Analysis of Russian Regulatory Documents Regulating the use and Development of Building Additive Technologies

Number of journal: 8-2023
Autors:

Slavcheva G.S.

DOI: https://doi.org/10.31659/0585-430X-2023-816-8-10-17
УДК: 624.51

 

AbstractAbout AuthorsReferences
An analysis of the current general construction and special standards is presented, from the point of view of their use for the development of building additive technologies (AT). The possibilities and limitations of the application of general construction standards in this area are considered. It is shown that the limitations in the application of existing standards of technical requirements and test methods are due to the fact that they do not take into account the layered structure and anisotropy of the properties of composites obtained by layer-by-layer 3D printing. The content is analyzed, shortcomings of the normative documents put into effect for building additive technologies are revealed. The directions for the development of the regulatory framework in the field of building AT are outlined. It is shown that the primary issues of regulation are related to the definition of requirements for the complex of technological characteristics of mixtures, parametric series of material properties, methods of testing and quality control; determination of requirements for the set of design resistances of layered composites, taking into account the anisotropy of their strength characteristics. To realize the potential of additive technologies, it is simultaneously necessary to solve the issues of design and calculation of bionic hollow 3D printed structures with a given bearing capacity. This will ensure the transition from traditional solid building structures to hollow ones, in which the material will be located only along the lines of acting stresses, and its volume will be no more than 10–20% of the structure volume.
G.S. SLAVCHEVA, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Voronezh State University of Architecture and Civil Engineering (84 20-letija Octjabrja Street, Voronezh, 394006, Russian Federation)

1. Rehman A.U., Kim J.H. 3D concrete printing: A systematic review of rheology, mix designs, mechanical, microstructural, and durability characteristics. Materials. 2021. Vol. 14. No. 14. DOI: 10.3390/ma14143800
2. Mechtcherine V., Bos F.P., Perrot A., Leal da Silva W.R., Nerella V.N., Fataei S., Wolfs R.J.M., Sonebi M., Roussel N. Extrusion-based additive manufacturing with cement-based materials – Production steps, processes, and their underlying physics: A review. Cement and Concrete Research. 2020. No. 132. 106037. DOI: 10.1016/j.cemconres.2020.106037
3. Perrot A., Pierre A., Nerella V.N., Wolfs R.J.M., Keita E., Nair S.A.O., Neithalath N., Roussel N., Mechtcherine V. From analytical methods to numerical simulations: A process engineering toolbox for 3D concrete printing. Cement and Concrete Composites. 2021. No. 122. 104164. DOI: 10.1016/j.cemconcomp.2021.104164
4. Liu Z., Li M., Weng Y., Wong T. N., Tan M. J., Mixture Design Approach to optimize the rheological properties of the material used in 3D cementitious material printing. Construction and Building Materials. 2018. Vol. 198, pp. 245–255. DOI: 10.1016/j.conbuildmat.2018.11.252
5. Panda B., Mohamed N.A. N., Paul S.C., Singh G.V.P.B., Tan M.J., Šavija B. The effect of material fresh properties and process parameters on buildability and interlayer adhesion of 3D printed concrete. Materials. 2019. Vol. 12. No. 13. DOI: 10.3390/ma12132149
6. Roussel N., Bessaies-Bey H., Kawashima S., Marchon D., Vasilic K., Wolfs R. Recent advances on yield stress and elasticity of fresh cement-based materials. Cement and Concrete Research. 2019. No. 124. 105798. DOI: 10.1016/j.cemconres.2019.105798
7. Song H., Li X. An overview on the rheology, mechanical properties, durability, 3D printing, and microstructural performance of nanomaterials in cementitious composites. Materials. Vol. 14. No. 11. DOI: 10.3390/ma14112950
8. Le T.T., Austin S.A., Lim S., Buswell R.A., Law R., Gibb A.G.F., Thorpe T. Hardened properties of high-performance printing concrete. Cement and Concrete Research. 2012. No. 42 (3), pp. 558–566. DOI: 10.1016/j.cemconres.2011.12.003
9. Wang L., Jiang H., Li Z., and Ma G. Mechanical behaviors of 3D printed lightweight concrete structure with hollow section. Archives of Civil and Mechanical Engineering. Vol. 20. No. 1. DOI: 10.1007/s43452-020-00017-1
10. Chen Y., Jansen K., Zhang H., Romero Rodriguez C., Gan Y., Çopuroğlu O., Schlangen E. Effect of printing parameters on interlayer bond strength of 3D printed limestone-calcined clay-based cementitious materials: An experimental and numerical study. Construction and Building Materials. 2020. No. 262. 120094. DOI: 10.1016/j.conbuildmat.2020.120094
11. Marchment T., Sanjayan J., Xia M. Method of enhancing interlayer bond strength in construction scale 3D printing with mortar by effective bond area amplification. Materials & Design. 2019. No. 169. 107684. DOI: 10.1016/j.matdes.2019.107684
12. Keita E., Bessaies-Bey H., Zuo W., Belin,P., Roussel N. Weak bond strength between successive layers in extrusion-based additive manufacturing: measurement and physical origin. Cement and Concrete Research. 2019. No. 123. 105787. DOI: 10.1016/j.cemconres.2019.105787
13. Zareiyan B., Khoshnevis B. Effects of interlocking on interlayer adhesion and strength of structures in 3D printing of concrete. Automation in Construction. 2017. No. 83, pp. 212–221. DOI: 10.1016/j.autcon.2017.08.019
14. Panda B., Chandra Paul S., Jen Tan M. Anisotropic mechanical performance of 3D printed fiber reinforced sustainable construction material. Materials Letters. 2017. Vol. 209, pp. 146–149. DOI: 10.1016/j.matlet.2017.07.123
15. Panda B., Paul S.C., Mohamed N.A.N., Tay Y.W.D., Tan M.J. Measurement of tensile bond strength of 3D printed geopolymer mortar. Measurement (Lond). 2017. Vol. 113, pp. 108–116. DOI: 10.1016/j.measurement.2017.08.051
16. Paul S.C., Tay Y.W.D., Panda B., Tan M.J. Fresh and hardened properties of 3D printable cementitious materials for building and construction. Archives of Civil and Mechanical Engineering. 2018. Vol. 18. No. 1, pp. 311–319. DOI: 10.1016/j.acme.2017.02.008
17. Ducoulombier N., Demont L., Chateau C., Bornert M., Caron J.F. Additive manufacturing of anisotropic concrete: A flow-based pultrusion of continuous fibers in a cementitious matrix. Procedia Manufacturing. 2020. No. 47, pp. 1070–1077. DOI: 10.1016/j.promfg.2020.04.117

For citation: Slavcheva G.S. Analysis of the Russian regulatory documentation regulating the use and development of construction additive technologies. Stroitel’nye Materialy [Construction Materials]. 2023. No. 8, pp. 10–17. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-816-8-10-17


Print   Email