Log in

Thermal Insulation Products Based on Modified Polyurethane Foam with Fire-Resistant Coating

Number of journal: 11-2023
Autors:

Bruyako M.G.,
Lipka P.A.,
Kalinina M.S.

DOI: https://doi.org/10.31659/0585-430X-2023-819-11-14-19
УДК: 691.175.664

 

AbstractAbout AuthorsReferences
As part of the study, thermal insulation products based on rigid polyurethane foam (PPU) with a reduced flammability group were obtained. The effect of modification of polyurethane foam with oxidized thermally expansive graphite (OTG) on physical, mechanical and fire hazard properties was studied. A two-component factory-ready system with a G4 flammability group was used as the initial composition for modification. OTG brand: KR 350-80 was used as a modifier, characterized by a degree of expansion of at least 370 ml/g, a temperature of the onset of expansion of 170°C. Products made from polyurethane foam were modified by the method of dispersing OTG in a reactive composition, as well as by applying a fire-retardant coating during injection molding of masses. Samples were made and tests were carried out to determine the flammability group in accordance with GOST 30244. It was established that an increase in the concentration of OTG in the fire retardant coating and the structure of the material reduces the flammability of products, while modification by the dispersion method makes it possible to obtain a material with a flammability group (G3), but has an effect on the technological properties of the initial composition, leads to an increase in the viscosity of the reactive composition and an increase in the density of the products, while the modification of the fire retardant coating with honey does not affect the technological and physical-mechanical properties of the final product, and makes it possible to obtain a flammability group G1–G2 depending on the concentration of OTG.
M.G. BRUYAKO, Candidate of Sciences (Engineering), (This email address is being protected from spambots. You need JavaScript enabled to view it.),
P.A. LIPKA, Graduate student (This email address is being protected from spambots. You need JavaScript enabled to view it.),
M.S. KALININA, Bachelor (This email address is being protected from spambots. You need JavaScript enabled to view it.)

