Log in

Steel Fiber Concrete with the Use of Local Production Waste for Transport Facilities

Number of journal: No.1-2-2023
Autors:

Sturova V.A.

DOI: https://doi.org/10.31659/0585-430X-2023-810-1-2-44-49
УДК: 691.328.5

 

AbstractAbout AuthorsReferences
Advances in the field of manufacturing building materials in recent years have made it possible to create a number of new composite materials, the level of properties of which is incomparably higher than the level of properties of traditional concrete. Such materials include steel fiber slag concrete, which includes not only steel fiber, which creates a strong frame, but also metallurgy waste, such as slag, screenings from its crushing, slag sand, etc. The use of these wastes helps to reduce the negative impact on the environment and the cost of work. The analysis of the properties of steel-fiber concrete with the use of waste from local industries for the possibility of using this material in the construction and repair of strategic transport facilities was carried out. It is shown that the use of fiber in concrete increases the moment of crack formation by 10% and significantly reduces the opening of visible cracks. The percentage of fiber by volume in the matrix should not exceed 1.5%.
V.A. STUROVA, Graduate Student, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Lipetsk State Technical University, (30, Moskovskaya Street, Lipetsk, 398055, Russian Federarion)

1. Sturova V.A., Bondarev B.A., Chernousov N.N., Bondarev A.B., Zhidkov V.K. The main defects and damages of the structures of transport structures – transition plates, elements of the roadbed coating and the possibility of their elimination. Sustainable development of the region: architecture, construction and transport. Materials of the IXth International Scientific and Practical Conference dedicated to the memory of Academician RAASN Chernyshov E.M. 2022. pp. 180–183. (In Russian).
2. Ufimtsev V.M., Korobeinikov L.A. Slags in concrete: new opportunities. Tekhnologii betonov. 2014. No. 6, pp. 50–53. (In Russian).
3. Chernousov N.N., Bondarev B.A., Sturova V.A., Bondarev AB., Liventseva A.A. Forecasting the nature of deformation of bent slag concrete elements. Stroitel’nye Materialy [Construction Materials]. 2022. No. 3, pp. 15–24. DOI: https://doi.org/10.31659/0585-430X-2022-800-3-15-24
4. Chernousov N.N., Bondarev B.A., Sturova V.A., Bondarev AB., Liventseva A.A. Analytical dependencies of the influence of material density on the strength and deformability of structural concrete under axial compression. Stroitel’nye Materialy [Construction Materials]. 2022. No. 5, pp. 58–67. DOI: https://doi.org/10.31659/0585-430X-2022-802-5-58-67
5. Bondarev B.A., Chernousov N.N., Chernousov R.N., Sturova V.A. Study of strength properties of steel-fibre-varnish concrete under axial tension and compression taking into account its age. Stroitel’nye Materialy [Construction Materials]. 2017. No. 5, pp. 20–24.
6. Bondarev B.A., Chernousov N.N., Chernousov R.N., Sturova V.A. Study of the deformative properties of steel-fibre-varnish concrete under axial tension and compression, taking into account its age. Vestnik PNIPU. Stroitel’stvo i arkhitektura. 2017. No. 1, pp. 18–31. DOI: https://doi.org/10.15593/2224-9826/2017.1.02
7. Bondarev B.A., Sturova V.A., Liventseva A.A. Fibrobeton: properties, tension behavior. Modern problems of materials science. Collection of scientific works of the II All-Russian (national) scientific and practical conference dedicated to the 65th anniversary of LSTU. Lipetsk. 2021, pp. 284–287.
8. Bondarev B.A., Karaseva O.V., Sturova V.A., Liventseva A.A. The use of DRAMIX fiber manufactured by Bekart in construction. Modern problems of materials science. Collection of scientific works of the II All-Russian (national) scientific and practical conference dedicated to the 65th anniversary of LSTU. Lipetsk. 2021, pp. 340–342. (In Russian).
9. Bondarev B.A., Chernousov N.N., Sturova V.A. Determination of the deformation parameters of concrete specimens by the formulas of fracture mechanics. Construction and Geotechnics. 2020. Vol. 11. No. 2, pp. 88–98. (In Russian). DOI: https://doi.org/10.15593/2224-9826/2020.2.08
10. Karpenko N.I., Sokolov B.S., Radaykin O.V. To assess the strength, stiffness, moment of formation of cracks and their opening in the zone of pure bending of reinforced concrete beams using a nonlinear deformation model. Izvestiya vuzov. Stroitel’stvo. 2016. No. 3, pp. 5–12. (In Russian).
11. Shah S.P., Jehu R. Strain rate effects an mode crack propagation in Concrete. Fract. Toughness and Fract. Energy: Coner. Proc. Conf. Lensaune. Oct. 1–3. 1985. Amsterdam. 1986, pp. 453–465.
12. Jeng Y., Shah S.P. Two berameter fracture model for concrete. J. Eng. Mech. 1985. No. 10, pp. 1227–1241.
13. Chernousov N.N., Sturova V.A. Mathematical model of the complete diagram of deformation of cinder concrete at three-point bending. Sovremennye naukoemkie tekhnologii. 2020. No. 3, pp. 92–96.
14. Chernousov N.N. Bent steel-fibre-concrete elements. Beton i zhelezobeton [Concrete and reinforced concrete]. 2010. No. 4, pp. 7–11. DOI: https://doi.org/10.17513/snt.37947
15. Moiseenko G.A. Method for construction of isochrondiagrams of high-strength steel fiber concrete and its matrix. Building and Reconstruction. 2020. No. 5 (91), pp. 32–45. DOI: https://doi.org/ 10.33979/2073-7416-2020-90-4-32-45
16. Bondarev B.A., Sturova V.A., Kostin S.V. The use of steel fiber slag concrete in structural elements of transport facilities. Effective designs, materials and technologies in construction. Materials of the international scientific-practical conference. Lipetsk. 2019, pp. 14–18. (In Russian).
17. Bondarev B.A., Chernousov N.N., Chernousov R.N., Sturova V.A. Investigation of destruction of road slabs made of steel fiber slag concrete during punching. Transportnoe stroitel’stvo. 2018. No. 7, pp. 10–12. (In Russian).
18. Goncharova M.A., Chernousov N.N., Sturova V.A., Liventseva A.A. A method for selecting the optimal composition of fine-grained steel-fiber slag-pemzo concrete. Izvestiya vysshikh uchebnykh zavedenii. Stroitel’stvo. 2021. No. 11 (755), pp. 64–72. (In Russian). DOI: https://doi.org/10.32683/0536-1052-2021-755-11-64-72

For citation: Sturova V.A. Steel Fiber Concrete with the use of local production waste for transport facilities. Stroitel’nye Materialy [Construction Materials]. 2023. No. 1–2, pp. 44–49. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-810-1-2-44-49

High-Strength Fiber-Reinforced Concrete in Structures for General Construction and Special Purposes

Number of journal: No.1-2-2023
Autors:

Аgamov R.E.,
Goncharova M.A.,
Pachin A.R.

