622/0869-7019.2022.07.48-53
15. Kuz’mina L.V., Osipov Yu.V., Sosedka M.G. Filtration in a porous medium with two capture mechanisms. Promyshlennoe i grazhdanskoe stroitel’stvo. 2022. No. 10, pp. 48–53. (In Russian). DOI: https://doi.org/10.33622/0869-7019.2022.07.48-53
16. Сафина Г.Л. Расчет профилей осадка двухчастичной суспензии в пористой среде // Промышленное и гражданское строительство. 2020. № 11. С. 110–114. DOI: https://doi.org/10.33622/0869-7019.2020.11.110-114
16. Safina G.L. Calculation of deposit profiles of a two-particle suspension in a porous medium. Promyshlennoe i grazhdanskoe stroitel’stvo. 2020. No. 11, pp. 110–114. (In Russian). DOI: https://doi.org/10.33622/0869-7019.2020.11.110-114
17. Сафина Г.Л. Моделирование фильтрации двухчастичной суспензии в пористой среде // Промышленное и гражданское строительство. 2022. № 2. С. 31–35. DOI: https://doi.org/10.33622/0869-7019.2022.02.31-35
17. Safina G.L. Modelling of filtration of a two-particle suspension in a porous medium. Promyshlennoe i grazhdanskoe stroitel’stvo. 2022. No. 2, pp. 31–35. (In Russian). DOI: https://doi.org/10.33622/0869-7019.2022.02.31-35
18. Kuzmina L., Osipov Y., Astakhov M.D. Filtration of 2-particles suspension in a porous medium. Journal of Physics: Conference Series. 2021. Vol. 1926. 012001. DOI: https://doi.org/10.1088/1742-6596/1926/1/012001
19. You Z., Osipov Y., Bedrikovetsky P., Kuzmina L. Asymptotic model for deep bed filtration. Chemical Engineering Journal. 2014. Vol. 258, pp. 374–385. DOI: https://doi.org/10.1016/j.cej.2014.07.051
20. Kuzmina L.I., Osipov Y.V., Astachov M.D. Bidisperse fltration problem with non-monotonic retention profles. Annali di Matematica Pura ed Applicata (1923). 2022. Vol. 201, pp. 2943–2964. DOI: https://doi.org/10.1007/s10231-022-01227-5

For citation: Safina G.L. Numerical solution of the filtration problem with three types of particles. Stroitel’nye Materialy [Construction Materials]. 2023. No. 7, pp. 73–78. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-815-7-73-78


Print   Email