Log in

Light Porous Aggregate from a Modified Composition of Zeolite-Alkali Batch

Number of journal: 7-2023
Autors:

Matveeva O.I.,
Baishev N.K.,
Fedorov A.V.,
Pavlyukova I.R
Popov A.L.

DOI: https://doi.org/10.31659/0585-430X-2023-815-7-17-24
УДК: 666.973

 

AbstractAbout AuthorsReferences
The article touches upon the issue of improving the quality of light porous aggregate from zeolite-alkaline batch – foam zeolite. The possibility of using technical powdered lignosulfonate as a batch modifier has been experimentally confirmed. It is shown that when lignosulfonate is added to the zeolite foam batch in an amount of 5%, the filler density increases by 75% and the compressive strength in the cylinder increases by 3 times. The improvement is due to the active excitation of sulfate groups in the lignosulfonate, which cause a finely dispersed bulk material of the batch, which causes rapid swelling. An experimental batch of foam zeolite was obtained with quality indicators: bulk density grade – M500, strength grade – P125, water absorption – 10.9%, which satisfies the normalized standard values according to GOST 32496–2013, and also meets the requirements of GOST 25820–2021 for structural and structural-heat-insulating lightweight concrete.
O.I. MATVEEVA1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
N.K. BAISHEV2, Graduate Student (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.V. FEDOROV2, Graduate Student (This email address is being protected from spambots. You need JavaScript enabled to view it.);
I.R. PAVLYUKOVA3, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.L. POPOV2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 YakutPNIS-Commercial Center OOO (20, Dzerzhinsky Street, Yakutsk, 677000, Russian Federation)
2 North-Eastern Federal University (50, Kulakovskogo Street, Yakutsk, 677000, Russian Federation)
3 Yakutsk State Design, Research Institute of Construction JSC (20, Dzerzhinsky Street, Yakutsk, 677000, Russian Federation)

1. Matos P.R. de, Foiato M., Prudêncio L.R. Ecological, fresh state and long-term mechanical properties of high-volume fly ash high-performance self-compacting concrete. Construction and Building Materials. 2019. Vol. 203, pp. 282–293. DOI: https://doi.org/10.1016/j.conbuildmat.2019.01.074
2. Ricklefs A. Thermal conductivity of cementitious composites containing microencapsulated phase change materials. International Journal of Heat and Mass Transfer. 2017. Vol. 104, pp. 71–82. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.013
3. Ovcharenko G., Ibe E. The role of aluminum and iron hydroxides in the formation of concrete properties. IOP Conference Series: Materials Science and Engineering. 2021. Vol. 1030. No. 1. DOI 10.1088/1757-899X/1030/1/012023
4. Nelubova V.V. The composition and properties of autoclaved gas concrete with amorphized raw modifiers. Materials and Technologies in Construction and Architecture II. 2020. Vol. 974, pp. 142–148. https://doi.org/10.4028/www.scientific.net/MSF.974.142
5. Volodchenko A.N., Nelyubova V.V. Reactivity of the clay component of rocks at the incomplete stage of mineral formation to lime during autoclave processing. Lecture Notes in Civil Engineering. 2021. Vol. 95, pp. 86–91. DOI: https://doi.org/10.1007/978-3-030-54652-6_13
6. Фролова М.А., Морозова М.В., Айзенштадт А.М., Тутыгин А.С. Алюмосиликатное вяжущее на основе сапонитсодержащих отходов алмазодобывающей промышленности // Строительные материалы. 2017. № 7. С. 68–70. DOI: https://doi.org/10.31659/0585-430X-2017-750-7-68-70
6. Frolova M.A., Morozova M.V., Ayzenshtadt A.M., Tutygin A.S. An aluminum-silicate binder on the basis of saponite-containing waste of diamond industry. Stroitel’nye Materialy [Construction Materials]. 2017. No. 7, pp. 68–70. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2017-750-7-68-70
7. Леонович С.Н., Свиридов Д.В., Беланович А.Л., Карпушенкова Л.С., Карпушенков С.А. Пористый керамический материал на основе глины и отходов производства гранитного щебня // Строительные материалы. 2019. № 5. С. 45–50. DOI: https://doi.org/10.31659/0585-430X-2019-770-5-45-50.
7. Leonovich S.N., Sviridov D.V., Belanovich A.L., Karpushenkova L.S., Karpushenkov S.A. Porous ceramic material based on clay and waste of production of granite rubble. Stroitel’nye Materialy [Construction Materials]. 2019. No. 5, pp. 45–50. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-770-5-45-50
8. Казанцева Л.К., Юсупов Т.С., Лыгина Т.З. и др. Пеностекло из механоактивированных бедных цеолитсодержащих пород // Стекло и керамика. 2013. № 10. С. 18–22.
8. Kazantseva L.K. et al. Foam glass from mechanoactivated zeolite-poor rock. Steklo i Keramika. 2014. Vol. 70. No. 9–10, pp. 360–364. (In Russian).
9. Panina T.I. Efficiency of application of complex nanomodifying additives based on zeolites in building materials. Nanotechnologies in Construction: A Scientific Internet-Journal. 2016. Vol. 8. No. 5, pp. 116–132.
10. Казанцева Л.К. Особенности изготовления пеностекла из цеолитщелочной шихты // Стекло и керамика. 2013. № 8. С. 3–7.
10. Kazantseva L.K. Particulars of foam glass manufacture from zeolite-alkali batch. Steklo i Keramika. 2013. Vol. 70. No. 7–8, pp. 277–281. (In Russian).
11. Смиренская В.Н., Верещагин В.И. Перспективы использования цеолитовых пород Сибири в силикатных материалах // Стекло и керамика. 2002. Т. 75. № 12.
11. Smirenskaya V.N., Vereshchagin V.I. Prospects of using zeolite rocks of Siberia in silicate materials. Steklo i Keramika. 2002. Vol. 59. No. 11–12, pp. 414–419.
12. Gainanova A.A. New composites based on zeolites (H-Beta, H-ZSM-5) and nanosized titanium(iv) oxide (anatase and η-phase) doped by Ni, Ag, V with photocatalytic, adsorption and bactericidal properties. New Journal of Chemistry. Royal Society of Chemistry. 2021. Vol. 45. No. 5, pp. 2417–2430. DOI: https://doi.org/10.1039/D0NJ04286B
13. Лесовик Р.В. Комплексное использование хвостов мокрой магнитной сепарации железистых кварцитов // Горный журнал. 2004. № 1. С. 76–77.
13. Lesovik R.V. Integrated use of tailings of wet magnetic separation of ferruginous quartzites. Gornyi Zhurnal. 2004. Vol. 1, pp. 76–77. (In Russian).
14. Ortega-Guerrero M.A., Carrasco-Núñez G. Environ-mental occurrence, origin, physical and geochemical properties, and carcinogenic potential of erionite near San Miguel de Allende, Mexico. Environmental Geochemistry and Health. 2014. Vol. 36. No. 3, pp. 517–529. DOI: 10.1007/s10653-013-9578-z
15. Perraki T. The effect of zeolite on the properties and hydration of blended cements. Cement and Concrete Composites. 2010. Vol. 32. No. 2, pp. 128–133. https://doi.org/10.1016/j.cemconcomp.2009.10.004
16. Trung N.T. Reduction of cement consumption by producing smart green concretes with natural zeolites. Smart Structures and Systems. 2019. Vol. 24. No. 3, pp. 415–425. DOI: 10.12989/sss.2019.24.3.415
17. Boháč M. Properties of cement pastes with zeolite during early stage of hydration. Procedia Engineering. 2016. Vol. 151, pp. 2–9. https://doi.org/10.1016/j.proeng.2016.07.349
18. ТУ 23.99.19-001-23297907–2020. Пеноцеолит гранулированный. Технические условия.
18. TU 23.99.19-001-23297907–2020. Penoceolit granu-lirovannyj. Tekhnicheskie usloviya [Penozeolite granulated. Specifications] (In Russian).
19. Патент RU (11) 2 723 886(13) C1. Способ изготовления гранулированного пеностеклокерамического заполнителя.
19. Patent RU (11) 2 723 886(13) C1. Sposob izgotovleniya granulirovannogo penosteklokeramicheskogo zapolnitelya [Method for manufacturing granular foam-glass-ceramic filler] (In Russian).
20. Иванов К.С. Применение цеолитов Якутии для получения гранулированного теплоизоляционного материала // Известия Томского политехнического университета. Инжиниринг георесурсов. 2021. Т. 332. № 8. 160–167.
20. Ivanov K.S. Application of zeolites of Yakutia to obtain granulated heat-insulating material. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov. 2021. Vol. 332. No. 8, pp. 160–167. (In Russian).
21. Иванов К.С. Структурообразование в системе SiO2–Na2O–H2O при синтезе пеностеклокерамики экструзионным методом // Неорганические материалы. 2019. Т. 55. № 3. С. 304–310.
21. Ivanov K.S. Structure formation in the SIO2–NA2O–H2O system during the synthesis of foam glass ceramics by the extrusion method. Neorganicheskie materialy. 2019. Vol. 55, No. 3, pp. 304–310. (In Russian).
22. Иванов К.С. Влияние методов подготовки силикат-натриевой смеси на формирование структуры пеностеклокерамики // Физика и химия стекла. 2019. Т. 45. № 1. С. 65–73.
22. Ivanov K.S. Influence of methods of preparation of silicate-sodium mixture on the formation of the structure of foamed glass ceramics. Fizika i himiya stekla. 2019. Vol. 45. No. 1, pp. 65–73. (In Russian).
23. Орлов А.Д. Оптимизированная одностадийная технология гранулированного пеностекла на основе низкотемпературного синтеза стеклофазы // Строительные материалы. 2015. № 1. С. 24–26.
23. Orlov A.D. Optimization of one-stage technology of granulated foam glass on the basis of low-temperature synthesis of glass phase. Stroitel’nye Materialy [Construction Materials]. 2015. No. 1, pp. 24–26. (In Russian).
24. Орлов А.Д., Нежиков А.В. Пеностеклокерамика как заполнитель высокотехнологичных легких бетонов // Вестник НИЦ «Строительство». 2017. № 14. С. 163–171.
24. Orlov A.D., Nezhikov A.V. Foam-glass-ceramics as a filler for high-tech lightweight concretes. Vestnik NIC Stroitel’stvo. 2017. No. 14, pp. 163–171 (In Russian).
25. Орлов А.Д. Пеностеклокерамика из минерального сырья: новая одностадийная технология «Термогран» на основе низкотемпературного синтеза стеклофазы и ее перспективы // Вестник НИЦ «Строительство». 2014. № 11. С. 40–45.
25. Orlov A.D. Foam glass ceramic from mineral raw materials: the new one-stage Thermogran technology based on low-temperature synthesis of glass phase and its prospects. Vestnik NIC Stroitel’stvo. 2014, pp. 42–43 (In Russian).
26. Баишев Н.К., Матвеева О.И., Попов П.М., Семенов К.В. Оценка энергоэффективности жилого дома с различными вариантами конструкций стен с применением стеновых блоков из легкого цеолитобетона. Современные проблемы строительства и жизнеобеспечения: безопасность, качество, энерго- и ресурсосбережение [Электронный ресурс]: Сборник избранных научных трудов по материалам VI Всероссийской научно-практической конференции, посвященной 85-летию создания строительного комплекса Якутии, г. Якутск, 5–6 октября 2021 г. Киров: Изд-во МЦИТО, 2022.
26. Baishev N.K., Matveeva O.I., Popov P.M., Semenov K.V. Evaluation of the energy efficiency of a residential building with various wall designs using lightweight zeolite concrete wall blocks. Modern problems of construction and life support: safety, quality, energy and resource saving [Electronic resource]: a collection of selected scientific papers based on the materials of the VI All-Russian Scientific and Practical Conference dedicated to the 85th anniversary of the creation of the construction complex of Yakutia. Yakutsk, October  5–6, 2021 of the year. Kirov: MCITO Publishing House, 2022. (In Russian).
27. Ведяков И.И., Васкалов В.Ф., Малявский Н.И., Ведяков М.И. Пеностеклокерамическая тепло-изоляция – эффективное решение для жилищного строительства на арктических и субарктических территориях. Современные проблемы строительства и жизнеобеспечения: безопасность, качество, энерго- и ресурсосбережение [Электронный ресурс]: Сборник избранных научных трудов по материалам VI Всероссийской научно-практической конференции, посвященной 85-летию создания строительного комплекса Якутии, г. Якутск, 5–6 октября 2021 г. Киров: Изд-во МЦИТО, 2022.
27. Vedyakov I.I., Vaskalov V.F., Malyavsky N.I., Vedyakov M.I. Foam-glass-ceramic thermal insulation is an effective solution for housing construction in the Arctic and subarctic territories. Modern problems of construction and life support: safety, quality, energy and resource saving] [Electronic resource]: a collection of selected scientific papers based on the materials of the VI All-Russian Scientific and Practical Conference dedicated to the 85th anniversary of the creation of the construction complex of Yakutia. Yakutsk, October 5–6, 2021 of the year. Kirov: MCITO Publishing House, 2022. (In Russian).
28. Фирстов А.П. Выбор лигносульфонатов при различных способах варки для использования их в литейном производстве // Евразийское Научное Объединение. 2021. № 3–1 (73). С. 105–108.
28. Firstov A.P. The choice of lignosulfonates for various methods of cooking for their use in foundry. Evrazijskoe Nauchnoe Obedinenie. 2021. No. 3–1 (73), pp. 105–108 (In Russian).
29. Абдрахимов В.З., Белякова Е.А., Денисов Д.Ю. Исследование тепломассообменных процессов при обжиге легковесного кирпича // Огнеупоры и техническая керамика. 2011. № 1–2. С. 49–53.
29. Abdrakhimov V.Z., Belyakova E.A., Denisov D.Yu. Investigation of heat and mass transfer processes during firing of lightweight bricks. Ogneupory i tekhnicheskaya keramika. 2011. No. 1–2, pp. 49–53. (In Russian).