DOI: https://doi.org/10.31659/0585-430X-2023-810-1-2-39-43
УДК: 666.983

 

AbstractAbout AuthorsReferences
It is shown that increasing the durability of particularly strong structures of buildings and protective structures of civil defense is the main task for today. It is proved that the use of high-strength composites with dispersed reinforcement based on combined binders requires solving a number of problems. Man-made raw materials, including slags of metallurgical production, are involved in the composition of fiber-reinforced concrete. The problem of the quality of fiber-reinforced concrete is considered, taking into account the initial composition, conditions for the preparation of a concrete mixture, molding and hardening of products. As components of high-strength dispersed reinforced concrete, finely dispersed filler – additives with high activity based on man-made waste in combination with hyperplasticizers and reinforcing fibers are proposed. A solution is proposed to improve the quality of the front surface to classes A1–A2. It was established that due to the optimization of the compositions, the consumption of the clinker component of the binder was reduced by 20% without loss of physical and mechanical properties and increased strength indicators by more than 20 MPa. Due to the use of dispersed reinforcement, the tensile strength of concrete in bending was increased by 15%. At the same time, basalt fibers as a reinforcing component showed better joint work with cement stone.
R.E. AGAMOV, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
M.A. GONCHAROVA, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.R. PACHIN, Master (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Lipetsk State Technical University (30, Moskovskaya Street, Lipetsk, 398055, Russian Federation)

1. Goncharova M.A., Simbaev V.V., Karaseva O.V. Optimization of the composition of fine-grained concrete in order to improve the quality of the front surface of blocks. Solid state phenomena. 2018. Vol. 284, pp. 1052–1057. DOI: 10.4028/www.scientific.net/SSP.284.1052
2. Goncharova M.A., Krohotin V.V., Ivashkin A.N. The influence of fibrous reinforcement on the properties of self-compacting concrete mixture and reinforced concrete. Solid state phenomena. 2020. Vol. 299, pp. 112–117. DOI: 10.4028/www.scientific.net/SSP.299.112
3. Гончарова М.А., Черноусов Н.Н., Стурова В.А., Ливенцева А.А. Способ подбора оптимального состава мелкозернистого сталефиброшлакопемзобетона // Известия высших учебных заведений. Строительство. 2021. № 11 (755). С. 64–72. DOI: 10.32683/0536-1052-2021-755-11-64-72
3. Goncharova M.A., Chernousov N.N., Sturova V.A., Liventseva A.A. Method for selecting the optimal composition of fine-grained steel-fiber-slash pum-concrete.
Izvestiya Vysshikh Uchebnykh Zavedeniy. Stroitel’stvo. 2021. No. 11 (755), pp. 64–72. (In Russian). DOI: 10.32683/0536-1052-2021-755-11-64-72
4. Гончарова М.А., Мраев А.В., Пачин А.Р., Акчурин Т.К. Прогнозирование долговечности шлакобетонов в условиях агрессивной сульфатной среды // Вестник Волгоградского государственного архитектурно-строительного университета. Сер.: Строительство и архитектура. 2022. № 3 (88). С. 70–75.
4. Goncharova M.A., Mraev A.V., Pachin A.R., Akchurin T.K. Forecasting the durability of cinder blocks in an aggressive sulfate environment. Vestnik Volgogradskogo gosudarstvennogo arhitekturno-stroite’nogo universiteta. Seriya: Stroite’stvo i arhitektura. 202. No. 3, pp. 70–75. (In Russian).
5. Черноусов Н.Н., Бондарев Б.А., Стурова В.А, Бондарев А.Б., Ливенцева А.А. Аналитические зависимости влияния плотности материала на прочность и деформативность конструкционного бетона при осевом сжатии // Строительные материалы. 2022. № 5. С. 58–67. DOI: https://doi.org/10.31659/0585-430X-2022-802-5-58-67
5. Chernousov N.N., Bondarev B.A., Sturova V.A., Bondarev A.B., Liventseva A.A. Analytical dependences of the effect of material density on the strength and deformability of structural concrete under axial compression. Stroitel’nye Materialy [Construction Materials]. 2022. No. 5. С. 58–67. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-802-5-58-67
6. Bondarev B.A., Komarov P.V., Erofeev A.V., Bayazov V.A. Influence of the self-heating temperatureon the cyclic durability of composite materials. Russian Journal of Building Construction and Architecture. 2022. № 1 (53), pp. 39–45. DOI: 10.36622/VSTU.2022.53.1.004
7. Goncharova M., Agamov R., Pachin A. Optimization of compositions of refractory composites using mathematical experiment planning. 4th International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency (SUMMA). 2022, pp. 01–05. DOI: 10.1109/SUMMA57301.2022.9974045
8. Моргун Л.В. Теоретическое обоснование и экспериментальная разработка технологии высокопрочных фибропенобетонов // Строительные материалы. 2005. № 6. C. 59–63.
8. Morgun L.V. Theoretical substantiation and experimental development of high-strength fibropen concrete technology. Stroitel’nye Materialy [Construction Materials]. 2005. No. 6, pp. 59–63. (In Russian).
9. Маилян Л.Р., Налимова А.В., Маилян А.Л., Айвазян Э.С. Челночная технология изготовления фибробетона с агрегированным распределением фибр и его конструктивные свойства // Инженерный вестник Дона. 2011. № 4.
9. Mailyan L.R., Nalimova A.V., Mailyan A.L., Ayvazyan E.S. Shuttle manufacturing technology of fiber concrete with aggregated fiber distribution and its structural properties. Inzhenernyj vestnik Dona. 2011. No. 4. (In Russian).
10. Баранов А.С. Прочность и долговечность мелкоштучных изделий из гиперпрессованного фиб-робетона // Градостроительство и архитектура. 2017. Т. 7. № 3 (28). С. 46–49. DOI: 10.17673/Vestnik.2017.03.8
10. Baranov A.S. Strength and durability of small piece products made from fibre reinforced concrete. Gradostroitelstvo i arhitektura. 2017. Vol. 7. No. 3 (28), pp. 46–49. DOI: 10.17673/Vestnik.2017.03.8
11. Пустовгар А.П., Лавданский П.А., Журавлев А.В., Есенов А.В., Медведев В.В., Веденин А.Д. Тепловыделение при гидратации цемента серпентинитового бетона // Научно-технический вестник Поволжья. 2014. № 5. С. 285–287.
11. Pustovgar A.P., Lavdansky P.A., Zhuravlev A.V., Esenov A.V., Medvedev V.V., Vedenin A.D. Hydration Heat Release Of Cement In Serpentine Concrete. Nauchno-tekhnicheskiy vestnik Povolzhya. 2014. No. 5, pp. 285–287. (In Russian).
12. Прошин А.П., Демьянова В.С., Калашников Д.В. Особо тяжелый высокопрочный бетон для защиты от радиации с использованием вторичных ресурсов. Пенза: ПГУАС, 2004. 140 с.
12. Proshin A.P., Demyanova V.S., Kalashnikova D.V. Osobo yazhelyy vysokoprochnyy beton dlya zashchity ot radiatsii s ispolzovaniem vtorichnykh resursov [Extra heavy high-strength concrete for radiation protection using secondary resources]. Penza: PGUAS. 204. 140 p.
13. Бондарев Б.А., Черноусов Н.Н., Черноусов Р.Н., Стурова В.А. Исследование прочностных свойств сталефиброшлакобетона при осевом растяжении и сжатии с учетом его возраста // Строительные материалы. 2017. № 5. С. 20–24.
13. Bondarev B.A., Chernousov N.N., Chernousov R.N., Sturova V.A. Research in strength properties of steel-fiber-slag concrete in the course of axial tension and compression with due regard for its age. Stroitel’nye Materialy [Construction Materials]. 2017. No. 5, pp. 20–24. (In Russian).
14. Бондарев Б.А., Черноусов Н.Н., Черноусов Р.Н., Стурова В.А. Исследование деформативных свойств сталефиброшлакобетона при осевом растяжении и сжатии с учетом его возраста // Вестник Пермского национального исследовательского политехнического университета. Строительство и архитектура. 2017. Т. 8. № 1. С. 18–31. DOI: 10.15593/2224-9826/2017.1.02
14. Bondarev B.A., Chernousov N.N., Chernousov R.N., Sturova V.A. Studying deformation properties of steel fiber slag reinforced concrete under axial tension and compression in view of its age. Vestnik Permskogo Nationalnogo Issledovatelskogo Polytechnicheskogo Universiteta. Stroitelstvo i Architectura. 2017. Vol. 8. No. 1, pp. 18–31. (In Russian). DOI: 10.15593/2224-9826/2017.1.02
15. Rodríguez de Sensale G., Viacava I. R. A study on blended Portland cements containing residual rice husk ash and limestone filler. Construction and Building Materials. 2018. Vol. 166, pp. 873–888. https://doi.org/10.1016/j.conbuildmat.2018.01.113
16. Alsubari B., Shafigh P., Jumaat M.Z. Utilization of high-volume treated palm oil fuel ash to produce sustainable self-compacting concrete. Journal of Cleaner Production. 2016. Vol. 137, pp. 982–996. https://doi.org/10.1016/j.jclepro.2016.07.133
17. Ozturk O., Ozyurt N. Sustainability and cost-effectiveness of steel and polypropylene fiber reinforced concrete pavement mixtures. Journal of Cleaner Production. 2022. Vol. 363. 132582. https://doi.org/10.1016/j.jclepro.2022.132582
18. Fattouh M.S., Tayeh B.A., Agwa I.S., Elsayed E.K. Improvement in the flexural behaviour of road pavement slab concrete containing steel fibre and silica fume. Case Studies in Construction Materials. 2023. Vol. 18. e01720. https://doi.org/10.1016/j.cscm.2022.e01720