National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Асеева P.M., Заиков Г.Е. Горение полимерных материалов. М.: Наука, 1981. 280 с.
1. Aseeva R.M., Zaikov G.E. Goreniye polimernykh materialov [Combustion of polymer materials]. Moscow: Nauka. 1981. 280 p.
2. Jelle B.P. Traditional, state-of-the-art and future thermal building insulation materials and solutions – Properties, requirements and possibilities. Energy and Buildings. 2011. Vol. 43. Iss. 10, pp. 2549–2563. https://doi.org/10.1016/j.enbuild.2011.05.015
3. Гравит М.В., Кулешин А.С., Беляева С.В. Национальные стандарты для жестких напыляемых PUR и PIR пен // Строительные материалы. 2017. № 10. С. 58–64.
3. Gravit M.V., Kuleshin A.S., Belyaeva S.V. National standards for rigid sprayed PUR and PIR foams. Stroitel’nye Materialy [Construction Materials]. 2017. No. 10, pp. 58–64. (In Russian).
4. Кочерженко А.В., Марушко М.В., Рябчевский И.С. Пенополиуретановая теплоизоляция с улучшенными эксплуатационными свойствами. Наукоем-кие технологии и инновации: Сборник докладов Международной научно-практической конференции, посвященной 65-летию БГТУ им. В.Г. Шухова. Белгород. 29 апреля 2019. С. 84–88.
4. Kocherzhenko A.V., Marushko M.V., Ryabchevsky I.S. Polyurethane foam thermal insulation with improved performance properties. High-tech technologies and innovations: Collection of reports of the International scientific and practical conference dedicated to the 65th anniversary of BSTU named after V.G. Shukhov. Belgorod. April 29, 2019, pp. 84–88. (In Russian).
5. Кочерженко А.В. Получение наполненного пенополиуретана с улучшенными эксплуатационными свойствами // Вестник Белгородского государственного технологического университета им. В.Г. Шухова. 2019. № 4. С. 47–52. DOI: 10.34031/article_5cb1e65f6791b0.52319300
5. Kocherzhenko A.V. Obtaining filled polyurethane foam with improved performance properties. Vestnik of the Belgorod State Technological University named after. V.G. Shukhov. 2019. No. 4, pp. 47–52. (In Russian). DOI: 10.34031/article_5cb1e65f6791b0.52319300
6. Захарченко А.А. Изучение термоокислительной деструкции и горения модифицированных пенополиуретанов. XXVI Региональная конференция молодых ученых и исследователей Волгоградской области: Сборник материалов конференции. Волгоград. 16–28 ноября 2021. С. 6–7.
6. Zakharchenko A.A. Study of thermal-oxidative destruction and combustion of modified polyurethane foams. XXVI Regional Conference of Young Scientists and Researchers of the Volgograd Region: collection of conference materials. Volgograd. November 16–28, 2021, pp. 6–7. (In Russian).
7. Патент № 2726212 C1 Российская Федерация, МПК C08G 18/48, C08G 18/76, C08K 5/49. Композиция для получения жесткого пенополиуретана пониженной горючести: № 2019141894 / Захарченко А.А., Шокова Д.В., Ваниев М.А. и др. Заявл. 17.12.2019. Опубл. 09.07.2020.
7. Patent No. 2726212 C1 Russian Federation, IPC C08G 18/48, C08G 18/76, C08K 5/49. Kompozitsiya dlya polucheniya zhestkogo penopoliuretana ponizhennoy goryuchesti [Composition for producing rigid polyurethane foam of reduced flammability]: No. 2019141894 / Zakharchenko A.A., Shokova D.V., Vaniev M.A. and others. Appl. 12/17/2019. Publ. 07/09/2020. (In Russian).
8. Каблов В.Ф., Новопольцева О.М., Кочетков В.Г., Лапина А.Г. Основные способы и механизмы повышения огнетеплозащитной стойкости материалов // Известия Волгоградского государственного технического университета. 2016. № 4 (183). С. 46–60.
8. Kablov V.F., Novopoltseva O.M., Kochetkov V.G., Lapina A.G. Basic methods and mechanisms for increasing the fire and heat resistance of materials. Izvestiya of the Volgograd State Technical University. 2016. No. 4 (183), pp. 46–60. (In Russian).
9. Халтуринский Н.А., Рудакова Т.А. Физические аспекты горения полимеров и механизм действия ингибиторов // Химическая физика. 2008. Т. 27. № 6. С. 73–84.
9. Khalturinsky N.A., Rudakova T.A. Physical aspects of polymer combustion and the mechanism of action of inhibitors. Khimicheskaya fizika. 2008. Vol. 27. No. 6, pp. 73–84. (In Russian).
10. Ушков В.А., Сокорева Е.В., Славин А.М., Орлова А.М. Пожарная опасность резольных пенофенопластов и жестких пенополиуретанов // Промышленное и гражданское строительство. 2014. № 5. С. 65–68.
10. Ushkov V.A., Sokoreva E.V., Slavin A.M., Orlova A.M. Fire hazard of resole foam phenolic plastics and rigid polyurethane foams. Promyshlennoye i grazhdanskoye stroitel’stvo. 2014. No. 5, pp. 65–68. (In Russian).
11. Guo H., Gao Q., Ouyang C.F. Research on properties of rigid polyurethane foam with heteroaromatic and brominated benzyl polyols. Journal of Applied Polymer Science. 2015. Vol. 132 (33) DOI: 10.1002/APP.42349
12. Ming-Jun Chen, Chun-Rong Chen, Yi Tan, Jian-Qian Huang. Inherently flame-retardant flexible polyurethane foam with low content of phosphorus-containing cross linking agent // Industrial & Engineering Chemistry Research. 2014. Vol. 53. Iss. 3, pp. 1160–117. https://doi.org/10.1021/ie4036753
13. Method for producing flame-retardant polyurethane foam materials having good long-term use properties: Int. Cl. C 08 G 18/409/ Klesczewski B., Otten M., Meyer-Ahrens S.; Covestro Deutschland AG. CA2767469 (A1); Appl. 2010.07.06; Publ. 2011.01.13.
14. Two-component polyurethane/vinyl ester hybrid foam system and its use as a flame retardant material and material for filling openings in buildings with foam: Int. Cl. C 08G 18/638 / Reinheimer A.; Hilti AG. US2008132593 (A1); Appl. 2007.11.28; Publ. 2012.07.10.
15. Halogen-free flame-retardant microcellular foam polyurethane material: Int. Cl. C 08 J 9/06/Z / Rongdong L. Yue; Dongguan Antuopu Plastic Polymer Technology Co., Ltd. CN105802193 (A); Appl. 2016.05.31; Publ. 2016.07.27.
16. Composition for flame-retardant flexible polyurethane foam: Int. Cl. C 08 G 18/4829 / Tokuyasu N., Hamada T.; Daihachi Chem Ind. MY139727 (A); Appl. 2003.11.06; Publ. 2009.10.30.
17. Polyurethane foam containing flame-retardant mixture: Int. Cl. C 08 G 18/3851 / Weihong L., Petrovsky A., Stoel G.K., Levchik S., Yinzhong G.; Sopresta LLC. CN101616945 (A); Appl. 2007.11.19; Publ. 2009.12.30.
18. Chen H. еtc. Highly efficient flame retardant polyurethane foam with alginate/clay aerogel coating. ACS Applied Materials & Interfaces. 2016. Vol. 8 (47), pp. 32557–32564. https://doi.org/10.1021/acsami.6b11659
19. Патент RU2616639C2. Строительная изоляционная панель и способ ее изготовления / ФАОТТО Уго (IT). Патентообладатель СИЛЬКАРТ С.П.А. (IT). Заявка: 2015129825, 27.12.2012. Опубл. 18.04.2017. Бюл. № 11.
19. Patent RU2616639C2. Stroitel’naya izolyatsionnaya panel’ i sposob yeye izgotovleniya [Construction insulating panel and method of its manufacture]. Faotto Ugo (IT). Patent holder SILKART S.P.A. (IT). Appl.: 2015129825, 12/27/2012. Publ. 04/18/2017. Bull. No. 11.
20. Zhao B. and etc. Bi-phase flame-retardant actions of water-blown rigid polyurethane foam containing diethyl-N,N-bis(2-hydroxyethyl) phosphoramide and expandable graphite. Journal of Analytical and Applied Pyrolysis. 2017. Vol. 124, pp. 247–255. https://doi.org/10.1016/j.jaap.2016.12.032
21. Xi W. and etc. Addition flame-retardant behaviors of expandable graphite and [bis(2-hydroxyethyl)amino]-methyl-phosphonic acid dimethyl ester in rigid polyurethane foams. Polymer Degradation and Stability. 2015. Vol. 122, pp. 36–43. https://doi.org/10.1016/j.polymdegradstab.2015.10.013
22. Шафигуллин Л.Н., Романова Н.В., Шафигуллина Г.Р. Исследования влияния терморасширяющегося графита на свойства пенополиуретана // Социально-экономические и технические системы: исследование, проектирование, оптимизация. 2021. № 2 (88). С. 158–167.
22. Shafigullin L.N., Romanova N.V., Shafigullina G.R. Research on the influence of thermally expanding graphite on the properties of polyurethane foam. Sotsial’no-ekonomicheskiye i tekhnicheskiye sistemy: issledovaniye, proyektirovaniye, optimizatsiya. 2021. No. 2 (88), pp. 158–167. (In Russian).