For citation: Matveeva O.I., Baishev N.K., Fedorov A.V., Pavlyukova I.R., Popov A.L. Light porous aggregate from a modified composition of zeolite-alkali batch. Stroitel’nye Materialy [Construction Materials]. 2023. No. 7, pp. 17–24. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-815-7-17-24

Technology for The Installation of a Monolithic Reinforced Concrete Grillage in Cramped Conditions of a Functioning Facility

Number of journal: 7-2023
Autors:

Sokolov N.S.,
Sokolov S.N.,
Sokolov A.N.

DOI: https://doi.org/10.31659/0585-430X-2023-815-7-12-16
УДК: 624.15

 

AbstractAbout AuthorsReferences
The problems of developing underground space in the cramped conditions of existing industries is a complex geotechnical task and requires a specific approach. At the same time, the presence of weak engineering-geological elements significantly aggravates the geotechnical work. Increasing the bearing capacity of foundation bases is always under the close attention of geotechnicians, designers and builders. The use of bored-injection piles, arranged using non-standard physical processes, in most cases successfully solves many complex and atypical geotechnical problems.
N.S. SOKOLOV1,2, Candidate of Sciences (Engineering), Director (This email address is being protected from spambots. You need JavaScript enabled to view it.);
S.N. SOKOLOV2, Director, LLC “Stroitel Forst”;
A.N. SOKOLOV2, Director for construction (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Chuvash State University named after I.N. Ulyanov (15, Moskovsky prospect, Cheboksary, 428015, Chuvash Republic, Russian Federation)
2 LLC NPF “FORST (109a, Kalinina Street, Cheboksary, 428000, Chuvash Republic, Russian Federation)

1. Ilichev V.A., Mangushev R.A., Nikiforova N.S. Experience of development of russian megacities underground space. Osnovaniya, fundamenty i mekhanika gruntov. 2012. No. 2, pp. 17–20. (In Russian).
2. Ulickij V.M., Shashkin A.G., Shashkin K.G. Geotekhnicheskoe soprovozhdenie razvitiya gorodov [Geotechnical Support of Urban Development]. Saint Petersburg: Georeconstruction, 2010. 551 p.
3. Ilichev V.A., Konovalov P.A., Nikiforova N.S., Bulgakov L.A. Deformations of the Retaining Structures Upon Deep Excavations in Moscow. Proc. Of Fifth Int. Conf on Case Histories in Geotechnical Engineering. April 3–17. New York. 2004, pp. 5–24.
4. Ilichev V.A., Nikiforova N.S., Koreneva E.B. Computing the evaluation of deformations of the buildings located near deep foundation tranches. Proc. of the XVI European conf. on soil mechanics and geotechnical engineering. Madrid. Spain. 24–27 September 2007. Vol. 2, pp. 581–585.
5. Ilyichev V.A., Nikiforova N.S., Konnov A.V. Forecast of changes in the temperature state of the building base in climate warming. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2021. No. 6, pp. 18–24. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2021-6-18-24
6. Nikiforova N.S., Vnukov D.A. Geotechnical cut-off diaphragms for built-up area protection in urban underground development. The pros, of the 7th Int. Symp. «Geotechnical aspects of underground construction in soft ground», 16–18 May, 2011. tc28 IS Roma, AGI, 2011, № 157NIK.
7. Nikiforova N.S., Vnukov D.A. The use of cut off of different types as a protection measure for existing buildings at the nearby underground pipelines installation. Proc. of Int. Geotech. Conf. dedicated to the Year of Russia in Kazakhstan. Almaty, Kazakhstan, 23–25 September 2004, pp. 338–342.
8. Petrukhin V.P., Shuljatjev O.A., Mozgacheva O.A. Effect of geotechnical work on settlement of surrounding buildings at underground construction. Proceedings of the 13th European Conference on Soil Mechanics and Geotechnical Engineering. Prague, 2003.
9. Ter-Martirosyan Z.G., Ter-Martirosyan A.Z., Anzhelo G.O. The interaction of non-filtering crushed stone pile (column) with the surrounding consolidating soil and plate in the pile-slab foundation. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2019. No. 4, pp. 19–23. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2019-4-19-23
10. Sokolov N.S., Sokolov A.N., Sokolov S.N., Glushkov V.E., Glushkov A.E. Calculation of flight augering piles of high bearing capacity. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2017. No. 11, pp. 20–26. (In Russian).
11. Sokolov N.S. Technological Methods of Installation of Bored-Injection Piles with Multiple Enlargements. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2016. No. 10, pp. 54–57. (In Russian).
12. Sokolov N.S., Viktorova S.S. Method of aliging the lurches of objects with large-sized foundations and increased loads on them. Penodico Tche Quimica. 2018. January. Vol. 15, pp. 1–11.
13. Sokolov N.S., Petrov M.V., Ivanov V.A. Calculation problems the buroinjektsionnykh of the piles made with use of digit and pulse technology. Materials of the 8th All-Russian (the 2nd International) the «New in Architecture, Designing of Construction Designs and Reconstruction» conference (NASKR-2014). 2014. Cheboksary, pp. 415–420. (In Russian).
14. Sokolov N.S., Ryabinov V. M. About efficiency of the device the buroinjektsionnykh of piles with multi-seater broadenings with use of electro-digit technology. Geotechnica. 2016. No. 2, pp. 28–32. (In Russian).
15. Ter-Martirosian A.Z., Kivluik V.P., Isaev I.O., Shishkina V.V. Analysis of the calculated prerequisites for the geotechnical forecast of new construction on the surrounding buildings. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2022. No. 9, pp. 57–66. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2022-9-57-66

For citation: Sokolov N.S., Sokolov S.N., Sokolov A.N. Technology for the installation of a monolithic reinforced concrete grillage in cramped conditions of a functioning facility. Stroitel’nye Materialy [Construction Materials]. 2023. No. 7, pp. 12–16. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-815-7-12-16

Current Problems of Development of the Regulatory Framework for the Production and Operation of Refractory Concrete

Number of journal: 7-2023
Autors:

Akhtyamov R.Ya.,
Ahmed'yanov R.M.,
Gamaliy E.A.,
Averina G.F.

DOI: https://doi.org/10.31659/0585-430X-2023-815-7-4-11
УДК: 666.974.2

 

AbstractAbout AuthorsReferences
The development of the production of refractory concretes and the expansion of their scope in the construction of high-critical facilities, including nuclear facilities, necessitates a detailed analysis of the current fund of regulatory documents. It is necessary to identify the degree of their compliance with trends in the field of scientific developments and with the increasing requirements of the industrial complex. As a result of the analysis of regulatory documentation, a list of problems was identified. Among other things it was found the inconsistencies between the provisions of simultaneously acting regulatory documents. It was also found that there is no regulatory framework for the use of promising types of refractory concrete, despite the accumulated many years of scientific and practical experience in this area. Variants of updating and supplementing the existing regulatory and technical base regulating the area of production, quality control and maintenance of refractory concretes and structures with their use are proposed.
R.Ya. AKHTYAMOV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
R.M. AHMED'YANOV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
E.A. GAMALIY, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
G.F. AVERINA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

“Ural Research Institute of Building Materials” LLC (building 2, 5, Stalevarov Street, Chelyabinsk, 454047, Russian Federation)