For citation: Аgamov R.E., Goncharova M.A., Pachin A.R. High-strength fiber-reinforced concrete in structures for general construction and special purposes. Stroitel’nye Materialy [Construction Materials]. 2023. No. 1–2, pp. 39–43. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-810-1-2-39-43

Increasing the Strength of Asphalt Concrete Mixtures for the Repair of Rigid Road Pavements

Number of journal: No.1-2-2023
Autors:

Goncharova M.A.,
Tkacheva I.A.

DOI: https://doi.org/10.31659/0585-430X-2023-810-1-2-33-37
УДК: 625.861

 

AbstractAbout AuthorsReferences
The analysis of the types of rigid road surfaces, namely cement concrete with a mineral binder and asphalt concrete with an organic binder, was carried out. The comparison of these composite materials according to various physical and mechanical and operational parameters was carried out. The main comparison criteria are: strength, deformability, quality of adhesion of the components of the compositions of asphalt concrete and cement concrete mixtures, as well as the layers of the road structure to each other. As a result of the analysis made, insufficiently studied issues were identified. Increasing the strength and shear resistance of the road structure is one of them. This is facilitated by the introduction of modifying components of various composition and genesis. The composition of the mixture is proposed, in which the mineral component is cement, the organic component is bitumen emulsion, as well as there are inert materials from dense rocks. As a result of tests conducted, a significant increase in the strength of the final composite was revealed. A variant of solving the problem of adhesion of heterogeneous components of composite mixtures, as well as layers of a road structure to each other, is proposed. The introduction of mineral filler into the frame asphalt concrete mixture can increase the strength and shear resistance of the road structure as a whole.
M.A. GONCHAROVA, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
I.A. TKACHEVA, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Lipetsk State Technical University (30 Moskovskaya Street, Lipetsk, 398055, Russian Federation)