For citation: Bruyako M.G., Lipka P.A., Kalinina M.S. Thermal insulation products based on modified polyurethane foam with a fire retardant coating. Stroitel’nye Materialy [Construction Materials]. 2023. No. 11, pp. 14–19. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-819-11-14-19

Analysis of the Application of Fire Protective Composition for Wooden Structures

Number of journal: 11-2023
Autors:

Koval Yu.N.,
Andreev A.S.,
Agafonova N.Z.

DOI: https://doi.org/10.31659/0585-430X-2023-819-11-10-13
УДК: 630*843

 

AbstractAbout AuthorsReferences
In construction, coniferous wood is usually used as load-bearing and enclosing structures. Wood is characterized by the ability to ignite and spread combustion when heated in air. Wooden building structures pose a fire hazard, since with an initial impulse of external thermal energy, ignition is possible. In addition, when a fire occurs in buildings and structures where wood is located, a number of dangerous fire factors arise: flames, sparks, heat flow, toxic combustion products, extremely low oxygen concentrations, decreased visibility due to smoke. In this regard, it becomes relevant to treat wood with special compounds that increase resistance to fire. The authors examined the fire hazardous properties of building structures made of wood, analyzed the fire retardant treatment of wooden structures with a special composition; examined the fire hazardous properties of building structures made of wood, the mechanism of pyrolysis, and the effect of fire retardant treatment on the behavior of wood when exposed to fire. The use of fire retardant significantly affected the pyrolysis processes of the samples. The information obtained during the study made it possible to assess the degree of differences in the values of the average weight loss of samples treated with different fire retardants. Samples using a fire retardant composition have a shallower charring depth. Damage associated with thermal exposure is fundamentally different from untreated samples. Treated and impregnated samples exhibit rapid weight loss. This is due to the fact that in treated and impregnated samples, when exposed to high temperatures in the oven, the reactions of dehydration and cross-linking of cellulose molecules are accelerated.
Yu.N. KOVAL1, Candidate Sciences (Biology) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.S. ANDREEV1, Student (This email address is being protected from spambots. You need JavaScript enabled to view it.);
N.Z. AGAFONOVA2, Senior Lecturer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Siberian Fire and Rescue Academy State Fire Service EMERCOM of Russia (1, Severnaya Street, Zheleznogorsk, Krasnoyarsk Territory, 662972, Russian Federation)
2 National Research Moscow State University of Civil Engineering (26, Yaroslavskoye Highway, Moscow, 129337, Russian Federation)