1. Adamov E.O., Pershukov V.A. Breakthrough project. Tenth International Scientific and Technical Conference «Safety, Efficiency and Economics of Nuclear Energy» MNTK-2016. Moscow. May 25–27, 2016, pp. 13–14. (In Russian).
2. Patent RF RU 2634426 Metallobetonnyj korpus yadernogo reaktora s zhidkometallicheskim teplonositelem [Metal-concrete vessel of a nuclear reactor with a liquid-metal coolant]. Korotkov G.V., Sivkov A.N., Romanov M.I., Zaycev B.I., Hodasevich K.B., Shchekin M.V. Declared 09.08.2016. Published 30.10.2017. (In Russian).
3. Bekman I.N. Yadernaya industriya [Nuclear industry]. Moscow: Moscow State University named after M.V. Lomonosov. 2005. 45 p.
4. Yastrebinskiy R.N., Doroganov V.A., Pavlenko V.I., Yastrebinskaya A.V., Matyuhin P.V., Evtushenko E.I. Refractories radiation-protective composite material. Ogneupory i tekhnicheskaya keramika. 2014. No. 7–8, pp. 19–22. (In Russian).
5. Kalashnikov V., Kornienko, P., Gorshkova, L., Gakshteter G., Sarsenbayeva A. Development of compositions of self-compacting fine-grained refractory concrete. Journal of Advanced Concrete Technology. 2014. Vol. 12. No. 9, pp. 299–309. DOI: 10.3151/jact.12.299
6. Romano G.Q., Silva F.A., Toledo Filho R.D., Fairbairn E.M.R., Battista R.C. Mechanical characterization of steel fiber reinforced self-compacting refractory concrete. 5th International RILEM Symposium on Self-Compacting Concrete. Belgium: RILEM Publications SARL Ghent. 2007, pp. 881–886.
7. Komarinskiy M.V., Smirnov S. I., Burceva D. E. Cast and self-compacting concrete mixes. Stroitelstvo unikalnyh zdaniy i sooruzheniy. 2015. Vol. 11. No. 38, pp. 106–118. (In Russian).
8. Teleshev V. I. Proizvodstvo gidrotekhnicheskih rabot: Chast 1. Obshchie voprosy stroitel’stva. Zemlyanye i betonnye raboty [Production of hydraulic works: Part 1. General issues of construction. Earthworks and concrete works]. Moscow: ASV, 2012. 448 p.
9. Komarinskiy M.V., Chervova N.A. Concrete mix transport during the construction of unique buildings and structures. Stroitelstvo unikalnyh zdaniy i sooruzheniy. 2015. No. 1, pp. 6–31. (In Russian).
10. Stefanenko I.V., Gnedash E.E., Akchurin T.K. Optimization of the granulometric composition of fine-grained refractory concrete aggregates. Vestnik of the Volgograd State University of Architecture and Civil Engineering. Series: Construction and architecture. 2020. No. 4, pp. 205–213. (In Russian).
11. Kornienko P.V., Gorshkova L.V., Gakshteter G.V. Experience in the use of metallurgical production waste as components of heat-resistant concrete. Tekhnologii betonov. 2013. No. 10, pp. 29–33. (In Russian).
12. Gakshteter G.V., Gorshkova L.V., Kalashnikov V.I. Effektivnye vysokoprochnye i obychnye betony [Effective high-strength and ordinary concretes.]. Penza: Privolzhskij Dom znaniy. 2015. 148 p.
13. Toturbiev B.D. Stroitelnye materialy na osnove silikat-natrievyh kompoziciy [Building materials based on silicate-sodium compositions]. Moscow: Stroyizdat. 1988. 203 p.
14. Strelov K.K. Teoreticheskie osnovy tekhnologij ogneupornyh materialov [Theoretical foundations of technologies of refractory materials]. Moscow: Metallurgiya. 1979. 180 p.
15. Nekrasov K.D., Zhukov V.V., Gulyaeva V.F. Tyazheliy beton v usloviyah povyshennyh temperature [Heavy concrete at elevated temperatures]. Moscow: Stroyizdat. 1972. 128 p.
16. Akhtyamov R.Ya., Akhtyamov R.R., Akhmed’yanov R.M., Gamalii E.A. Influence of the size ratio of aggregates on the thermomechanical properties of heat-resistant concretes. ALITinform: Cement. Beton. Suhie smesi. 2021. No. 4 (65), pp. 32–40. (In Russian).
17. Ahtyamov R.Ya. Vermiculite – raw material for the production of refractory heat-insulating materials. Ogneupory i tekhnicheskaya keramika. 2009. No. 1–2, pp. 58–64. (In Russian).
18. Berezhnoi Yu.M., Romanova O.N., Bessarabov E.N. Prospects for the use of foamed modified perlite for the production of new composite materials. Inzhenernyi vestnik Dona. 2018. No. 1 (48), p. 133. (In Russian).
19. Neunyvakhina D.T., Feiler S.V., Maksimtsov A.S., Chumov E.P., Chislavlev V.V. Development of compositions of heat-insulating mixtures for transportation of liquid iron. XV International Congress of Steelworkers. Collection of works dedicated to the 100th anniversary of the National Research Technological University «MISiS» and the 380th anniversary of Russian metallurgy. 2018. Vol. 1, pp. 344–349. (In Russian).
20. Hezhev T.A., Zhukov A.Z., Hezhev H.A. Fire-retardant and heat-resistant vermiculite-concrete composites using volcanic ash and pumice. Inzhenernyi vestnik Dona. 2015. Vol. 35. No. 2–1, p. 43. (In Russian).
21. TS 5767-004-21628872–2002. Dry mix for heat-resistant concrete «SSVB» (In Russian).
22. Patent SU1583396. Syrevaya smes dlya izgotovleniya legkogo zharostojkogo betona [Raw mix for the manufacture of lightweight heat-resistant concrete]. Shahov I.I., Pozdnyakova N., Havkin A.Ya. Declared 03.05.1988. Published 07.08.1990. (In Russian).
23. Aslani F., Ma G. Normal and high-strength lightweight self-compacting concrete incorporating perlite, scoria, and polystyrene aggregates at elevated temperatures. Journal of Materials in Civil Engineering. 2018. Vol. 30. No. 12. 04018328. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002538
24. Kuz’menkov M.I., Plyshevskii S.V., Bychek I.V. Heat-resistant concretes based on secondary refractories and phosphate binders. Ogneupory i tekhnicheskaya keramika. 2005. No. 6, pp. 22–27. (In Russian).
25. Khlystov A.I., Shirokov V.A. Features of the use of phosphate binders based on nanotechnogenic raw materials in the composition of heat-resistant concretes. Traditions and innovations in construction and architecture: collection of articles. Ed. by Balzannikova M.I., Galitskova K.S. SGASU. Samara. 2015, pp. 1435–1440. (In Russian).
26. Abdrakhimov V.Z., Abdrakhimova E.S. The use of aluminum-containing nanotechnogenic raw materials and coal enrichment waste in the production of heat-resistant concrete. Stroitelstvo i rekonstrukciya. 2021. No. 1, pp. 96–105. (In Russian).
27. Podbolotov K.B., Volochko A.T., Khort N.A., Gusarov S.V. Refractory materials based on secondary resources and phosphate compounds. Refractories and Industrial Ceramics. 2019. Vol. 59, pp. 579–582. https://doi.org/10.1007/s11148-019-00276-3
28. Patent SU 697452 Syrevaya smes dlya prigotovleniya zharostojkogo betona [Raw mix for preparation of heat-resistant concrete]. Ahtyamov R.Ya., Abyzov A.N., Chernov A.N., Ivanov A.G., Ivashinnikov V.T., Shlyapnikov B.S. Declared 06.07.1977. Published 15.11.1979. (In Russian).
29. Abyzov V.A., Abyzov A.N. Cellular heat-resistant concretes based on phosphate binders and aggregates from aluminum production and processing waste. Ogneupory i tekhnicheskaya keramika. 2015. No. 4–5, pp. 69–73. (In Russian).
30. Kuznetsova I.S., Titov M.Yu., Ryabchenkova V.G., Kornyushina M.P. Updating the set of rules for heat-resistant concrete. Vestnik of the Research Center for Construction. 2018. No. 4, pp. 67–76. (In Russian).

For citation: Akhtyamov R.Ya., Ahmed'yanov R.M., Gamaliy E.A., Averina G.F. Current problems of development of the regulatory framework for the production and operation of refractory concrete. Stroitel’nye Materialy [Construction Materials]. 2023. No. 7, pp. 4–11. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-815-7-4-11

Photoluminescent Material for Protective and Decorative Coatings of Building Constructions and Elements of Evacuation Systems

Number of journal: 6-2023
Autors:

Lukuttsova N.P.,
Pykin A.A.,
Gornostaeva E.Yu.,
Golovin S.N.,
Moskina I.V.

DOI: https://doi.org/10.31659/0585-430X-2023-814-6-75-80
УДК: 667

 

AbstractAbout AuthorsReferences
The results of experimental studies of photometric properties of photoluminescent material (PLM) for protective and decorative coatings and elements of evacuation systems obtained on the basis of a structured aqueous solution of high-modulus potassium silicate and photoluminophore (PL) are presented. Electron microscopic, energy dispersive X-ray and granulometric analysis of the structure, elemental chemical composition and size distribution of PL particles were determined. A mathematical model of the dependence of the initial luminance of the photoluminescent material on the mass concentration of the PL, the color temperature of the artificial light source and the illumination time is constructed by the method of orthogonal central composite planning. According to the criteria of the Student and Fischer, an assessment of the statistical significance and adequacy of the mathematical model was performed, which allows determining the rational values of prescription and technical factors in the manufacture and operation of PLM with a luminescence brightness of up to 1800 mcd/m2 after 10 min and up to 600 mcd/m2 after 60 min after the cessation of illumination, with an afterglow duration of more than 10 h.
N.P. LUKUTTSOVA, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.A. PYKIN, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
E.Yu. GORNOSTAEVA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
S.N. GOLOVIN, Engineer (Graduate student) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
I.V. MOSKINA, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Bryansk state engineering-technological university (3, Stanke Dimitrova Avenue, Bryansk, 241037, Russian Federation)

1. Seliverstov D.I., Nurmukhametov R.N., Sergeev A.M., Klimenko V.G., Khatipov S.A. Formation of optical color and fluorescence centers in polytetrafluoroethylene under γ-irradiation. Zhurnal prikladnoi spektroskopii. 2011. No. 4, pp. 547–552. (In Russian).
2. Wang Y., Zheng H., Hu R., Luo X. Modeling on phosphor sedimentation phenomenon during curing process of high power LED packaging. Journal of Solid State Lighting. 2014. Vol. 1 (2), pp. 1–9. DOI: https://doi.org/10.1186/2196-1107-1-2
3. Kim D. Recent developments in lanthanide-doped alkaline earth aluminate phosphors with enhanced and long-persistent luminescence. Nanomaterials. 2021. Vol. 11 (3):723, pp. 1–27. DOI: http://dx.doi.org/10.3390/nano11030723
4. Baranovskaya V.B., Karpov Yu.A., Petrova K.V., Korotkova N.A. Topical trends in the application of rare-earth metals and their compounds in the production of magnetic and luminescent materials. Izvestiya vysshikh uchebnykh zavedenii. Tsvetnaya metallurgiya. 2020. No. 6, pp. 4–23. (In Russian). DOI: https://doi.org/10.17073/0021-3438-2020-6-4-23
5. Patent RF 2371464. Sposob povysheniya intensivnosti svecheniya alyuminatnykh lyuminoforov [Method of increasing luminous intensity of aluminate luminophores] / Andrievskii A.M. Declared 18.01.2008. Published 27.10.2009. Bulletin No. 30. (In Russian).
6. Patent RF 2217467. Stabil’nyi fotolyuminofor s dlitel’nym poslesvecheniem [Stable photoluminophor with long-lived afterglow] / Azarov A.D., Bol’shukhin V.A., Levonovich B.N., Lichmanova V.N. Declared 14.12.2001. Published 27.11.2003. (In Russian).
7. Tomilin O.B., Muryumin E.E., Shchipakin S.Yu., Fadin M.V., Kupriyanov G.S. Study of increasing moisture resistance of phosphor SrAl2O4:Eu2+,Dy3+. Fundamental’nye problemy radioelektronnogo priborostroeniy. 2016. No. 2, pp. 167–170. (In Russian).
8. Golota A.F., Seleznev S.A. Influence of liquid media on the surface of crystals of phosphors based on strontium and calcium sulfides. Izvestiya vysshikh uchebnykh zavedenii. Seriya: Khimiya i khimicheskaya tekhnologiya. 2015. No. 2, pp. 38–41. (In Russian).
9. Zhang J.Y., Zhang Z.T., Tang Z.L., Wang T.M. Hydrolysis mechanism and method to improve water resistance of long-after-glow phosphor. Materials Science Forum. 2014. Vol. 423–425, pp. 147–150. DOI: http://dx.doi.org/10.4028/www.scientific.net/MSF.423-425.147
10. Smagin V.P., Khudyakov A.P. Photoluminescence of europium-containing materials based on fluorinated yttria and alumina. Neorganicheskie materialy. 2020. No. 10, pp. 1100–1106. (In Russian). DOI: https://doi.org/10.31857/S0002337X20100140
11. Asatryan G.R., Shakurov G.S., Il’in I.V., Petrosyan A.G., Ovanesyan K.L., Derdzyan M.V. Wideband epr spectroscopy of Tb3+ and Fe2+ ions in single crystals YAlO3. Fizika tverdogo tela. 2021. No. 10, pp. 1612–1616. (In Russian). DOI: https://doi.org/10.21883/FTT.2021.10.51456.131
12. Ju M., Yuan H., Zhong M., Liang H., Zhu Y., Yeung Y.Y., Dai W., Lu C. Insights into the microstructures and energy levels of Pr3+-doped YAlO3 scintillating crystals. Inorganic Chemistry. 2021. Vol. 60 (7), pp. 5107–5113. DOI: https://doi.org/10.1021/acs.inorgchem.1c00021
13. Muresan L.E., Popovici E.J., Perhaita I., Indrea E., Oro J., Casan Pastor N. Rare earth activated yttrium aluminate phosphors with modulated luminescence. Luminescence. 2016. Vol. 31 (4), pp. 929–936. DOI: https://doi.org/10.1002/bio.3051
14. Asim K.R.C. Characteristics of light sources. Principles of Colour and Appearance Measurement. 2014. Vol. 1, pp. 1–52. DOI: http://dx.doi.org/10.1533/9780857099242.1
15. Mikhailov M.M. Influence of the size factor on the luminescence intensity of photoluminophores for LED in the visible range of the spectrum // Poverkhnost’. Rentgenovskie, sinkhrotronnye i neitronnye issledovaniya. 2014. No.  11, pp.  67–73. (In Russian). DOI: https://doi.org/10.7868/S0207352814110110