1. Korochkin A.V. Features of capital maintenance and reconstruction rigid road pavements. Nauka i tekhnika v dorozhnoi otrasli. 2019. No. 3 (89), pp. 15–18. (In Russian).
2. Bondarev B.A., Kurochkin A.V., Kosta A.A., Korneeva A.O. Methods of overhaul and reconstruction of road pavements with cement concrete coatings. Modern Science: Theory, Methodology, Practice. Materials of the III All-Russian (national) scientific and practical conference. Tambov. 2021, pp. 206–207. (In Russian).
3. Borodin E.Yu., Garanina Yu.I. Determination of rigid pavement using. Human Security and Sustainable Development of Society in the Face of the Challenges of Global Transformations. Materials of the international interdisciplinary scientific conference. Ioshkar-Ola. Vol. 1. Part 2. 2021, pp. 99–100. (In Russian).
4. Akulova I.I., Artamonova O.V., Goncharova M.A. Scientific school of Academician RAASN E.M. Chernyshov (in memory of the teacher). Part 1. Development of fundamental problems of materials science of construction composites. Scientific Journal of Construction and Architecture. 2022. No. 4 (68), pp. 72–82. (In Russian). DOI: https://doi.org/10.36622/VSTU.2022.68.4.007
5. Strokova V.V., Babaev V.B., Markov A.Yu. Comparative evaluation of road pavement structures using cement concrete. Stroitel’nye materialy i izdeliya. 2019. Vol. 2. No. 4, pp. 56–63. (In Russian).
6. Tkacheva I.A., Goncharova M.A. Condition of cement concrete road surfaces in Russia and ways of repair. Modern Problems of Materials Science: Scientific papers of the II All-Russian (national) scientific and practical conference devoted to the 65th anniversary of LSTU. Lipetsk. 2021, pp. 297–300. (In Russian).
7. Korochkin A.V. Forecasting the required durability of road clothing for the weight of its period of service according to actual normative documents. Road Design: Collection of reports of the 78th international scientific-methodical and research conference of MADI, subsection “Survey and design of roads”. Moscow. 2020, pp. 30–38. (In Russian).
8. Chursin E.V., Goncharova M.A., Chernousov N.N. Increasing operational reliability of asphalt concrete coatings. Engineering in Construction and Transport. Actual Researches in Modern Science: Materials of the scientific-practical conference of students and graduate students of the Lipetsk State Technical University. Lipetsk. 2020, pp. 136–138. (In Russian).
9. Chernousov N.N., Bondarev B.A., Sturova V.A. Analytical dependences of the effect of material density on the strength and deformability of structural concrete under axial compression. Stroitel’nye Materialy [Construction Materials]. 2022. No. 5, pp. 58–67. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-802-5-58-67
10. Korochkin A. V. Influence of type and thickness of cement-concrete on the calculation of rigid road surfaces with asphalt-concrete pavement. IOP Conference Series: Materials Science and Engineering. International Science and Technology Conference “FarEastCon 2019”. Vladivostok, Russky Island. 2020. Vol. 753, 2, Chapter 1, pp. 022–029. DOI: https://doi.org/10.1088/1757-899X/753/2/022029
11. Tkacheva I.A. Interaction of organic binder and mineral filler in compositions of asphalt concrete mixtures. Modern Problems of Materials Science: Scientific papers of the III All-Russian (national) scientific and practical conference devoted to the memory of Doctor of Technical Sciences, Professor, Academician of the Russian Academy of Architecture and Construction Sciences E.M. Chernyshov. Lipetsk. 2022, pp. 70–74. (In Russian).
12. Korochkin A.V. Shear resistance of automotive layers of rigid road clothing. Stroitel’nye Materialy [Construction Materials]. 2014. No. 1–2, pp. 65–67. (In Russian).
13. Korochkin A.V. Analysis of coupling qualities of road pavements of asphalt concrete and cement concrete. Stroitel’nye Materialy [Construction Materials]. 2019. No. 7, pp. 21–27. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-772-7-21-27
14. Goncharova M.A., Tkacheva I.A. Practical experience in applying the crushed stone-mastic asphalt concrete with the use of activated mineral powder. Stroitel’nye Materialy [Construction Materials]. 2016. No. 10, pp. 80–82. (In Russian).
15. Pugin G., Yakontseva O.V., Salakhova V., Tyuryukhanov K.Y. Change in properties of bitumen used for road construction in bitumineral. Materials Research Proceedings. Temryuk. 2022, pp. 183–188. DOI: https://doi.org/10.21741/9781644901755-32
16. Tyuryukhanov K.Yu. Factors influencing on the change of physical and mechanical characteristics of asphalt concrete. Agrotechnologies of the 21st Century: Development Strategy, Technologies and Innovations: Materials of the All-Russian Scientific and Practical Conference. Permian. 2021, pp. 422–424. (In Russian).

For citation: Goncharova M.A., Tkacheva I.A. Increasing the strength of asphalt concrete mixtures for the repair of rigid road pavements. Stroitel’nye Materialy [Construction Materials]. 2023. No. 1–2, pp. 33–37. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-810-1-2-33-37

Features of the Application of the Bio-Mineralization Process to Improve the Structural and Strength Properties of Concrete

Number of journal: No.1-2-2023
Autors:

Goncharova M.A.,
Dergunova E.S.

DOI: https://doi.org/10.31659/0585-430X-2023-810-1-2-25-31
УДК: 666.9:691.5

 

AbstractAbout AuthorsReferences
The results of the application of the bio-mineralization process in concretes to improve mechanical and strength properties are presented. Isolated strains of bacteria Sp. pasteurii (A1), B. Sphaericus (A2), B. Pseudofirmus (A3) and a microbial consortium (A4) isolated from the soil of the Lipetsk region with urease activity were used as a bio-additive. The immobilization of urease bacteria was carried out using κ-carrageenan, sodium alginate and carboxymethylcellulose. The results of the study showed that the compressive strength of concretes made with the use of A1–A4 bio-additives (the optimal cell concentration of 107 cells/ml of bacteria) increased by 10–15% compared to conventional concrete without bio-additives. Similarly, concrete made with various bio-additives showed higher resistance to acidic effects. The improvement of concrete properties due to inclusion was associated with calcite deposition and the presence of bacterial biomass in the pores of the concrete matrix. Microstructural studies have also shown that concretes made using bacteria have a greater calcite formation, which can be seen in the images of scanning electron microscopy of concrete. Thus, the use of bio-additives is optimal to achieve improved concrete characteristics.
M.A. GONCHAROVA, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
E.S. DERGUNOVA, Candidate of Sciences (Chemistry) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Lipetsk State Technical University (30, Moskovskaya Street, Lipetsk, 398055, Russian Federation)