1. Aseeva R.M., Serkov B.B., Sivenkov A.B. Gorenie drevesiny i ee pozharoopasnye svoistva: monografiya [Wood combustion and its fire hazardous properties: monograph]. Moscow: Academy of State Fire Service of the Ministry of Emergency Situations of Russia. 2010. 262 p.
2. Afanasyev S.V., Balakin V.M. Teoriya i praktika ognezashchity drevesiny i drevesnykh izdelii: monografiya [Theory and practice of fire protection of wood and wood products: monograph]. Samara: Publishing House of SamSC RAS. 2012. 138 p.
3. Gonova V.A., Kunin A.V. Preparation of a fire extinguishing powder composition based on synthesized monoammonium phosphate. Problems of science. Chemistry, chemical technology and ecology: Collection of materials of the All-Russian Scientific and Technical Conference. Novomoskovsk. October 31, 2022, pp. 225–230. (In Russian).
4. Kashipov R.R., Kleveko V.I. Fire protection of wooden structures by deep impregnation in an autoclave. Sovremennye tekhnologii v stroitel’stve. Teoriya i praktika. 2020. Vol. 2, pp. 149–153. (In Russian).
5. Korolchenko A.Ya., Korolchenko O.N. Sredstva ognezashchity: spravochnik [Fire protection means: a reference book]. Moscow: Pozhnauka. 2006. 258 p.
6. Lomakin A.D. Zashchita derevyannykh konstruktsiy [Protection of wooden structures]. Moscow: Stroymaterialy. 2013. 424 p.
7. Lomakin A.D. Protection of long-span load-bearing laminated timber structures. Stroitel’nye Materialy [Construction Materials]. 2015. No. 7, pp. 55–59. (In Russaian).
8. Lomakin A.D. Protection of laminated timber structures in factory conditions. Stroitel’nye Materialy [Construction Materials]. 2013. No. 4. pp. 111–115. (In Russian).
9. Slavik Yu.Yu., Gusarov E.F. Protective and decorative acrylic paint and varnish compositions for wooden structures and products. Stroitel’nye Materialy [Construction Materials]. 2003. No. 5, pp. 38–39. (In Russian).
10. Slavik Yu.Yu., Gusarov E.F. Preparations for fire-bioprotective treatment of wooden structures. Stroitel’nye Materialy [Construction Materials]. 2003. No. 5, pp. 42–43. (In Russian).
11. Polishchuk E.Yu., Sivenkov A.B., Biryukov E.P. Regulatory requirements for fire protection of wood and expert assessment of its quality. Pozhary i chrezvychainye situatsii: predotvrashchenie, likvidatsiya. 2016. No. 2, pp. 77–80. (In Russian).
12. Lowden L.A., Hull T.R. Flammability behaviour of wood and a review of the methods for its reduction. Fire Science Reviews. 2013. No. 2. https://doi.org/10.1186/2193-0414-2-4

For citation: Koval Yu.N., Andreev A.S., Agafonova N.Z. Analysis of the application of fire protective composition for wooden structures. Stroitel’nye Materialy [Construction Materials]. 2023. No. 11, pp. 10–13. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-819-11-10-13

Evaluation of the Quality of Wood Impregnation with Inorganic Fire Retardants During Autoclaving

Number of journal: 11-2023
Autors:

Fedosov S.V.,
Lazarev A.A.,
Tcvetkov D.E.,
Kotlov V.G.,
Komlev A.Yu.

DOI: https://doi.org/10.31659/0585-430X-2023-819-11-5-9
УДК: 630*841.21

 

AbstractAbout AuthorsReferences
The problem of determining the depth of impregnation of wood with an aqueous solution of sodium bicarbonate is considered. The relevance of the study is due to the need to develop a method of non-destructive testing of wood impregnated with flame retardants in order to identify industrial defects and (or) counterfeit products. The authors of the article propose a method for determining changes in the concentration of sodium bicarbonate in flushes from wood layers when impregnated with a nine percent solution of this salt under various conditions of treatment in an autoclave. In the work on determining the depth of impregnation with a nine percent sodium bicarbonate solution of wood during autoclave treatment, an experiment was conducted. Within the framework of this experiment, it was planned to confirm or refute the working hypothesis about the presence of anisotropy of wood by layer-by-layer examination of the depth of its impregnation with an aqueous solution of sodium bicarbonate in layers when they are obtained by sawing along and across the fibers. It was also planned to develop a methodology for conducting a study of samples of wood layers impregnated with a nine percent aqueous solution of sodium bicarbonate under various autoclaving conditions. It was also necessary to establish a pattern of changes in the concentration of sodium bicarbonate in flushes from wood layers with appropriate flame retardant treatment. The authors also planned to obtain equations to describe the dynamics of changes in the concentration of sodium bicarbonate in flushes from impregnated wood layers under various autoclaving conditions. The results of this experiment made it possible to obtain an equation of the dynamics of the change in the mass fraction of sodium bicarbonate in the flushing from the wood layer in the longitudinal section from the sample. The value of the coefficient of determination for the resulting equation is determined. When layer-by-layer examination of the depth of impregnation of wood with an aqueous solution of sodium bicarbonate, anisotropy was observed in the cuts of layers along and across the fibers.
S.V. FEDOSOV1, Doctor of Sciences (Engineering), Academician of RAACS(This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.A. LAZAREV2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
D.E. TCVETKOV2, Engineer, (This email address is being protected from spambots. You need JavaScript enabled to view it.);
V.G. KOTLOV3, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.Yu. KOMLEV2, Engineer, (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)
2 Ivanovo Fire and Rescue Academy of the State Fire Service of the Ministry of Emergency Situations of Russia, (33 Stroiteley Street, Ivanovo, 153011, Russian Federation)
3 Volga State University of Technology (3 Square named after V.I. Lenin, Yoshkar-Ola, 424000, Russian Federation)