For citation: Lukuttsova N.P., Pykin A.A., Gornostaeva E.Yu., Golovin S.N., Moskina I.V. Photoluminescent material for protective and decorative coatings of building constructions and elements of evacuation systems. Stroitel’nye Materialy [Construction Materials]. 2023. No. 6, pp. 75–80. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-814-6-75-80

Analysis of Defects and Damages of Materials in the Pavement Structures of Highways of Industrial Enterprises and Methods for their Elimination

Number of journal: 6-2023
Autors:

Bondarev B.A.,
Bondarev A.B.,
Borkov P.V.,
Shulepov S.K.,
Zhidkov V.K.,
Kopalin D.A.

DOI: https://doi.org/10.31659/0585-430X-2023-814-6-70-74
УДК: 630*384.4

 

AbstractAbout AuthorsReferences
The problems of the formation and spread of defects and damages on the surface of the pavement of roads of industrial enterprises with rigid pavement are touched upon. The results of experimental studies have shown that the upper layers of the pavement (pavement layers) often have signs of under-compaction and increased water saturation, which indicates non-compliance with the rules during the laying of the pavement, as well as decompaction of the mixture during the operation of the road, caused by high loads. The calculated indicators of the residual resource of the surveyed road indicate a significant decrease in the durability of pavement structures. The proposed solution to the problem consists in removing the top layer of the asphalt concrete pavement, repairing cracks, cavities and other damage to the bottom layer, and laying a layer of geosynthetic material, followed by rolling under asphalt concrete. This method has repeatedly proven its effectiveness and the ability to significantly extend the durability of the pavement structure as a whole.
B.A. BONDAREV, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.B. BONDAREV, Candidate of Sciences (Engineering), (This email address is being protected from spambots. You need JavaScript enabled to view it.),
P.V. BORKOV, Candidate of Sciences (Engineering), (This email address is being protected from spambots. You need JavaScript enabled to view it.),
S.K. SHULEPOV, Candidate of Sciences (Engineering), (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.K. ZHIDKOV, Student ( This email address is being protected from spambots. You need JavaScript enabled to view it.),
D.A. KOPALIN, Postgraduate (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Lipetsk State Technical University (30, Moskovskaya Street, Lipetsk, 398055, Russian Federation)

1. Gorshkova N.G. Izyskaniya i proektirovanie dorog promyshlennogo transporta [Surveys and design of industrial transport roads]. Saratov: Profobrazovanie. 2017. 257 p.
2. Fedorov B.A., Korolev A.S. Constructions of industrial highways in swamps. Torfyanaya promyshlennost’. 1989. No. 7, pp. 25–28. (In Russian).
3. Bondarev B.A., Kurochkin A.V., Kosta A.A., Korneeva A.O. Methods of capital repairs and reconstruction of road coverings with cement concrete coatings. Modern science: theory, methodology, practice. Materials of the III All-Russian (National) Scientific and Practical Conference. Tambov. 2021, pp. 206–207. (In Russian).
4. Mirenkov P.S., Malyavko D.A., Moloduova E.A., Muzalev D.V. About the use of monolithic cement-concrete mixtures in road coverings. Modern trends of youth science: Collection of scientific papers of the National Conference, Bryansk, 06–08 February 2020. Bryansk: Bryansk State University of Engineering and Technology. 2020, pp. 402–403. (In Russian).
5. Zolin R.N., Zabbarv A.Sh., Ziganshin I.I., Zaripov A.M. Improvement of technical and operational characteristics of the pavement. Nauka i obrazovanie segodnya. 2017. No. 2 (13), pp. 31–33. (In Russian).
6. Klekovkina M.P. Normative purpose and the real role of seams in rigid road clothes. Vestnik grazhdanskikh inzhenerov. 2017. No. 2 (61). (In Russian).
7. Chelushkin I.A. The influence of forces from the wheels of a car when driving along curved sections of roads on the formation of a track in asphalt concrete pavement. Part 1. Transverse forces. Naukovedenie. 2015. Vol. 7. No. 6 (31), p. 150. (In Russian).
8. Korochkin A.V. Shear resistance of automotive layers of rigid road clothing. Stroitel’nye Materialy [Construction Materials]. 2014. No. 1–2, pp. 65–67. (In Russian).
9. Korochkin A.V. Analysis of coupling qualities of asphalt concrete and cement oncrete road surfaces. Stroitel’nye Materialy [Construction Materials]. 2019. No. 7, pp. 21–27. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-772-7-21-27
10. Korochkin A.V. Influence of reinforcing geosynthetic materials on the strength of rigid road clothes withasphalt concrete coating. Stroitel’nye Materialy [Construction Materials]. 2020. No. 1–2, pp. 82–87. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-778-1-2-82-87
11. Ushakov V.V. On the effectiveness of geosynthetics in the constructions of road clothes. Innovatsii v stroitel’stve. Dorogi. Geosinteticheskie materialy. 2019. No. 75, pp. 22–24. (In Russian).
12. Shtabinsky V.V. Repair of asphalt concrete coatings using geogrids. Innovatsii v stroitel’stve. Dorogi. Geosinteticheskie materialy. 2019. No. 75, pp. 75–81. (In Russian).
13. Alexandrov A.S., Syachkin O.V. Design of reinforced asphalt concrete layers of reinforcement of cracked-beam road coverings. Improvement of structures, technologies of construction and repair of roads in Siberia. Omsk: SibADI. 2008, pp. 59–67. (In Russian).
14. Sokolov N., Ezhov S., Ezhova S. Preserving the natural landscape on the construction site for sustainable ecosystem. Journal of applied engineering science. 2017. Vol. 15. No. 4, pp. 518–523.
15. Levashov G.M., Sirotyuk V.V. Design of road clothes with reinforced asphalt concrete coating. Vestnik Sibirskoi gosudarstvennoi avtomobil’no-dorozhnoi akademii. 201. No. 2 (20), pp. 21–28. (In Russian).

For citation: Bondarev B.A., Bondarev A.B., Borkov P.V., Shulepov S.K., Zhidkov V.K., Kopalin D.A. Analysis of defects and damages of materials in the pavement structures of highways of industrial enterprises and methods for their elimination. Stroitel’nye Materialy [Construction Materials]. 2023. No. 6, pp. 70–74. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-814-6-70-74

Fast Curing Fluoroanhydrite Composition for Layer-by-Layer Extrusion (3D printing)

Number of journal: 6-2023
Autors:

Bekmansurov M.R.,
Yakovlev G.I.,
Gordina A.F.,
Kuzmina N.V.,
Saidova Z.S.,
Alexandrov A.M.,
Zhukov A.N.

DOI: https://doi.org/10.31659/0585-430X-2023-814-6-65-69
УДК: 681.6:681.9

 

AbstractAbout AuthorsReferences
The results of a study on the development of a fast-curing composition based on fluoroanhydrite for layer-by-layer extrusion (3D printing) are presented. In the process of composition development, the optimal content of the main components – fluoroanhydrite, Portland cement, dry powder of a soluble sodium glass, hardening retardant – sodium phosphate, as well as micro-reinforcing chrysotile-asbestos fiber was determined. The compressive strength of the specimens was measured to be 6.9 MPa in the dry state and 4.6 MPa in the wet state. Studies of the microstructure of the material showed that the composition of the matrix is dominated by crystalline hydration products covering the fibers of chrysotile asbestos, which are evenly distributed in the structure of the composition. IR spectral analysis and differential thermal analysis of the composition showed the formation of gypsum dihydrate in the structure of the composition in combination with calcium silicate hydrates, which provide the necessary water resistance of the composition.
M.R. BEKMANSUROV, Engineer (postgraduate student) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
G.I. YAKOVLEV, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.F. GORDINA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
N.V. KUZMINA, Engineer (postgraduate student) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
Z.S. SAIDOVA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.M. ALEXANDROV, Engineer (postgraduate student) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
A.N. ZHUKOV, Engineer (postgraduate student) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Kalashnikov Izhevsk State Technical University (7, Studencheskaya Street, 426069, Izhevsk, Russian Federation)

1. Ghafur H.A. A review of «3D concrete printing»: Materials and process characterization, economic considerations and environmental sustainability. Journal of Building Engineering. 2023. Vol. 66. 105863. https://doi.org/10.1016/j.jobe.2023.105863
2. Robayo-Salazar R., de Gutiérrez R.M., Villaquirán-Caicedo M.A., Arjona S.D. 3D printing with cementitious materials: Challenges and opportunities for the construction sector. Automation in Construction. 2023. Vol. 146. 104693, https://doi.org/10.1016/j.autcon.2022.104693
3. Özalp F., Yılmaz H.D. Fresh and hardened properties of 3d high-strength printing concrete and its recent applications. Iranian Journal of Science and Technology, Transactions of Civil Engineering. 2020. Vol. 44.DOI: 10.1007/s40996-020-00370-4
4. Slavcheva G.S., Artamonova O.V. Development of principles for the creation of reinforced composites for 3D additive construction technologies. Stroitel’nye Materialy [Construction Materials]. 2022. No. 12,pp. 52–58. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-809-12-52-58
5. Monastyrev P.V., Mishchenko E.S., Azaui Dubla B., Ovsiannikova V.A., Ovsiannikov O.A. Analysis of building construction technologies using 3D-printers. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2019. No. 9, pp. 54–59. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2019-9-53-59
6. Slavcheva G.S., Akulova I.I., Vernigora I.V. Concept and effectiveness of 3D printing for urban environment design. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2020. No. 3, pp. 49–55. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2020-3-49-55
7. Akulova I.I., Slavcheva G.S., Makarova T.V. Technical and economic estimate of efficiency of using 3D printing in housing construction. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2019. No. 12, pp. 52–56. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2019-12-52-56
8. Ziganshina L.V. Fine-grained concretes in additive manufacturing technology (3D printing): Diss… Candidate of Sciences (Engineering). Kazan. 2022. 282 p. (In Russian).
9. Sheremet A.A. Concrete mixtures for three-layer parallel 3D printing. Diss… Candidate of Sciences (Engineering). Belgorod. 2023. …p. (In Russian).
10. Zolotareva S.V. Development and application of 3D technologies in construction Proceedings of the VII International Youth Forum «Education, Science, Production». 2016, pp. 1033–1037. (In Russian).
11. Luneva D.A., Kozhevnikova E.O., Kaloshina S.V. 3D printing technology using layer-by-layer extrusion in construction. Modern technologies in construction. Theory and practice. 2017. No. 2, pp. 251–261. (In Russian).
12. Zinyuk R.Yu. Balykov A.G., Gavrilenko I.B. et al. IK-spektroskopiya v neorganicheskoi tekhnologii [IR spectroscopy in inorganic technology]. Leningrad: Khimiya. 1983. 111 p.
13. Gorshkov V.S., Timashev Z.V., Saveliev V.G. Metody fiziko-khimicheskogo analiza vyazhushchikh veshchestv [Methods of physical and chemical analysis of binders]. Moscow: Vysshaya shkola. 1981. 197 p.
14. Taylor H.F.W. Cement chemistry. 2 nd ed. London. 1977. 459 р.