1. Strokova V.V., Vlasov D.Yu., Frank-Kamenetskaya O.V., Dukhanina U.N., Balitsky D.A. Application of microbial carbonate biomineralization in biotechnologies for the creation and restoration of building materials: analysis of the state and development prospects. Stroitel’nye Materialy [Construction Materials]. 2019. No. 9, pp. 83–103. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-774-9-83-103
2. Kalenov S.V., Gradova N.B., Sivkov S.P., Agalakova E.V., Belov A.A., Suyasov N.A., Khokhlachev N.S., Panfilov V.I. A preparation based on bacteria isolated from hypersaline media to improve the functional and protective characteristics of concrete. Biotekhnologiya. 2020. Vol. 36. No. 4, pp. 21–28. (In Russian). DOI: 10.21519/0234-2758-2020-36-4-21-28
3. Strokova V.V., Dukhanina U.N., Balitskiy D.A., Drozdov O.I., Nelyubova V.V., Frank-Kamenetskaya O.V., Vlasov D.Yu. Polymorphism and morphology of calcium carbonates in construction materials technologies using microbial biomineralization (Review). Stroitel’nye Materialy [Construction Mate-rials]. 2022. No. 1–2, рр. 82–122. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-799-1-2-82-122
4. Strokova V.V., Dukhanina U.N., Balitskiy D.A., Drozdov O.I., Nelyubova V.V., Frank-Kamenetskaya O.V., Vlasov D.Yu. Influence of aggregate composition and dispersion on its cementation during carbonate biomineralization). Stroitel’nye Materialy [Construction Materials]. 2022. No. 7, pp. 63–70. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-804-7-63-70
5. Liendo F., Arduino M., Deorsola F.A., Bensaid S. Factors controlling and influencing polymorphism, morphology and size of calcium carbonate synthesized through the carbonation route: A review. Powder Technology. 2022. Vol. 398. 117050. DOI: https://doi.org//10.1016/j.powtec.2021.117050
6. Goncharova M. A., Dergunova E. S. Development and application of biosubstances based on urease-bacteria in cement systems. Izvestiya vysshikh uchebnykh zavedeniy. Stroitel’stvo. 2021. No. 10 (754), pp. 117–124. (In Russian). DOI: 10.32683/0536-1052-2021-754-10-117-124
7. Baffoe E., Ghahremaninezhad A. On the interaction between proteins and cracked cementitious surface. Construction and Building Materials. 2022. Vol. 352. 128982. DOI: https://doi.org//10.1016/j.conbuildmat.2022.128982
8. Liang H., Liu Y., Tian B., Li Z., Ou H. A sustainable production of biocement via microbially induced calcium carbonate precipitation. International Biodeterioration & Biodegradation. 2022. Vol. 172. 105422. DOI: https://doi.org//10.1016/j.ibiod.2022.105422
9. Bhutange S. P., Latkar M.V., Chakrabarti T. Influence of direct urease source incorporation on mechanical properties of concrete. Construction and Building Materials. 2021. Vol. 301. 124116. DOI: https://doi.org//10.1016/j.conbuildmat.2021.124116
10. Marin S., Cabestrero O., Demergasso C., Olivares S., Zetola V., Vera M. An indigenous bacterium with enhanced performance of microbially-induced Ca-carbonate biomineralization under extreme alkaline conditions for concrete and soil-improvement industries. Acta Biomaterialia. 2021. Vol. 120, pp. 304–317. DOI: https://doi.org/10.1016/j.actbio.2020.11.016
11. Vilar R. P., Ikuma K. Adsorption of urease as part of a complex protein mixture onto soil and its implications for enzymatic activity. Biochemical Engineering Journal. 2021. Vol. 171. 108026. DOI: https://doi.org/10.1016/j.bej.2021.108026
12. Sridhar S., Bhatt N., Suraishkumar G.K. Mechanistic insights into ureolysis mediated calcite precipitation. Biochemical Engineering Journal. 2021. Vol. 176. 108214. DOI: https://doi.org/10.1016/j.bej.2021.108214
13. Goncharova M. A., Akchurin T. K., Dergunova E. S. Features of the use of urease bioadditives in cement systems. Bulletin of Volgograd state university of architecture and civil engineering. Seriya: Stroitel’stvo i arhitektura. 2022. No. 3 (88), pp. 64–69. (In Russian).
14. Sharma M., Satyam N., Reddy K. R. Effect of freeze-thaw cycles on engineering properties of biocemented sand under different treatment conditions. Engineering Geology. 2021. Vol. 284. 106022. DOI: https://doi.org/10.1016/j.enggeo.2021.106022
15. Chen B., Sun W., Sun X., Cui Ch., Lai J., Wang Y., Feng J. Crack sealing evaluation of self-healing mortar with Sporosarcina pasteurii: Influence of bacterial concentration and air-entraining agent. Process Biochemistry. 2021. Vol. 107, pp. 100–111. DOI: https://doi.org/10.1016/j.procbio.2021.05.001
16. Aluko O., Awolusi T., Аdesina A. Influence of curing media and mixing solution on the compressive strength of laterized concrete. Silicon. 2020. No. 12, pp. 2425–2432. DOI: https://doi.org/10.1007/s12633-019-00343-x
17. Chaerun S.K., Rahayu S., Rizki I.N., Pane I. Utilization of a New Locally Isolated Bacterial Strain for Promoting Mechanical Properties of Mortar. International Journal of Civil Engineering. 2020. Vol. 18, pp. 665–671. DOI: https://doi.org/10.1007/s40999-020-00500-z
18. Vijay K., Murmu M. Evaluating durability parameters of concrete containing bacteria and basalt fiber. J Build Rehabil. 2022. Vol. 7, рp. 2. DOI: https://doi.org/10.1007/s41024-021-00138-x

For citation: Goncharova M.A., Dergunova E.S. Features of the application of the bio-mineralization process to improve the structural and strength properties of concrete. Stroitel’nye Materialy [Construction Materials]. 2023. No. 1–2, pp. 25–31. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-810-1-2-25-31

Biological Aspects of Clean Room Complex Operation

Number of journal: No.1-2-2023
Autors:

Goncharova M.A.,
Zaeva A.G.

DOI: https://doi.org/10.31659/0585-430X-2023-810-1-2-18-22
УДК: 620.193.8

 

AbstractAbout AuthorsReferences
hemical, physical and biological corrosion and their combinations are a common cause of destruction of buildings and structures. Among the corrosion processes, biological ones are the most undesirable. In general, biocorrosion is divided into bacterial and mycological. Moreover, microorganisms can even affect building materials with high corrosion resistance. This paper presents the results of a study of the biodegradation of mineral wool, which is part of sandwich panels used for the construction of clean rooms. At the same time, the suspension of microorganisms was introduced into the mineral wool in its pure form (an aqueous suspension without the addition of nutrients), with the addition of agarized media. Species of micromycetes and bacteria as Aspergillus brasiliensis, Bacillus subtilis, Candida albicans, Pseudomonas aeruginosa were used as test cultures for testing. During the experiment, flushes were carried out from the surfaces of sandwich panels of a clean room of 10х10 cm. The results of the study showed a continuous growth of fungi and bacteria inside the mineral wool after 6 years of operation. This leads to a loss of stability of the parameters of a clean room, taking into account the conditions of its operation and maintenance. This is especially true for the implementation of technological processes that are sensitive to microbial contamination. Thus, the use of multilayer enclosing structures for the construction of clean rooms with the use of biodegradable materials is a potential cause of non-compliance with operational indicators
M.A. GONCHAROVA, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.G. ZAEVA, engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.),

Lipetsk State Technical University (30, Moskovskaya Street, Lipetsk, 398055, Russian Federation)