1. Seregin N.G. Losses in the manufacture of wooden building structures. Journal of Physics: Conference Series. Modelling and Methods of Structural Analysis. Vol. 1425. 13–15 November 2019. Moscow. DOI: 10.1088/1742-6596/1425/1/012133
2. Roshchina S., Lukin M., Lisyatnikov M. Compressed-bent reinforced wooden elements with long-term load. In book: Proceedings of EECE 2019, Energy, Environmental and Construction Engineering. 2020, pp. 81–91.
3. Fedosov S.V., Lazarev A.A., Kotlov V.G., Malichenko V.G., Tsvetkov D.E. Suspended ceiling safety for firefighters in case of fire in the attic. International Conference on Construction, Architecture and Technosphere Safety. ICCATS 2022: Proceedings of the 6th International Conference on Construction, Architecture and Technosphere Safety. 2022. pp. 513–522. https://doi.org/10.1007/978-3-031-21120-1_49
4. Polishchuk E.Yu., Sivenkov A.B., Kenzhehan S.K. Heating and charring of timber constructions with thin-layer fire protection. Magazine of Civil Engineering. 2018. No. 5 (81). DOI: 10.18720/MCE.81.1
5. Kantyshev A.V., Zaitseva M.I., Kolesnikov G.N. Model of wood impregnation after incomplete drying as an additional energy management tool. Journal of Physics: Conference Series. Vol. 1333. Iss. 3. http://dx.doi.org/10.1088/1742-6596/1333/3/032033
6. Gravit M.V., Serdjuks D., Vatin N., Lazarev Y.G., and Yuminova M.O. Single burning item test for timber with fire protection. Magazine of Civil Engineering. 2020. No. 3(95), pp. 19–30.
7. Kasymov D., Agafontsev M., Perminov V., Martynov P., Reyno V., Loboda E. Experimental investigation of the effect of heat flux on the fire behavior of engineered wood samples. Fire. 2020. 3 (4). 61. https://doi.org/10.3390/fire3040061
8. Полищук Е.Ю., Сивенков А.Б., Бирюков Е.П., Нормативные требования к огнезащите древесины и экспертная оценка ее качества // Пожары и чрезвычайные ситуации: предотвращение, ликвидация. 2016. № 2. С. 77–80.
8. Polishchuk E.Yu., Sivenkov A.B., Biryukov E.P., Regulatory requirements for fire protection of wood and expert assessment of its quality Pozhary i chrezvychaynyye situatsii: predotvrashcheniye, likvidatsiya. 2016. No. 2, pp. 77–80. (In Russian).
9. Мартынов А.В., Греков В.В., Попова О.В. Огнестойкость строительного элемента с интумесцентной огнезащитой: стандартная оценка и экспресс-анализ // Безопасность техногенных и природных систем. 2023. Т. 7. № 2. С. 38–46.
9. Martynov A.V., Grekov V.V., Popova O.V. Fire resistance of a building element with intumescent fire protection: standard assessment and express analysis Bezopasnost’ tekhnogennykh i prirodnykh sistem. 2023. Vol. 7. No. 2, pp. 38–46. (In Russian).
10. Бороздин С.А., Гитцович Г.А., Ветров В.В., Морозов С.С. Эффективность огнезащитных составов при нанесении их на различные породы древесины // Современные проблемы гражданской защиты. 2020. № 3 (36). С. 70–76.
10. Borozdin S.A., Gitsovich G.A., Vetrov V.V., Morozov S.S. The effectiveness of fire retardant compounds when applied to various types of wood Sovremennyye problemy grazhdanskoy zashchity. 2020. No. 3 (36), pp. 70–76. (In Russian).
11. Ратинов В.Б., Иванов Ф.М. Химия в строительстве. М.: Стройиздат, 1977. 220 с.
11. Ratinov V.B., Ivanov F.M. Khimiya v stroitel’stve. [Chemistry in construction]. Moscow: Stroyizdat. 1977. 220 p.
12. Федосов С.В., Степанова В.Ф., Румянцева В.Е. и др., Коррозия строительных материалов: проблемы, пути решения. М.: АСВ, 2022. 400 с.
12. Fedosov S.V., Stepanova V.F., Rumyantseva V.E. et al. Korroziya stroitel’nykh materialov: problemy, puti resheniya [Corrosion of building materials: problems, solutions]. Moscow: ASV. 2022. 400 p.
13. Ioannidou D., Sonnemann G., Pommier R., Habert G. Evaluating the risks in the construction wood product system through a criticality assessment framework. Resources, conservation and recycling. 2019. Vol. 146, pp. 68–76. https://doi.org/10.1016/j.resconrec.2019.03.021
14. Peng H., Salmén L., Jiang J., Lu J. Creep properties of compression wood fibers. Wood Science and Technology. 2020. Vol. 54. No. 6, pp. 1497–1510. https://doi.org/10.1007/s00226-020-01221-1
15. Орешкин Д.В. Теоретическое обоснование использования древесины мягколиственных пород в строительстве // Строительные материалы. 2015. № 7. С. 30–33.
15. Oreshkin D.V. Theoretical justification for the use of soft-leaved wood in construction. Stroitel’nye Materialy [Construction Materials]. 2015. No. 7, pp. 30–33. (In Russian).
16. Поляков Т.А., Поварова О.А. Подготовка древесных материалов для строительства и декора путем обработки древесины комбинированным воздействием ультрафиолета и СВЧ-излучения // Вестник Волгоградского государственного университета. Технические науки. 2020. № 2 (8). С. 75–77.
16. Polyakov T.A., Povarova O.A., Preparation of wood materials for construction and decoration by processing wood with the combined influence of ultraviolet and microwave radiation. Vestnik of Volgograd State University. Technical science. 2020. No. 2 (8), pp. 75–77. (In Russian).
17. Vladimirova O.A., Sopilov V.V., Bobyleva A.V., Labudin B.V., Popov E.V. Wood-сomposite structures with non-linear behavior of semi-rigid shear ties. Construction of Unique Buildings and Structures. 2021. No. 4 (97). 9702. https://doi.org/10.4123/CUBS.97.2
18. Попов Е.В., Русланова А.В., Сопилов В.В., Ждралович Н., Мамедов Ш.М., Лабудин Б.В. Контактное взаимодействие когтевой шайбы с древесиной от предельного сдвига // Известия вузов. Лесной журнал. 2020. № 4. С. 178–189. DOI: 10.37482/0536-1036-2020-4-178-189
18. Popov E.V., Ruslanova A.V., Sopilov V.V., Zdralovic N., Mamedov S.M., Labudin B.V. Contact interaction of a claw washer with wood at limiting shear. Russian Forestry Journal. 2020. No. 4 (376), pp. 178–189. (In Russian). https://doi.org/10.37482/0536-1036-2020-4-178-189
19. Labudin B.V., Karelskiy A.V., Lyapin D.M. Theoretical preconditions for determination of the elastic modulus of CLT-panels. Materials Science Forum. 2020. Vol. 992, pp. 998–1005. https://doi.org/10.4028/www.scientific.net/MSF.992.998