For citation: Bekmansurov M.R., Yakovlev G.I., Gordina A.F., Kuzmina N.V., Saidova Z.S., Alexandrov A.M., Zhukov A.N. Fast curing fluoroanhydrite composition for layer-by-layer extrusion (3D printing). Stroitel’nye Materialy [Construction Materials]. 2023. No. 6, pp. 65–69. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-814-6-65-69

Composition Development of a Dry Plaster Based on High-Dispersity Lime

Number of journal: 6-2023
Autors:

Rumyantseva V.E.,
Panchenko D.A.,
Panchenko Yu.F.,
Konovalova V.S.,
Khafizova E.N.

DOI: https://doi.org/10.31659/0585-430X-2023-814-6-57-64
УДК: 691.554

 

AbstractAbout AuthorsReferences
Influence of hydrated lime dispersity on the properties of plaster mix and plaster mortar have been carried out in the article. It was concluded that high dispersion of Са(ОН)2 particles makes an increase of plasticity and water-retaining capacity of the plaster mix and the hardened mortar strength. Са(ОН)2 particles are getting smaller when lime is hydrated into paste than slaking lime into air-slaked lime. Therefore in order to obtain high-dispersity calcium hydrate in plaster mortar it is desirable to have conditions of slaking mortar closer to the process of making paste. It is can be done by co-slaking lime with sand in silos or reactors on silicate brick plants. The results of differential thermal and X-ray phase analysis supported that plaster mortar based on lime-sand mixture of the silicate brick plant by 28 days of hardening has higher degree of carbonization of lime compared to the mortar based on air-slaked lime while it has uniformly distributed fine-crystalline structure of carbonate calcium which increases the strength of mixture.
V.E. RUMYANTSEVA1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
D.A. PANCHENKO2, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
Yu.F. PANCHENKO2, Candidate of Sciences (Engineering), (This email address is being protected from spambots. You need JavaScript enabled to view it.);
V.S. KONOVALOVA1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
E.N. KHAFIZOVA2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Ivanovo State Polytechnic University (21, Sheremetyevo Avenue, 153000, Ivanovo, Russian Federation)
2 Industrial University of Tyumen (2, Lunacharskogo Street, 625001, Tyumen, Russian Federation)

1. Tur E.A., Basov S.V. Research of mineral materials used in the construction of the Sapieha palace complex in Ruzhany. Vestnik Brestskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Stroitel’stvo i arhitektura. 2014. No. 1 (85), pp. 88–91. (In Russian).
2. Lyubomirsky N.V., Fedorkin S.I., Bakhtin A.S., Khmelnitsky A.L. Petrographic characteristics of materials for finishing buildings of cultural heritage of Sevastopol of post-war construction of the 40–50s of the twentieth century. Stroitel’stvo i tekhnogennaya bezopasnost’. 2020. No. 19 (71), pp. 45–64. (In Russian).
3. Loganina V.I. Dry building mixtures for the restoration of buildings of historical buildings. Regional’naya arhitektura i stroitel’stvo. 2015. No. 3 (24), pp. 34–42. (In Russian).
4. Gourdin W.H., Kingery W.D. The Beginnings of pyrotechnology: neolithic and egyptian lime plaster. Journal of Field Archaeology. 1975. Vol. 2:1–2,pp. 133–150. DOI: 10.1179/009346975791491277
5. Ullman М., Brailovsky L., Schechter H.C., Weissbrod L., Zuckerman-Cooper R., Toffolo M.B., Caracuta V., Boaretto E., Weineri S., Abramov J., Bar-Yosef Mayer D.E., Wolff Avrutis V., Kol-Ya’kov S., Frumkin A. The early Pre-Pottery Neolithic B site at Nesher-Ramla Quarry, Israel. Quaternary International. 2022. Vol. 624, pp. 148–167 https://doi.org/10.1016/j.quaint.2021.04.019
6. Loboda A.Yu., Trunkin I.N., Svetogorov R.D. et al. A study of the pigments and cohesive colour layers of the paintings in a church from the tenth to thirteenth centuries on the plateau of Eski-Kermen. Materialy po arheologii, istorii i etnografii Tavrii. 2021. No. 26, pp. 156–174. (In Russian). DOI: 10.37279/2413-189X.2021.26.156-174
7. Nasr Nesrin. Wall painting of Carthage. Educational strategies and initiatives in the ethno-cultural development of the regions of greater Altai: materials of the international scientific and practical conference. Ed. by I.R. Lazarenko. Barnaul: Altai State Pedagogical University. 2016, pp. 112–119. (In Russian).
8. Vinokurov N.I. New data on the construction of the early citadel of the artezian settlement in the Crimean Priozovye. Bosporskie issledovaniya. 2017. No. 35, pp. 180–207. (In Russian).
9. Lukyanova T.A. Technological features of fresco painting of the XVI century on the example of paintings of the Cathedral of the Dormition of the Mother of God of the Assumption monastery of Sviyazhsk. Nauka i sovremennost’. 2011. No. 13–1, pp. 83–94. (In Russian).
10. Isaeva O.A. Technical and stylistic features of monumental painting of Mesoamerica. In the collection: Actual problems of monumental art. Collection of scientific works on the materials of the international scientific and practical conference. Edited by D.O. Antipina. Saint Petersburg. 2021, pp. 123–130. (In Russian).
11. Kuks Yu.M., Lukyanova T.A. History of the fresco paintings (Part 1. Old Russian fresco. Two transformations). Perspektivy nauki i obrazovaniya. 2014.No 4 (10), pp. 127–135. (In Russian).
12. Ivanova Yu.V. Nuzal chapel in North Ossetia. History of research and restoration of architecture and wall painting. In the collection: II International Forum of Restorers «Restoration: theoretical problems and practical activities». Collective monograph based on the materials of the international scientific conference. Moscow. 2020, pp. 105–110. (In Russian).
13. Kuks Yu.M., Lukyanova T.A. History of the development of frescoes (Part 2. Origin of technology of purely calcareous plastering foundations of the fresco). Perspektivy nauki i obrazovaniya. 2014. No. 5 (11),pp. 127–136. (In Russian).
14. Pukharenko Yu.V., Kharitonov A.M., Shangina N.N., Safonova T.Yu. Restoration of historical objects with the use of modern dry building mixtures. Vestnik grazhdanskih inzhenerov. 2011. No. 1 (26), pp. 98–103.(In Russian).
15. Franke R. Invite nature into your home. lime plaster for machine application – MKE. Suhie stroitel’nye smesi. 2011. No. 1, pp. 10–11. (In Russian).
16. Khutorskoy S.V., Erofeev V.T., Smirnov V.F. Biocorrosion and bio-resistance of lime composites. Vestnik of the Volga Regional Branch of the Russian Academy of Architecture and Building Sciences. 2011. No. 14, pp. 132–135. (In Russian).
17. Loganina V.I., Kuimova E.I., Uchaeva T.V. Application of the method of fuzzy preference ratio in assessing the competitiveness of lime dry construction mixture. Vestnik of the Belgorod State Technological University named after V.G. Shukhov. 2015. No. 1,pp. 36–40. (In Russian).
18. Fedosov S.V., Rumyantseva V.E., Loginova S.A. Study of mass transfer processes in biocorrosion of concrete. In the collection: Fundamental, exploratory and applied research of the RAACS on scientific support for the development of architecture, urban planning and the construction industry of the Russian Federation in 2020. Collection of scientific works of RAACS: in 2 volumes. Moscow. 2021, pp. 299–303. (In Russian).
19. Khramtsov A.K., Stefanovich A.I. Mikologiya: metod. ukazaniya k spetskursu po razdelu «Ekologiya gribov i gribopodobnykh organizmov». [Mycology: method. instructions for the special course on the section «Ecology of fungi and mushroom-like organisms»]. Minsk: BGU. 2011. 45 p.
20. Fedosov S.V., Rumyantseva V.E., Konovalova V.S., Kasyanenko N.S. Study of the initial stage of acid corrosion of cement stone. In the collection: Fundamental, exploratory and applied research of the RAACS on scientific support for the development of architecture, urban planning and the construction industry of the Russian Federation in 2019. Collection of scientific papers RAACS. Moscow. 2020, pp. 454–460. (In Russian).
21. Chesnokova T.V., Rumyantseva V.E., Loginova S.A. Modeling of the process of biodisastruction of concrete at the enterprises of the textile industry. Izvestiya vysshih uchebnyh zavedenij. Tekhnologiya tekstil’noj promyshlennosti. 2020. No. 1 (385), pp. 206–212.(In Russian).
22. Fedosov S.V., Rumyantseva V.E., Krasilnikov I.V., Konovalova V.S., Evsyakov A.S. Colmatation of pores of cement concretes at hydrophobization. In the collection: Fundamental, exploratory and applied research of the Russian Academy of Architecture and Building Sciences on scientific support for the development of architecture, urban planning and the construction industry of the Russian Federation in 2018. Moscow. 2019, pp. 563–572.(In Russian). DOI: 10.22337/9785432303134-563-572
23. Pavlíková M, Pavlík Z, Pernicová R, Černý R. The influence of inner hydrophobisation on water transport properties of modified lime plasters // AIP Conference Proceedings. 2016. Iss. 1738. 280005. https://doi.org/10.1063/1.4952065
24. Strokova V.V., Sivalneva M.N., Nerovnaya S.V., Vtorov B.B. Plaster coverings as a regulator of indoor microclimate parameters: an overview of theoretical and experimental research. Stroitel’nye Materialy [Construction Materials]. 2021. No. 7, pp. 32–72.(In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-793-7-32-72
25. Antonenko N.N., Orekhov S.A., Serikov S.V., Mazepa  A.K. Lime as an binder in repair mix. In the collection: Modern scientific research. Theory, methodology, practice. Collection of scientific articles based on materials of the VI International Scientific and Practical Conference. Ufa. 2021, pp. 279–284. (In Russian).
26. Shangina N.N., Kharitonov A.M. Features of production and application of dry building mixtures for the restoration of architectural monuments. Suhie stroitel’nye smesi. 2011. No. 4, pp. 16–19. (In Russian).
27. Khavkin L.M. Tekhnologiya silikatnogo kirpicha. Reprintnoye vosproizvedeniye izdaniya 1982 g. [Silicate brick technology. Reprint reproduction of the 1982 edition]. Moscow: EKOLIT, 2011. 384 p.
28. Hint Y.A. Osnovy proizvodstva silikatnykh izdeliy [Fundamentals of the production of silicate products]. Moscow-Leningrad: State publishing house of literature on construction, architecture and building materials. 1962. 642 p.
29. Lyubomirsky N.V., Fedorkin S.I., Bakhtin A.S., Bakhtina T.A., Nikolaenko E.Yu., Nikolaenko V.V. Konstruktsionnye i teploizolyatsionnye stroitel’nye materialy prinuditel’nogo karbonatnogo tverdeniya iz vtorichnogo syr’ya: monografiya. [Structural and heat-insulating building materials of forced carbonate hardening from secondary raw materials: monograph]. Simferopol: ARIAL. 2021. 408 p.
30. Mamykin N.A. predeleniye srednikh razmerov OKR i srednikh mikrodeformatsiy metodom approksimatsii [Determination of the average sizes of CSR and average microdeformations by the approximation method]. Chelyabinsk: 1991. 16 p.