1. Erofeev V.T., Smirnov V.F., Svetlov D.A. Construction, reconstruction and operation of buildings and structures taking into account environmental and medical aspects. Vestnik of Privolzhsky territorial branch of the Russian Academy architecture and building sciences. Nizhny Novgorod. 2019, pp. 219–232. (In Russian).
2. Uait V. Tekhnologiya chistykh pomeshchenii: osnovy proektirovaniya, ispytanii i ekspluatatsii [Clean Room Technology: Basis of Design, Testing and Operation]. Moskva: Klinrum. 2002. 304 р.
3. Goncharova M.A., Dergunova E.S., Mraev A.V. Biopovrezhdenie stroitel’nykh materialov i zashchita ot biokorrozii [Bio-damage of building materials and protection against biocorrosion]. Lipetsk: LGTU. 2021. 91 р.
4. Karakeyan V.I., Larionov N.M., Ryabyshenkov A.S., Disvetova N. M. Methodology of system analysis in the study of energy-ecological characteristics of clean rooms. Vektory razvitiya sovremennoi nauki. 2016. No. 1 (3), pp. 83–89. (In Russian).
5. Sevoyan T.R. Basics of ensuring the required air environment parameters in clean rooms of various classes. XXIII Nizhny Novgorod session of young scientists (technical, natural, mathematical sciences): report materials. Novgorod: Nizhny Novgorod State Engineering and Economic Institute. 2018, pp. 191–193. (In Russian).
6. Erofeev V.T., Al Dulaimi S.D.S., Dergunova A.V. Increasing the durability and environmental friendliness of buildings and structures of the textile industry by using materials modified with a microbiological additive. Izvestiya vysshikh uchebnykh zavedenii. Tekhnologiya tekstil’noi promyshlennosti. 2021. No. 3 (393), pp. 141–146. (In Russian). DOI: 10.47367/0021-3497_2021_3_141
7. Anikina N.A., Smirnov V.F., Smirnova O.N., Zaharova E.A. Protection of construction materials based on acrylates from biodeterioration. Magazine of Civil Engineering. 2018. No. 5 (81), pp. 116–124. DOI: 10.18720/MCE.81.12
8. Ganin V.V., Lisitskaya T.B., Velikova T.D. Protection of building materials from biological damage by micromycetes. Science Week of St. Petersburg State University: Materials of a scientific conference with international participation. Saint Petersburg: Saint Petersburg Polytechnic University of Peter the Great. 2018, pp. 252–254. (In Russian).
9. Stroganov V.F., Sagadeev E.V., Vakhitov B.R. Modeling of biological damage processes of mineral building material. XX Mendeleev Congress on General and Applied Chemistry: theses of reports in five volumes. Yekaterinburg: RAASN. 2016, pp. 380. (In Russian).
10. Loginova S.A., Kiselev V.A., Narmania B.E. Problems of studying biological damage to building materials. Molodye uchenye – razvitiyu tekstil’no-promyshlennogo klastera. 2017. No. 2, pp. 491–492. (In Russian).
11. Erofeev V.T., Dergunova A.V., Bogatov A.D. Economic losses from biological damage and the technical and economic efficiency of increasing the biological resistance of materials and structures of buildings and structures of textile industry enterprises. Izvestiya vysshikh uchebnykh zavedenii. Tekhnologiya tekstil’noi promyshlennosti. 2020. No. 5 (389), pp. 97–102. (In Russian).
12. Kryazhev D.V., Smirnov V.F., Smirnova O.N. Analysis of methods for assessing the biological resistance of industrial materials (criteria, approaches ). Bulletin of Nizhny Novgorod University named after N.I. Lobachevsky. 2013. No. 1–2, pp. 118–124. (In Russian).
13. Zaeva A.G., Goncharova M.A. Conditions for the work of floors in an aggressive environment of medical institutions. Modern problems of materials science: Collection of scientific works of the III All-Russian (national) scientific and practical conference. Lipetsk: LGTU. 2022, рр. 96–99. (In Russian).
14. Yartsev V.P., Strulev S.A., Mamontov A.A. Otsenka i optimizatsiya energoeffektivnosti zdanii s razlichnymi ograzhdayushchimi konstruktsiyami, uteplennymi penopolistirol’nymi i mineralovatnymi plitami[Assessment and optimization of energy efficiency of buildings with various enclosing structures, insulated polystyrene foam and mineral wool plates]. Tambov: Tambov State Technical University. 2021. 80 р.

For citation: Goncharova M.A., Zaeva A.G. Biological aspects of clean room complex operation. Stroitel’nye Materialy [Construction Materials]. 2023. No. 1–2, pp. 18–22. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-810-1-2-18-22

Study of the Cyclic Durability of Fiberglass Polymer Concrete for the Repair and Restoration of Structures of Transport Facilities

Number of journal: No.1-2-2023
Autors:

Bondarev B.A.,
Korneev A.D.,
Borkov P.V.,
Bondarev A.B.,
Zhidkov V.K.,
Kopalin D.A.

DOI: https://doi.org/10.31659/0585-430X-2023-810-1-2-11-17
УДК: 691.342

 

AbstractAbout AuthorsReferences
The problem of assessing the residual resource of the operating building structures of transport facilities is touched upon. An algorithm for implementing the program of safe operation of transport facilities has been developed. On the basis of data obtained during field surveys, characteristic defects of building structures of bridges made of concrete and reinforced concrete have been established. It is proposed to restore damaged structures using polymer composite materials. The results of a study of the cyclic durability of polymer concrete reinforced with fiberglass reinforcement are presented. In this case, the endurance coefficient acts as a criterion for assessing cyclic durability, since it determines the proportion of the remaining strength (bearing capacity) after the end of the impact of a repeated-variable (cyclic) load. The analysis of the data obtained indicates the feasibility of using polymer concrete based on furfural acetone resin (FAR) reinforced with fiberglass reinforcement in the restoration and protection of the structures of the slabs of the roadway spans of bridges and overpasses.
B.A. BONDARED, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.D. KORNEEV, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
P.V. BORKOV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.B. BONDAREV, Candidate of Sciences (Engineering), (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.K. ZHIDKOV, Student, (This email address is being protected from spambots. You need JavaScript enabled to view it.),
D.A. KOPALIN, Postgraduate, (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Lipetsk State Technical University (30, Moskovskaya Street, Lipetsk, 398055, Russian Federation