For citation: Fedosov S.V., Lazarev A.A., Tcvetkov D.E., Kotlov V.G., Komlev A.Yu. Assessment of the quality of wood impregnation with inorganic flame retardants during autoclaving. Stroitel’nye Materialy [Construction Materials]. 2023. No. 11, pp. 5–9. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-819-11-5-9

Photopolymer Materials in the Practice of Restoration and Conservation Works on Objects of Historical and Cultural Value

Number of journal: 12-2023
Autors:

Il'ina V.V.,
Strokova V.V.

DOI: https://doi.org/10.31659/0585-430X-2023-820-12-76-83
УДК: 691.57:667.6

 

AbstractAbout AuthorsReferences
The evolution is analyzed and modern approaches to carrying out restoration, conservation and reconstruction works at objects of historical and cultural value are presented from the standpoint of the limits of the permissibility of using non-authentic materials. The principles of choosing materials for restoration and conservation work are considered. An analysis of the experience of using photopolymer materials in the creation of protective, decorative or reconstructive layers and coatings in order to preserve or recreate objects of historical and cultural significance is presented. The results of studies on the use of liquid photopolymer compositions based on acrylates in restoration and conservation work are presented. The prospects of using photopolymer materials in the practice of restoration and reconstruction are shown, and directions for further research are formulated.
V.V. IL’INA1, Candidate of Science (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
V.V. STROKOVA2, doctor of technical science (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Saint-Petersburg State University of Film and Television (13, Pravdy Street, Saint-Petersburg, 191119, Russian Federation)
2 Belgorod State Technological University named after V.G. Shukhov (46, Kostyukova Street, Belgorod, 308012, Russian Federation)