For citation: Rumyantseva V.E., Panchenko D.A., Panchenko Yu.F., Konovalova V.S., Khafizova E.N. Composition development of a dry plaster based on high-dispersity lime. Stroitel’nye Materialy [Construction Materials]. 2023. No. 6, pp. 57–64. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-814-6-57-64

Analysis and Generalization of the Properties of Mountain Rock Formations of the Deposits of the Kamchatka Territory

Number of journal: 6-2023
Autors:

Vavreniuk S.V.,
Vavreniuk V.G.,
Fediuk R.S.,
Kim A.A.,
Bogomazova A.A.

DOI: https://doi.org/10.31659/0585-430X-2023-814-6-51-56
УДК: 622-032.5

 

AbstractAbout AuthorsReferences
Currently in Kamchatka there is an intensive development of the tourist and recreational cluster “Three Volcanoes”, engineering and social infrastructure, and in the conditions of active construction, there is a sharp demand for building materials, in particular for building stone and inert aggregates for concrete: crushed stone, sand, as well as sand and gravel mixtures. Developed reserves of common minerals, including hard rocks for the production of building stone and inert aggregates, do not fully satisfy the projected demand of the construction industry for the coming years. In this connection, large-scale studies are underway to study the bowels of Kamchatka, aimed at expanding the existing mineral resource base of the peninsula, as well as work to expand the license fund for the extraction of common minerals for construction purposes. The publication contains a brief analysis and generalization of the properties of igneous rocks (intrusive, effusive), currently being developed deposits of the Kamchatka Territory, and used to obtain inert aggregates, and also contains the main characteristics of the deposits of sand and gravel mixtures of the peninsula. The latest (2022–2023) results of studies of the properties of rocks of the Pionerskoye-4 deposit: tuffs, diorites, granodiorites, basalts, andesite-basalts, carried out as part of detailed exploration and clarification of the balance reserves of the deposit, as well as the results of studies of physical and mechanical characteristics of crushed stone of various fractions obtained from granodiorites and tuffs of this deposit are presented.
S.V. VAVRENIUK1, Doctor of Sciences (Engineering), Corresponding Member of RAACS, Honored Builder of Russia, Deputy Director for Scientific Work (This email address is being protected from spambots. You need JavaScript enabled to view it.);
V.G. VAVRENIUK2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
R.S. FEDIUK2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.A. KIM3, Candidate of Sciences (Engineering), General Director (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.A. BOGOMAZOVA3, Geologist (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Branch of the Federal State Budgetary Institution “TsNIIP of the Ministry of Construction of Russia” Far Eastern Research, Design and Technological Institute for Construction (14, Borodinskaya Street, Vladivostok, 690033, Russian Federation)
2 Far Eastern Federal University (10, p. Ayaks, Russky Island, Vladivostok, 690922, Russian Federation)
3 OOO “Bazalt” (33a, off. 408, Leningradskaya Street, Petropavlovsk-Kamchatsky, 684003, Russian Federation)

1. Nazarenko N.V., Petin A.N., Furmanova T.N. The impact of the development of deposits for the extraction of common minerals on the environment. Sovremennye problemy nauki i obrazovaniya. 2012. No. 6, p. 610. URL: https://science-education.ru/ru/article/viewid=7401
2. Bogdasarov M.A., Mayevskaya A.N., Sheshko N.N. Methodological features of forecasting and evaluation of common minerals. Razvedka i okhrana nedr. 2023. No. 3, pp. 45–52. (In Russian). DOI: 10.53085/0034-026X_2023_03_45
3. Gavrishev S.E., Burmistrov K.V., Zalyadnov V.Yu., Mikhailova G.V. Substantiation of the opening scheme and directions of development of mining operations during the reconstruction of quarries for the extraction of building stone. Gornyi zhurnal. 2018. No. 1, pp. 27–32. (In Russian). DOI: 10.17580/gzh.2018.01.0.4
4. Cheban A.Yu., Sekisov G.V., Sobolev A.A. Typification of building rocks and prospects for the development of their extraction in the Far Eastern region. Gornyi informatsionno-analiticheskii byulleten’. 2017. No. S24, pp. 75–81. (In Russian). DOI: 10.25018/0236-1493-2017-11-24-75-81
5. Salikhov V.A. Razvedka i razrabotka poleznykh iskopaemykh [Exploration and development of minerals]. Moscow, Berlin. 2021. DOI: 10.23681/618661
6. Kuzin A.M. Mineral deposits, earthquakes and methodology of interpretation of seismic data. Trudy Fersmanovskoi nauchnoi sessii GI KNTs RAN. 2019. No. 16, pp. 323–327. (In Russian). DOI: 10.31241/FNS.2019.16.065
7. Vavrenyuk S.V., Korableva G.A., Antropova V.A. Concretes on porous aggregates from volcanic rocks of the Far East. Vladivostok: Publishing House of the Far Eastern Federal University, 2012. 100 p.
8. Lesovik V.S. Building materials. Present and future. Vestnik MGSU. 2017. No. 1, pp. 9–16. (In Russian).
9. Lesovik V.S. Geonika (geomimetika). Primery realizatsii v stroitel’nom materialovedenii [Geonics (geomimetics). Examples of implementation in building materials science]. Belgorod: V.G. Shukhov BSTU, 2016. 287 p.
10. Rosenthal N.K., Stepanova V.F., Lyubarskaya G.V. Requirements for fillers of the future. Stroitel’nye Materialy [Construction Materials]. 2006. No. 8, pp. 14–15. (In Russian).
11. Safarov K.B. Application of reactive aggregates for the production of concretes resistant in aggressive environments. Stroitel’nye Materialy [Construction Materials]. 2015. No. 7, pp. 17–20. (In Russian).
12. Stepanova V.F. Dolgovechnost’ betona [Durability of concrete]. Moscow, Vologda: Infra-engineering. 2023. 124 p.
13. Kelar M., Simkova Z. Once again to the question of the economic assessment of mineral deposits. Ekonomika i upravlenie innovatsiyami. 2021. No. 3 (18), pp. 87–98. (In Russian). DOI: 10.26730/2587-5574-2021-3-87-98
14. Zaitseva L.R., Lutsyk E.V., Latypova T.V., Latypov V.M., Fedorov P.A., Popov V.P. Influence of the type of filler from industrial waste on the corrosion resistance of concrete. Stroitel’nye Materialy [Construction Materials]. 2021. No. 11, pp. 23–29. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-797-11-23-29
15. Sokolov N.S. Technology for increasing the bearing capacity of the base. Stroitel’nye Materialy [Construction Materials]. 2019. No. 6, pp. 67–71. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-771-6-67-71
16. Malyuk V.D. On rationing requirements for frost resistance of concrete for marine structures. Transportnoe stroitel’stvo. 2010. No. 3, pp. 32–34. (In Russian).
17. Guo H., Wang J., Wu J. Research of intelligent detection technology for multi-purpose coarse-grained aggregates. Construction and building materials. 2022. Vol. 363. 129273. https://doi.org/10.1016/j.conbuildmat.2022.129273

For citation: Vavreniuk S.V., Vavreniuk V.G., Fediuk R.S., Kim A.A., Bogomazova A.A. Analysis and generalization of the properties of mountain rock formations of the deposits of the Kamchatka territory. Stroitel’nye Materialy [Construction Materials]. 2023. No. 6, pp. 51–56. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-814-6-51-56

Structural Reliability Analysis with Epistemic Uncertainty of Data

Number of journal: 6-2023
Autors:

Solovev S.A.,
Soloveva A.A.,
Umnyakova N.P.,
Kochkin A.A.

DOI: https://doi.org/10.31659/0585-430X-2023-814-6-45-50
УДК: 624.046.5

 

AbstractAbout AuthorsReferences
In practical problems of probabilistic reliability analysis, there is a need for accounting and modeling of aleatory and epistemic uncertainties of data. Modeling of aleatory uncertainty, as a rule, is based on well-known probabilistic and statistical methods of the structural reliability theory, while for effective and reliable modeling of epistemic uncertainty, it becomes necessary to use new mathematical theories of data analysis. The article demonstrates the p-box model as a tool for describing a random variable in the problems of structural reliability analysis. With a large number of random variables represented by p-boxes, the analytical solution of the problem becomes more complicated. To deal with this problem, the article presents two numerical approaches to solving it: the discretization of p-boxes into of the Dempster-Shafer structures and the Interval Monte Carlo method (IMC). Probabilistic analysis of the structural reliability allow to obtain a quantitative assessment of the safety level of buildings and structures, to forecast the residual life of structures according to the reliability criterion, as well as to solve the problems of risk assessing and optimization problems.
S.A. SOLOVEV1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.A. SOLOVEVA1, Engineer (Graduate Student) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
N.P. UMNYAKOVA2,3, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.A.KOCHKIN1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Vologda State University (15, Lenin Street, Vologda, 160000, Russian Federation)
2 Scientific-Research Institute of Building Physics of RAACS (21, Lokomotivniy Driveway, Moscow, 127238, Russian Federation)
3 National Research Moscow State University of Civil Engineering (26, Yaroslavskoye Highway, Moscow, 129337, Russian Federation)