1. Ovchinnikov I.I. Durability of reinforced concrete structures of transport structures. Stroitel’nye Materialy [Construction Materials]. 2011. No. 2, pp. 60–62. (In Russian).
2. Bokarev S.A., Pribytkov S.S., Efimov S.V. Residual life of reinforced concrete superstructures of railway bridges. Vestnik of Tomsk State University of Architecture and Civil Engineering. 2018. Vol. 20. No. 3, pp. 169–183. (In Russian).
3. Vasil’ev A.I. Otsenka tekhnicheskogo sostoyaniya mostovykh sooruzhenii [Technical conditions of bridge structures]. Moscow: KNORUS. 2017. 256 p. (In Russian).
4. Bondarev B.A., Borkov P.V., Bondarev A.B. An outlook on the application of glass-reiforced plastic and polymer concrete components in bridge construction. Procedia Engineering. 2016. Vol. 150, pp. 1617–1622.
5. Bondarev A.B. Forecasting the cyclic durability of polymer composite materials. Cand. Diss. (Engeneering). Volgograd. 2011. 180 p. (In Russian).
6. Nabokov V.F. Investigation of polymer concrete structures reinforced with fiberglass reinforcement based on polyester resin NPS-609-21M. Cand. Diss. (Engeneering). Voronezh. 1979. 231 p. (In Russian).
7. Bondarev B.A., Bondarev A.B., Saprykin R.YU., Meleshkin M.F. Method of calculation of structures made of polymer composite materials reinforced with fiberglass reinforcement for endurance. Vestnik VolgGASU. Stroitelstvo i arhitektura. 2013. No. 31 (50). Path. 2, pp. 91–95. (In Russian).
8. Bondarev B.A. Resistance of polymer concrete building elements reinforced with fiberglass reinforcement by cyclic loads. Cand. Diss. (Engeneering). Voronezh. 1990. 160 p. (In Russian).
9. Bondarev B.A., Harchevnikov V.I., Korneev A.D. Vynoslivost’ kompozicionnyh materialov v konstrukciyah zheleznodorozhnyh shpal [Endurance of composite materials in railway sleepers structures]. Lipetsk: LGTU. 2002. 220 p.
10. Bondarev B.A., Bondarev A.B., Borkov P.V., Zhidkov V.K., Kopalin D.A. Polymer composite materials in structural elements of transport infrastructure structures. Vestnik LGTU. 2022. No. 2 (48), pp. 27–33. (In Russian).
11. Bondarev B.A., Komarov P.V., Borkov P.V., Bonda-rev A.B. Ciklicheskaya dolgovechnost’ polimernyh kompozicionnyh materialov stroitel’nogo naznacheniya [Cyclic durability of polymer composite materials for construction purposes]. Tambov. 2013. 111 p.

For citation: Bondarev B.A., Korneev A.D., Borkov P.V., Bondarev A.B., Zhidkov V.K., Kopalin D.A. Study of the cyclic durability of fiberglass polymer concrete for the repair and restoration of structures of transport facilities. Stroitel’nye Materialy [Construction Materials]. 2023. No. 1–2, pp. 11–17. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-810-1-2-11-17

Functional Building Materials for Passive Degradation of Organic Air Pollutants

Number of journal: No.1-2-2023
Autors:

Bondarenko A.V.,
Bondarev B.A.,
Borkov P.V.,
Ruello M.L.,
Bondarenko V.V.

DOI: https://doi.org/10.31659/0585-430X-2023-810-1-2-4-10
УДК: 612.223.1

 

AbstractAbout AuthorsReferences
The work is devoted to the new role of finishing materials – ensuring passive degradation of air pollutants in residential and industrial premises. Information is provided on the international Indoor Air Quality (IAQ) strategy, which is aimed at ensuring indoor air quality, the main approaches of the strategy including ensuring passive degradation of pollutants due to the use of functional additives in finishing building materials are presented. The advantages of photo-catalytic additives, which ensure the decomposition of organic compounds to safe products, are shown. The results of testing a photo-catalytic material synthesized by applying a layer of titanium dioxide on kaolinite are presented, its properties are shown, as well as the results of using this additive in fillers, ceramic and paint-and-lacquer coatings. The photocatalytic activity of materials was tested to reduce the content of methyl ethyl ketone in the air of a hermetic reactor when materials with a functional additive and base materials were placed there. The most stable trend for a decrease in concentration under ultraviolet illumination was obtained when used in putty and coating obtained by sintering powder to 900oC (below the sintering temperature), where the material retains its initial state. The use in polyurethane varnish leads to complex processes that require additional study, so it is impossible to unequivocally recommend varnishes and paints as a carrier at this stage of the study.
A.V. BONDARENKO1, Candidate of Sciences (Chemistry) (This email address is being protected from spambots. You need JavaScript enabled to view it. ),
B.A. BONDAREV1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
P.V. BORKOV1, Candidate of Sciences (Engineering) (borkov(This email address is being protected from spambots. You need JavaScript enabled to view it.);
M.L. RUELLO2, PhD, Researcher (This email address is being protected from spambots. You need JavaScript enabled to view it.);
V.V. BONDARENKO3, PhD, Engineer( This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Lipetsk State Technical University (30, Moskovskaya Street, Lipetsk, 398042, Russian Federation)
2 Universit Politecnica delle Marche (12, Brecce Bianche Street, Аncona, 60131, Italy)
3 LLC “Intellekt Uslugi Service” (9, Kommunalnaya Square, Lipetsk, 398059, Russian Federation)