1. Kondrashov E.K., Kozlova A.A. UV-quantum technologies for the formation of protective-decorative and functional polymer coatings. Part 3. Sources of UV-curing and application of UV-curable coatings. Lakokrasochnye materialy i ikh primenenie. 2022. No. 10, pp. 35–41. (In Russian).
2. Shchenkov A.S., Antonova N.E. On the aesthetic aspects of architectural intervention in the environment of small historical cities. Academia. Architectura i Stroitel’stvo. 2022. No. 3, pp. 51–59. (In Russian).
3. Podyapolsky S.S., Bessonov G.B., Belyaev L.A., Postnikov T.M. Restavraciya pamyatnikov arhitektury [Restoration of architectural monuments]. Moscow: Stroyizdat. 2000. 288 p.
4. Tochina V.P., Popov A.D., Tankova N.A. Principles and methods of renovation of industrial facilities in world practice. Vestnik of BSTU named after V.G. Shukhov. 2019. No. 6, pp. 78–82. (In Russian).
5. Shumilkin S.M., Shumilkin A.S. Restoration of residential houses of merchants Markov in Nizhny Novgorod. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2018. No. 12, pp. 41–44. (In Russian).
6. Khritankov V.F., Pichugin A.P., Pimenov E.G., Smirnova O.E. Reconstruction of the architectural ensemble of the resort «Lake Karachi» in the Novosibirsk Region. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2020. No. 4–5, pp. 33–38. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2020-4-5-33-38
7. Onoprienko N.N., Salnikova O.N. On the issue of development of domestic restoration materials for architectural monuments Vestnik of BSTU named after V.G. Shukhov. 2023. No. 3, pp.19–33. (In Russian).
8. Bulakh A.G. Kamennoe ubranstvo Peterburga [Stone decoration of St. Petersburg]. St. Petersburg: Tsentrpoligraf. 2009. 214 p.
9. Patent RF 2460702 Sposob izgotovleniya iskusstvennogo kamnya [Method for the manufacture of artificial stone]. Babalyan V.V., Bindasov G.V.; Publ. 09.10.2012.
10. Patent RF 2071418 Sposob izgotovleniya iskusstvennogo kompozicionnogo materiala [Method for manufacturing an artificial composite material]. Volgushev A.N., Shesterkina N.F.; Publ. 01.10.1997.
11. Shanaev S.Ya., Tikhomirov S.V. Starye tehnologii i recepty otdelochnyh rabot [Old technologies and finishing recipes] Moscow: Spetsproekt restoration. 1993. 51 p.
12. Babkin O.E., Babkina L.A., Aikasheva O.S., Il’ina V.V. Physical and chemical bases of formulating liquid photopolymerizable compositions for a wide range of applications. Part 1. Influence of the nature of monomers. Klei. Germetiki. Technologii. 2020. No. 5, pp. 20–26. (In Russian).
13. Babkin O.E., Il’ina V.V., Babkina L.A., Sirotinina M.V. UV-Cured coatings for functional protection. Russian journal of Applied Chemistry. 2016. Vol. 89. Iss. 1, pp. 114–119. https://doi.org/10.1134/S1070427216010183
14. Babkin O.E., Babkina L.A., Il’ina V.V., Aikasheva O.S. Photo-cured varnishes for architectural construction and restoration. Lakokrasochnye materialy i ikh primenenie. 2021. No. 11. pp. 30–34. (In Russian).
15. Kraev I.D., Popkov O.V., Shuldeshov E.M. et al. Prospects for the use of organosilicon polymers in the creation of modern materials and coatings for various purposes. Trudy VIAM. 2017. No. 12 (60). pp. 48–62. (In Russian).
16. Fedoseeva T.S., Belyavskaya O.N., Gordyushina V.I. et al. Restavracionnye materialy [Restoration materials]. Moscow: INDRIK, 2016. 232 p.
17. Ruskol I.Yu., Alekseeva E.I., Skripnichenko L.A. et al. Optically transparent photocurable organosilicon compositions. Klei. Germetiki. Technologii. 2017. No. 12, pp. 10–15. (In Russian).
18. Babkin O.E., Babkina L.A., Il’ina V.V. Photocurable varnishes for glass design and restoration. Lakokrasochnye materialy i ikh primenenie. 2023. No. 5. pp. 47–52. (In Russian).
19. Babkin O.E., Babkina L.A., Aykasheva O.S., Il’ina V.V., Vlasov M.Yu. UV curing technology. Theory and practice. Izvestiya SPbGTI(TU). 2022. No. 62 (88), pp. 6–11. (In Russian).
20. Babkin O.E., Il’ina V.V., Pankin D.V., Babkina L.A., Sedova I.V. Alkyd oligomers alkylated with vinyltoluene in photopolymer paint and varnish compositions. Lakokrasochnye materialy i ikh primenenie. 2016. No. 11, рp. 28–33. (In Russian).

For citation: Il'ina V.V., Strokova V.V. Photopolymer materials in the practice of restoration and conservation works on objects of historical and cultural value. Stroitel’nye Materialy [Construction Materials]. 2023. No. 12, pp. 76–83. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-820-12-76-83

Study of Polymer Matrices Based on Blends of Polyvinyl Chloride and Grafted Copolymers

Number of journal: 12-2023
Autors:

Khuziakhmetova K.R.,
Islamov A.M.,
Abdrakhmanova L.A.,
Nizamov R.K.,
Valieva D.M.

DOI: https://doi.org/10.31659/0585-430X-2023-820-12-70-75
УДК: 691.175

 

AbstractAbout AuthorsReferences
The development of mixed matrices is a well-established and suitable method for obtaining new polymeric materials. The combination of two different types of polymers allows you to get a new and unique material that has the properties of both polymers. This paper compares polymer matrices based on polyvinyl chloride (PVC) and various graft copolymers in order to select the optimal compositions for further filling. Domestic acrylonitrile butadiene styrene (ABS) and imported acrylonitrile styrene acrylate (ASA) were chosen as graft copolymers. Despite the manufacturability of copolymers, the subsequent extrusion of filled compositions is more appropriate with a PVC/ABS matrix, since power consumption during processing will be reduced. At the same time, the matrix based on a mixture of PVC/ASA polymers has higher strength properties, but PVC/ABS has the best effect as an impact-resistant matrix. Depending on the content of the copolymer, the structure of compositions based on polymer mixtures can be microdispersed or viscous and layered, which will determine the main physical and mechanical properties. In general, both matrices can be used for further filling, but with a copolymer content of less than 50 phr.
K.R. KHUZIAKHMETOVA1, Graduate Student (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.M. ISLAMOV1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
L.A. ABDRAKHMANOVA1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
R.K. NIZAMOV1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
D.M. VALIEVA2, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Kazan State University of Architecture and Engineering (1, Zelenaya Street, Kazan, 420043, Russian Federation)
2 SPC «Rekon» (7B, Vasilchenko Street, Kazan, 420095, Russian Federation)