1. Мкртычев О.В., Щедрин О.С., Лохова Е.М. Определение коэффициентов надежности по ответственности для отдельных несущих элементов на основе вероятностного анализа // Вестник МГСУ. 2022. Т. 17. Вып. 10. С. 1331–1346. DOI: 10.22227/1997-0935.2022.10.1331-1346.
1. Mkrtychev O.V., Shchedrin O.S., Lokhova E.M. Determination of individual coefficients on the basis of probabilistic analysis. Vestnik MSTU. 2022. Vol. 17 (10), pp. 1331–1346. (In Russian). DOI: 10.22227/1997-0935.2022.10.1331-1346
2. Ржаницын А.Р. Применение статистических методов в расчетах сооружений на прочность и безопасность // Строительная промышленность. 1952. № 6. С. 22–25.
2. Rzhanitsyn A.R. Application of statistical methods in calculations of structures for strength and safety. Stroitelnaya promishlennost. 1952. No. 6, pp. 22–25. (In Russian).
3. Der Kiureghian A., Ditlevsen O. Aleatory or epistemic? Does it matter? Structural safety. 2009. Vol. 31. Iss. 2, pp. 105–112. https://doi.org/10.1016/j.strusafe.2008.06.020
4. Xie H., Li J., Liao D. A new structural reliability analysis method under non-parameterized probability box variables. Structural and Multidisciplinary Optimization. 2022. Vol. 65. No. 11. 322. https://doi.org/10.1007/s00158-022-03408-5
5. Соловьев С.А., Соловьева А.А., Умнякова Н.П., Кочкин А.А. Анализ проблем оценки индекса надежности элементов строительных конструкций // Жилищное строительство. 2022. № 7. С. 32–39. DOI: https://doi.org/10.31659/0044-4472-2022-7-32-39
5. Soloviev S.A., Solovieva A.A., Umnyakova N.P., Kochkin A.A. Analysis of the problems of assessing the reliability index of elements of building structures. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2022. No. 7, pp. 32–39. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2022-7-32-39
6. Орлов А.И. Современное состояние непараметрической статистики // Политематический сетевой электронный научный журнал Кубанскогогосударственного аграрного университета. 2015. № 106. С. 239–269.
6. Orlov A.I. Current status of nonparametric statistics. Politematicheskij setevoj elektronnyj nauchnyj zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta. 2015. No. 106, pp. 239–269. (In Russian).
7. Zhang H., Dai H., Beer M., Wang W. Structural reliability analysis on the basis of small samples: an interval quasi-Monte Carlo method. Mechanical Systems and Signal Processing. 2013. Vol. 37 (1–2), pp. 137–151. https://doi.org/10.1016/j.ymssp.2012.03.001
8. Faes M.G., Daub M., Marelli S., Patelli E., Beer M. Engineering analysis with probability boxes: a review on computational methods. Structural Safety. 2021. Vol. 93. 102092. https://doi.org/10.1016/j.strusafe.2021.102092
9. Соловьев С.А. Вероятностная оценка промышленной безопасности при неполной статистической информации // Безопасность труда в промышленности. 2020. № 9. С. 88–93.DOI: 10.24000/0409-2961-2020-9-88-93.
9. Soloviev S.A. Probabilistic estimation of industrial safety with incomplete statistic data. Bezopasnost’ truda v promyshlennosti. 2020. No. 9, pp. 88–93. (In Russian). DOI: 10.24000/0409-2961-2020-9-88-93
10. Ferson S., Kreinovich V., Grinzburg L., Myers D., Sentz K. Constructing probability boxes and Dempster-Shafer structures (No. SAND-2015-4166J). Sandia National Lab (SNL-NM), Albuquerque, 2003. 132 p. DOI: 10.2172/809606
11. Karanki D.R., Kushwaha H.S., Verma A.K., Ajit S. Uncertainty analysis based on probability bounds (p-box) approach in probabilistic safety assessment. Risk Analysis: An International Journal. 2009. Vol. 29 (5). pp. 662–675. DOI: 10.1111/j.1539-6924.2009.01221.
12. Zhang H., Mullen R.L., Muhanna R.L. Interval Monte Carlo methods for structural reliability. Structural Safety. 2010. Vol. 32. Iss. 3, pp. 183–190. https://doi.org/10.1016/j.strusafe.2010.01.001
13. Timothy H., Ju Q., Van Emden M.H. Interval arithmetic: From principles to implementation. Journal of the ACM (JACM). 2001. Vol. 48. No. 5,pp. 1038–1068. DOI: 10.1145/502102.502106

For citation: Solovev S.A., Soloveva A.A., Umnyakova N.P., Kochkin A.A. Structural reliability analysis with epistemic uncertainty of data. Stroitel’nye Materialy [Construction Materials]. 2023. No. 6, pp. 45–50. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-814-6-45-50

Experimental Study of Flanged Joints of Damaged Steel Frame Elements

Number of journal: 6-2023
Autors:

Buzalo N.A.,
Evtushenko S.I.,
Chernikhovsky B.A.,
Nevelsky O.V.

DOI: https://doi.org/10.31659/0585-430X-2023-814-6-39-44
УДК: 693.8

 

AbstractAbout AuthorsReferences
Among the enterprises currently operating in Russia, there is a large proportion of industrial buildings with a load-bearing steel frame, in which there are various types of damage received over the years of operation. It is difficult to prevent the appearance of such defects, and given the long time of operation of buildings, many of which were built in the middle of the last century during the era of industrialization, the amount of accumulated damages is increasing. The assessment of the bearing capacity of frames of industrial buildings and structures in the presence of damages must be carried out taking into account the actual weakening of the sections of the bearing elements. Verification calculations of elements and assemblies in accordance with regulatory documents should be carried out according to methods that take into account the weakening of the structure by introducing correction factors. However, in this case, it is impossible to obtain information about the presence of stress concentration in the damaged zone and about the tendency for the development of plastic deformations in it. The results of tests of experimental samples of flange joints, graphs of their displacements and relative deformations are presented. These data can be used both to create finite element models of nodes and calculate them in a non-linear setting, and to analyze the actual stress distribution in the nodes of the frames of multi-storey buildings.
N.A. BUZALO1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
S.I. EVTUSHENKO2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
B.A. CHERNIKHOVSKY1, Graduate Student (This email address is being protected from spambots. You need JavaScript enabled to view it.);
O.V. NEVELSKY3, Chief Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 South Russian State Polytechnic University (NPI) named after M.I. Platov (132, Prosveshcheniya Street, Novocherkassk, 346428, Russian Federation)
2 National Research Moscow State University of Civil Engineering (26, Yaroslavskoye Shosse, Moscow, 129337, Russian Federation)
3 Research Institute of Building Physics of RAACS (21, Lokomotivniy proezd, Moscow, 127238, Russian Federation)

1. Evtushenko S.I., Krakhmalny T.A. Defects and damage to the columnar foundations of industrial buildings. Stroitel’stvo i arkhitektura. 2019. Vol. 7. No. 4, pp. 36–40. (In Russian).
2. Evtushenko S.I., Krakhmalny T.A. Defects and damage to metal columns of industrial buildings. Stroitel’stvo i arkhitektura. 2021. Vol. 9. No. 2, pp. 11–15. (In Russian).
3. Maslyaev A.V. Permissible damage in buildings and structures with different liability during an earthquake. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2008. No. 11, pp. 8–10. (In Russian).
4. Zhur V.N., Prokopov A.Yu., Romanov P.S. Assessment of the degree of damage to residential buildings under the combined effect of vertical and horizontal deformations in the base of foundations. Actual problems of science and technology. Materials of the national scientific-practical conference. 2019. Rostov-on-Don, pp. 263–265. (In Russian).
5. Dobromyslov A.N. Diagnostika povrezhdeniy zdaniy i inzhenernykh sooruzheniy [Diagnosis of damage to buildings and engineering structures]. Moscow: MSTU. 2008. 301 p.
6. Smolyago G.A., Frolov N.V., Dronov A.V. Analysis of corrosion damage in exploited bent reinforced concrete structures of buildings and structures. Vestnik of the Belgorod State Technological University named after Shukhov V.G. 2019. No. 1, pp. 52–57. (In Russian).
7. Kudishin Yu.I., Drobot D.Yu. To the question of the survivability of building structures. Stroitelnaya mekhanika i raschet sooruzheniy. 2008. No. 2 (217), pp. 36–43. (In Russian).
8. Kudishin Yu.I., Drobot D.Yu. Structural survivability in emergency situations. Metallicheskiye zdaniya. P. 1. 2008. No. 4 (8), pp. 20–22. (In Russian).
9. Utkin B.C., Plotnikova O.S. Vitality is the main indicator of the quality of buildings and structures. Stroitel’nyye materialy, oborudovaniye i tekhnologii XXI veka. 2006. No. 6, pp. 22–25. (In Russian).
10. Perelmuter A.V., Kabantsev O.V., Pichugin S.F. Osnovy metoda predel’nykh raschetnykh sostoyaniy [Fundamentals of the method of limit design states]. Moscow: ASV. 2019. 240 p.
11. Perelmuter A.V. Izbrannyye problemy nadezhnosti i bezopasnosti stroitel’nykh konstruktsiy [Selected problems of reliability and safety of building structures]. Moscow: ASV. 2007. 255 p.
12. Pichugin S.F. Nadezhnost’ stal’nykh konstruktsiy proizvodstvennykh zdaniy [Reliability of steel structures of industrial buildings]. Moscow: ASV. 2011. 457 p.
13. Vedyakov I.I. Identification of the reserves of the bearing capacity of steel building structures based on the improvement of methods for their calculation and the rational use of modern materials. Doctor Diss. (Engineering). Moscow. 2000. 370 p. (In Russian).

For citation: Buzalo N.A., Evtushenko S.I., Chernikhovsky B.A., Nevelsky O.V. Experimental study of flanged joints of damaged steel frame elements. Stroitel’nye Materialy [Construction Materials]. 2023. No. 6, pp. 39–44. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-814-6-39-44

Construction Technologies for Ensuring Radon Safety of Buildings

Number of journal: 6-2023
Autors:

Rimshin V.I.,
Kalaydo A.V.,
Semenova M.N.,
Borsch V.A.

DOI: https://doi.org/10.31659/0585-430X-2023-814-6-33-38
УДК: 699.887

 

AbstractAbout AuthorsReferences
Ionizing radiation, continuously affecting a person, forms an annual individual effective dose of radiation. The value of this dose is proportional to the probability of the irradiated cancer in the future and therefore should be reduced to a minimum reasonable value. Daughter products of radon decay in indoor air make the greatest contribution to the irradiation of the population, while almost all radon enters the building from the ground base. To create a radiation-safe internal environment, it is necessary to block the ways of radon transfer through underground enclosing structures, which is possible only by means and technologies of construction. The reason for the increased concentration of radon in the air of buildings of these territories is most often the appearance of uranium-containing soils on the surface, as well as the presence of zones with active microgeodynamics. Nevertheless, as the research results show, the absence of these factors does not guarantee a favorable radon situation in the buildings of the region. This assumption follows from the results of the monitoring of radon levels in buildings in Lugansk carried out by the staff of the Research Institute of Building Physics of the RAASC, which showed a high radon hazard of buildings in one of the urban areas. At the same time, gamma-spectrometric analysis of soils from all four districts did not reveal statistically significant differences in their specific activity. All the values obtained were close to the global average and amounted to about 30 Bq/kg. The article describes the most common approaches to solving this problem and substantiates the advantages of passive radon protection technologies.
V.I. RIMSHIN1,2, Professor, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it. );
A.V. KALAYDO1,3, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it. );
M.N. SEMENOVA1, Leading engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.);
V.A. BORSCH2, Bachelor (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Research Institute of Building Physics RAACS (21, Lokomotivny Proezd, Moscow, 127238, Russian Federation)
2 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)
3 Luhansk State Pedagogical University (LSPU) (2, Defense Oboronnaya, Lugansk, 291011, Russian Federation)