1. Augugliaro V., Loddo V., Pagliaro M., Palmisano G., Palmisano L. Clean by light irradiation: practical applications of supported TiO2. The Royal Society of Chemistry. Cambridge CB40WF, UK. 2010
2. Matsumoto H., Shimizu M., Sato H. The contaminant removal efficiency of an air cleaner using the adsorption/desorption effect. Building and Environment. 2009. Vol. 44, pp. 1371–1377. doi: 10.1016/j.buildenv.2008.09.006
3. Kunkel D., Gall E., Siegel J.A., Novoselac A., Morrison G.C., Corsi R.L., Passive reduction of human exposure to indoor ozone. Building and Environment. 2010. Vol. 45, pp. 445–452.
4. Senff L., Tobaldi D.M., Lucas S., Hotza D., Ferreira V.M., Labrincha J.A., Formulation of mortars with nano-SiO2 and nano-TiO2 for degradation of pollutants in buildings. Journal of Composite Materials. 2012. Vol. 44. Part B, pp. 40–47. doi: 10.1016/j.compositesb.2012.07.022
5. Liu Y., Zhou X., Wang D., Song C., Liu J. A prediction model of VOC partition coefficient in porous building materials based on adsorption potential theory. Building and Environment. 2015. Vol. 93, pp. 221–233.
6. Weschler Ch. J., Nazaroff W. W. Semivolatile organic compounds in indoor environments. Atmospheric Environment. 2008. Vol. 42, pp. 9018–9040.
7. Meininghaus R., Gunnarsen L., Knudsen H.N. Diffusion and sorption of volatile organic compounds in building materials-impact on indoor air quality. Environmental Science & Technology. 2000. Vol. 34, pp. 3101–3108. doi:10.1021/es991291i
8. Kozlov D. Titanium dioxide in gas-phase photo-catalytic oxidation of aromatic and heteroatom organic substances: deactivation and reactivation of photocatalyst. Theoretical and Experimental Chemistry. 2014. Vol. 50. No. 3, pp. 133–154.
9. Paola A.D., García-López E., Marcì G., Palmisano L. A survey of photocatalytic materials for environmental remediation. Journal of Hazardous Materials. 2012. Vol. 211–212, pp. 3– 29.
10. Zhong L., Haghighat F. Photocatalytic air cleaners and materials technologies: Abilities and limitations. Building and Environment. 2015. Vol. 91, pp. 191–203.
11. Einaga H., Futamura S., Ibusuki T. Heterogeneous photocatalytic oxidation of benzene, toluene, cyclohexene and cyclohexane in humidified air: comparison of decomposition behavior on photoirradiated TiO2 catalyst. Applied Catalysis B: Environmental. 2002. Vol. 38, pp. 215–225.
12. Шестаков Н.И., Алексеева Д.С., Полосина Д.В. Применение фотокаталитических бетонов в дорожном строительстве // Вестник БГТУ им. В.Г. Шухова. 2021. № 12. С. 16–26. DOI: 10.34031/2071-7318-2021-6-12-16-26
12. Shestakov N.I., Alekseeva D.S., Polosina D.V. Application of photocatalytic concretes in road construction. Vestnik BSTU name after V.G. Shukhov. 2021. No. 12, pp. 16–26. (In Russian). DOI: 10.34031/2071-7318-2021-6-12-16-26
13. Антоненко М.В., Огурцова Ю.Н., Строкова В.В., Губарева Е.Н. Фотокаталитически активные самоочищающиеся материалы на основе цемента. Составы, свойства, применение // Вестник БГТУ им. В.Г. Шухова. 2020. № 3. С. 16–25. DOI: 10.34031/2071-7318-2020-5-3-16-25
13. Antonenko M.V., Ogurtsova Yu.N., Strokova V.V., Gubareva E.N. Photocatalytically active self-cleaning materials based on cement. Compositions, properties, application. Vestnik BSTU name after V.G. Shukhov. 2020. No. 3, pp. 16–25. (In Russian). DOI: 10.34031/2071-7318-2020-5-3-16-25
14. Лукутцова Н.П., Постникова О.А., Соболева Г.Н., Ротарь Д.В., Оглоблина Е.В. Фотокаталитическое покрытие на основе добавки нанодисперсного диоксида титана // Строительные материалы. 2015. № 11. С. 5–8.
14. Lukutsova N.P., Postnikova O.A., Soboleva G.N., Rotar D.V., Ogloblina E.V. Photocatalytic coating based on the addition of nanodispersed titanium dioxide. Stroitel’nye Materialy [Construction Materials]. 2015. No. 11, pp. 5-8. (In Russian).
15. Хела Р., Боднарова Л. Исследование возможности тестирования эффективности фотокатализа TIO2 в бетоне // Строительные материалы. 2015. № 2. С. 77–81.
15. Hela R., Bodnarova L. Study of the possibility of testing the efficiency of TiO2 photocatalysis in concrete. Stroitel’nye Materialy [Construction Materials]. 2015. No. 2, pp. 77–81. (In Russian).
16. Баженов В.К., Червонцева М.А. Эффективность применения фотокаталитических бетонов в городском строительстве // Вестник МИТУ-МАСИ. 2018. № 3. С. 27–31.
16. Bazhenov V.K., Chervontseva M.A. Efficiency of using photocatalytic concretes in urban construction. Vestnik MITU-MACI. 2018. No. 3, pp. 27–31. (In Russian).
17. Фаликман В.Р., Вайнер А.Я. Фотокаталитические цементные композиты, содержащие мезопористые наночастицы диоксида титана // Нанотехно-логии в строительстве. 2014. Т. 6. № 1. С. 14–26.
17. Falikman V.R., Weiner A.Ya. Photocatalytic cement composites containing mesoporous titanium dioxide nanoparticles. Nanotechnologii v stroitelstve. 2014. Vol. 6. No. 1, pp. 14–26. (In Russian).
18. Фаликман В.Р., Вайнер А.Я. Новые высокоэффективные добавки для фотокаталитических бетонов. Синтез и исследование // Нанотехнологии в строительстве. 2015. Т. 7. № 1. С. 18–28. DOI: 10.15828/2075-8545-2015-7-1-18-28
18. Falikman V.R., Weiner A.Ya. New highly effective additives for photocatalytic concretes. Synthesis and research. Nanotechnologii v stroitelstve. 2015. Vol. 7. No. 1, pp. 18–28. (In Russian). DOI: 10.15828/2075-8545-2015-7-1-18-28
19. Ляпидевская О.Б., Фрайнт М.А. Фотокаталити-ческий бетон для дорожного строительства // Вестник МГСУ. 2014. № 2. С. 125–130.
19. Lyapidevskaya O.B., Freint M.A. Photocatalytic concrete for road construction. Vestnik MSUCE. 2014. No. 2, pp. 125–130. (In Russian).
20. Anpo M., Kawamura T., Kodama S., Maruya K., Onishi T. Photocatalysis on titanium-aluminum binary metal oxides: enhancement of the photocatalytic activity of titania species. Journal of Physical Chemistry. 1988. Vol. 92 (2), pp. 438–440.
21. Anpo M., Nakaya H., Kodama S., Kubokawa Y., Domen K., Onishi T. Photocatalysis over binary metal oxides: enhancement of the photocatalytic activity of TiO2 in titanium-silicon oxides. Journal of Physical Chemistry. 1986. Vol. 90, pp. 1633–1636.
22. Ohno В.T., Akiyoshi M., Umebayashi T., Asai K., Mitsui T., Matsumura M. Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Applied Catalysis A: General. 2004. Vol. 265, pp. 115–121.
23. Бондаренко В.В., Руэлло М.Л., Бондаренко А.В., Петухова Г.А., Дубинина Л.А. Исследование адсорбционно-структурных характеристик и фотоактивности композита TiO2/каолинит. Физико-химия поверхности и защита материалов. 2019. T. 55. № 2. C. 127–143.
23. Bondarenko V.V., Ruello M.L., Bondarenko A.V., Petukhova G.A., Dubinin L.A. A Study of the Adsorption-Structural Parameters and Photoactivity of TIO2/kaolinite Composite. Fiziko-khimiya poverkhnosti i zashchita materialov. 2019. Vol. 55. No. 2, pp. 217–233. (In Russian).
24. Tobaldi D.M., Tucci A., Camera-Roda G., Baldi G., Esposito L. Photocatalytic activity for exposed building materials. Journal of the European Ceramic Society. 2008. Vol. 28, pp. 2645–2652.
25. Selishchev D.S., Kolobov N.S., Pershin A.A., Kozlov D.V. TiO2 mediated photocatalytic oxidation of volatile organic compounds: formation of CO as a harmful by-product. Applied Catalysis B: Environmental. 2017. Vol. 200, pp. 503–515. DOI: 10.1016/j.apcatb.2016.07.044

For citation: Bondarenko A.V., Bondarev B.A., Borkov P.V., Ruello M.L., Bondarenko V.V. Functional building materials for passive degradation of organic air pollutants. Stroitel’nye Materialy [Construction Materials]. 2023. No. 1–2, pp. 4–10. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-810-1-2-4-10

https://www.traditionrolex.com/10