1. Darby S, Hill D, Auvinen A, et al 2005 Radon in homes and risk of lung cancer: collaborative analysis of individual data from 13 European case-control studies. British Medical Journal. 2005. Iss. 29. Vol. 330 (7485). DOI: 10.1136/bmj.38308.477650.63
2. Gulabyants L.A., Zabolotsky B.Y. Radon flux density as a criterion for assessing radon hazard. ANRI: Apparatura i novosti radiatsionnykh izmereniy. 2004. No. 3 (38), pp. 16–20. (In Russian).
3. Gulabyants L.A., Zabolotsky B.Y. Seasonal variation of radon flow from the ground and assessment of radon hazard of the built-up area. ANRI: Apparatura i novosti radiatsionnykh izmereniy. 2004. No. 4 (39), pp. 46–50. (In Russian).
4. Miklyaev P.S., Petrova T.B. Mechanisms of radon flux formation from the surface soils and approaches to assessing the radon hazard of residential territories. ANRI: Apparatura i novosti radiatsionnykh izmereniy. 2007. No. 2, pp. 2–17. (In Russian).
5. Miklyaev P.S., Petrova T.B., Tsapalov A.A. The experience of using an isotopic geochemical method to study the conditions of radon transfer to the daytime surface. ANRI: Apparatura i novosti radiatsionnykh izmereniy. 2012. No. 1, pp. 15–20. (In Russian).
6. Miklyaev P.S., Petrova T.B. Studies of anomalous seasonal variations of radon flux density in the fault zone. Geochemistry. 2021. Vol. 66. No. 4, pp. 364–378. (In Russian).
7. Chekhov A.L. Drozdov D.N. Mapping the territory of Gomel, Mogilev and Vitebsk regions by the complex radon indicator and the volume activity of radon in residential buildings. Radiatsiya i risk. 2016. Vol. 25. No. 4, pp. 126–136. (In Russian).
8. Chunikhin L.A., Chekhov A.L., Drozdov D.N. The methodology for assessing the radon hazard of the territory and determining the critical zones of radon hazard. Theoretical & Applied Science. 2016. No. 3 (35), pp. 107–112. (In Russian).
9. Каlaydo А.V., Rimshin V.I., Semenova M.N. Assessment of the contributions of diffusive and convective radon entry into the buildings. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2021. No. 7, pp. 48–53. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2021-7-48-53
10. Shubin I.L., Bakaeva N.V., Kalaydo A.V., Skrynnikova A.V. Limitation of radon inflow from the soil into the building due to construction technologies. Stroitel’nye Materialy [Construction Materials]. 2019. No. 6, pp. 62–66. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-771-6-62-66
11. Kalaido A.V., Rimshin V.I., Semenova M.N. Ensuring acceptable levels of radon irradiation in buildings with passive radon-protective technologies. BST: Byulleten’ stroitel’noy tekhniki. 2021. No. 6 (1042), pp. 20–22. (In Russian).
12. Kalaido A.V., Rimshin V.I., Semenova M.N., Bykov G.S. Passive technologies for ensuring radon safety of the air environment of projected buildings. Vestnik of the Volga State Technological University. Series: Materials. Constructions. Technologies. 2021. No. 1, pp. 28–35. (In Russian).
13. Rimshin V.I., Shubin L.I., Savko A.V. Resource of force resistance of reinforced concrete structures of engineering structures. Academia. Arkhitektura i stroitel’stvo. 2009. No. 5, pp. 483–491.
14. Kuzina E., Cherkas A., Rimshin V Technical aspects of using composite materials for strengthening constructions. IOP Conference Series: Materials Science and Engineering. Vol. 365. Iss. 3. DOI: 10.1088/1757-899X/365/3/032053
15. Karpenko N.I., Eryshev V.A., Rimshin V.I. The limiting values of moments and deformations ratio in strength calculations using specified material diagrams. IOP Conference Series: Materials Science and Engineering. Vol. 463. Iss. 3. DOI: 10.1088/1757-899X/463/3/032024
16. Telichenko V., Rimshin V., Eremeev V., Kurbatov V. Mathematical modeling of groundwaters pressure distribution in the underground structures by cylindrical form zone В. MATEC Web Conf. XXVII R-S-P Seminar, Theoretical Foundation of Civil Engineering (27RSP) (TFoCE 2018). 2018. Vol. 196. https://doi.org/10.1051/matecconf/201819602025
17. Rimshin V.I., Labudin B.V., Melekhov V.I., Orlov A., Kurbatov V.L. Improvement of strength and stiffness of components of main struts with foundation in wooden frame buildings. ARPN Journal of Engineering and Applied Sciences. 2018. Vol. 13, pp. 3851–3856.

For citation: Rimshin V.I., Kalaydo A.V., Semenova M.N., Borsch V.A. Construction technologies for ensuring radon safety of buildings. Stroitel’nye Materialy [Construction Materials]. 2023. No. 6, pp. 33–38. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-814-6-33-38

Influence of Structure and Composition on the Properties of the Concrete Сanvas

Number of journal: 6-2023
Autors:

Bessonov I.V.,
Zhukov A.D.,
Poudel R.S.,
Matorin A.A.

DOI: https://doi.org/10.31659/0585-430X-2023-814-6-27-32
УДК: 666.972

 

AbstractAbout AuthorsReferences
A concrete canvas is a flexible fabric impregnated with a modified hydraulic binder mixture that hardens upon hydration to form a thin, strong, waterproof and refractory concrete layer. Used for erosion control, slope protection, embankment reinforcement and weed control. A textile architecture is considered three-dimensional when it includes volume, no matter how many yarn systems and fabric architectures are used. The purpose of the research presented in the article is to study the influence of the composition of the mineral composition and the structure of the three-dimensional fibrous matrix on the properties of the concrete sheet. The studies were carried out on three-dimensional fibrous matrices with various geometric patterns. The article provides a broad explanation of how the geometry of the arrangement was created, along with information on the kinds of fibers used to create the concrete canvas’ surface layers and its volumetric frameworks. The issues of producing the qualities of a concrete canvas are taken into account in accordance with the features of reinforcing elements and the properties of fine-grained modified concrete, which acts as the foundation of a concrete canvas. The results have been optimized and a nomogram is created to solve the prognosis problem and the primary components of fine-grained concrete was chosen.
I.V. BESSONOV1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.D. ZHUKOV2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
R.S. POUDEL2, PhD Student, Master (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.A. MATORIN2, Master Student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Research Institute of Building Physics Russian Academy Architecture and Construction sciences (21, Lokomotivniy Driveway, Moscow, 127238, Russian Federation)
2 National Research Moscow State University of Civil Engineering (26, Yaroslavskoye Highway, Moscow, 129337, Russian Federation)

1. Gries T., Roye A., Offermann P., Peled A. Textile reinforced concrete-state-of-theart report of RILEM TC 201-TRC. Bagneux: RILEM Publications SARL. 2006, pp. 11–27.
2. Isley F. The Use of high performance textiles in construction projects. Journal of industrial textiles. 2002. Vol. 31 (3), pp. 205–217. doi:10.1106/152808302026619
3. Tsesarsky M., Peled A., Katz A., Anteby I. Strengthening concrete elements by confinement within textile reinforced concrete (TRC) shells – static and impact properties. Construction and Building Materials. 2013. Vol. 44, pp. 514–523 DOI: https://doi.org/10.1016/j.conbuildmat.2013.03.031
4. Büsgen W.-A. Neue Verfahren zur Herstellung von dreidimensionalen Textilien für den Einsatz in Faserverbundwerkstoffen. Aachen: RWTH Publications. 1993. 157 p. (In German)
5. Поудел Р.С., Бессонов И.В., Жуков А.Д., Гудков П.К., Горбунова Э.А., Михайлик Е.Д. Цифровые методы оптимизации составов бетонного полотна // Строительные материалы. 2022. № 6. С. 20–24. DOI: https://doi.org/10.31659/0585-430X-2022-803-6-20-24
5. Poudel R.S., Bessonov I.V., Zhukov A.D., Gudkov P.K., Gorbunova E.A., Mihaylik E.D. Digital methods for optimizing textile concrete technology. Stroitel’nye Materialy [Construction Materials]. 2022. No. 6, pp. 20–24. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-803-6-20-24
6. Hegger J, Voss S. Investigations on the bearing behaviour and application potential of textile reinforced concrete. Engineering Structures. 2008. Vol. 30 (7), pp. 2050–2056. DOI: https://doi.org/10.1016/j.engstruct.2008.01.006
7. Koeckritz U, Cherif Ch, Weiland S, Curbach M. In-situ polymer coating of open grid warp knitted fabrics for textile reinforced concrete application. Journal of Industrial Textiles. 2010. Vol. 40 (2), pp. 157–169. doi:10.1177/1528083709102938
8. Бессонов И.В., Жуков А.Д., Жук П.М., Демиссе Б.А., Говряков И.С., Минаева А.М. Вулканический туф как активная минеральная добавка для портландцемента // Строительные материалы. 2022. № 6. С. 25–29. DOI: https://doi.org/10.31659/0585-430X-2022-803-6-25-29
8. Bessonov I.V., Zhukov A.D., Zhuk P.M., Demisse B.A., Govryakov I.S., Minaeva A.M. Volcanic tuff as an active mineral additive for Portland cement. Stroitel’nye Materialy [Construction Materials]. 2022. No. 6, pp. 25–29. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-803-6-25-29
9. Демиссе Б.А., Жуков А.Д., Поудел Р.С. Мелкозернистый бетон на модифицированном вяжущем // Промышленное и гражданское строительство. 2022. № 3. C. 31–36. DOI: 10.33622/0869-7019.2022.03.31-36.
9. Demisse B.A., Zhukov A.D., Poudel R.S. Fine-grained concrete on a modified binder. Promyshlennoe i grazhdanskoe stroitel’stvo. 2022. No. 3, pp. 31–36. (In Russian). DOI: https://doi.org/10.33622/0869-7019.2022.03.31-36
10. Colombo I.G., Magri A., Zani G., Colombo M., Prisco M. Textile Reinforced Concrete: Experimental investigation on design parameters. Materials and Structures. 2013. Vol. 46 (11), pp. 1933–1951. DOI: https://doi.org/10.1617/s11527-013-0017-5
11. Peled A., Cohen Z., Pasder Y., Roye A., Gries T. Influences of textile characteristics on the tensile properties of warp knitted cement based composites. Cement and Concrete Composites. 2008. Vol. 30 (3), pp. 174–83. DOI: https://doi.org/10.1016/j.cemconcomp.2007.09.001
12. Alireza A., Seyed M.H.S., Farshad R. Quantifying the effects of crack width, tortuosity, and roughness on water permeability of cracked mortars. Cement and Concrete Research. 2012. Vol. 42 (2), pp. 313–320. https://doi.org/10.1016/j.cemconres.2011.10.002
13. Zhukov А.D., Bobrova Е.U., Bessonov I.V., Medvedev А.А., Demissie B.A. Application of statistical methods for solving problems of construction materials science. Nanotechnologies in construction. 2020. Vol. 12 (6), pp. 313–319. DOI: https://doi.org/10.15828/2075-8545-2020-12-6-313-319
14. Zhukov A.D., Bessonov I.V., Demissi B.A., Zinoveva E.A. Analytical optimization of the dispersion-reinforced fine-grained concrete composition. IOP Conference Series: Materials Science and Engineering. 2021. Vol. 1083. 012037. DOI: https://doi.org/10.1088/1757-899X/1083/1/012037
15. Жуков A.Д., Бобровa E.Ю., Попов И.И., Демиссе Б.А. Системный анализ технологических процессов. International Journal for Computational Civil and Structural Engineering. 2021. Т. 17 (4). С. 73–82. https://doi.org/10.22337/2587-9618-2021-17-4-73-82
15. Zhukov A.D., Bobrova E.Yu., Popov I.I., Demisse B.A. System analysis of technological processes. International Journal for Computational Civil and Structural Engineering. 2021. Vol. 17 (4), pp. 73–82. DOI: https://doi.org/10.22337/2587-9618-2021-17-4-73-82

For citation: Bessonov I.V., Zhukov A.D., Poudel R.S., Matorin A.A. Influence of structure and composition on the properties of the concrete canvas. Stroitel’nye Materialy [Construction Materials]. 2023. No. 6, pp. 27–32. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-814-6-27-32

https://www.traditionrolex.com/10