1. Islamov A.M. Diffusion modification of epoxy polymer with polyisocyanate. Vestnik Tekhnologicheskogo Universiteta. 2017. No. 19. Vol. 20, pp. 51–53. (In Russian).
2. Abdrakhmanova L.A. Polyvinyl chloride-based foamed composites. Stroitel’nye Materialy. [Construction Materials]. 2016. No. 3, pp. 82–84. (In Russian).
3. Khantimirov A.G., Abdrakhmanova L.A., Nizamov R.K., Khozin V.G. Wood-polymer composites based on polyvinyl chloride reinforced with basalt fibre. Izvestiya of the Kazan State University of Architecture and Engineering. 2022. No. 3. Vol. 61, pp. 75–81. (In Russian). DOI: 10.52409/20731523_2022_3_75
4. Nizamov R.K. Polyfunctional fillers for polyvinylchloride composites for construction purposes. Stroitel’nye materialy [Construction Materials]. 2006. No. 7, pp. 68–70. (In Russian).
5. Nizamov R.K., Abdrakhmanova L.A., Khozin V.G. Stroitel’nye materialy na osnove polivinilkhlorida i polifunktsional’nykh tekhnogennykh otkhodov [Construction materials based on polyvinylchloride and polyfunctional technogenic wastes]. Kazan: KGASU. 2008. 181 p. (In Russian).
6. Khan I., Mansha M., Jafar Mazumder A. Polymer blends. Functional Polymers. Polymers and Polymeric Compositsiryes: A Reference Series. Dhahran: Springer, Cham, 2019, pp. 513–549. DOI: 10.1007/978-3-319-95987-0_16
7. Lavrov N.A., Belukhichev E.V. Polyvinylchloride-based polymer blends (overview). Plasticheskie Mas-sy. 2020. No. 3–4, pp. 55–59. (In Russian). DOI: 10.35164/0554-2901-2020-3-4-55-59
8. Utracki L.A. Commercial Polymer Blends. New York: Springer. 1998. 658 p.
9. Patent GB841889A. Blend of polymeric products / Borg Warner Corp. Declared 08.04.1957. Published 20.07.1960.
10. Matseevich A.V. Relaxation properties of materials based on polyvinyl chloride and ABS-plastic blends. Vestnik MSUCE. 2015. No. 8, pp. 118–129. (In Russian).
11. Sharma Y.N. Development and characterization of PVC/ABS polyblends. International Journal of Polymeric Materials and Polymeric Biomaterials. 1988. No. 2. Vol. 12. DOI: 10.1080/00914038808033931
12. Kulshreshtha A.K. Viscometric determination of compatibility in PVC/ABS polyblends-II. Reduced viscosity-concentration plots. European Polymer Journal. 1988. No. 1. Vol. 24. DOI: 10.1016/0014-3057(88)90122-X
13. Kulshreshtha A.K. Viscometric determination of compatibility in PVC/ABS polyblends. Part III. Choice of a common solvent and its effect on results. European Polymer Journal. 1988. No. 2. Vol. 24. DOI: 10.1016/0014-3057(88)90151-6
14. Kulshreshtha A.K. Viscometric determination of compatibility in PVC/ABS polyblends-I. Viscosity-composition plots. European Polymer Journal. 1988. No. 1. Vol. 24. DOI: 10.1016/0014-3057(88)90121-8
15. Baknell K.B. Udaroprochnye plastiki. Per. s angl. I.S. Lishanskogo [Impact-resistant plastics. Transl. from English I.S. Lishansky]. Leningrad: Khimiya, 1981. 328 p.
16. Zhang K., Hamza Bichi A., Yang J. Effect of acrylonitrile styrene acrylate on mechanical, thermal and three-body abrasion behaviors of eucalyptus fiber reinforced polyvinyl chloride composite. Materials Research Express. 2021. No. 2. Vol. 8. DOI: 10.1088/2053-1591/abe6db
17. Zhang Y., Xu Y., Song Y., Zheng Q. Study of poly(vinyl chloride)/acrylonitrile-styrene-acrylate blends for compatibility, toughness, thermal stability and UV irradiation resistance. Journal of Applied Polymer Science. 2013. No. 3. Т. 130. DOI: 10.1002/app.39405
18. Ivanovskii S.K., Bakhaeva A.N., Zheryakova K.V., Ishkuvatova A.R. To the issue of processing of polymer composite materials. Uspekhi sovremennogo estestvoznaniya. 2014. No. 12–5, pp. 592–595. (In Russian).
19. Tadmor Z. Teoreticheskie osnovy pererabotki polimerov. Per. s angl. Z. Tadmor, K. Gogos [Theoretical bases of polymer processing. Transl. from English. Z. Tadmor, K. Gogos]. Moscow: Khimiya, 1984. 632 p. (In Russian).
20. Kuleznev V.N. Polymer blends and alloys. Konspekt l. St. Petersburg: Nauchnye osnovy i tekhnologii, 2013. 216 p.
21. Zhang X., Zhang J. Effect of temperature on the impact behavior of PVC/ASA binary blends with various ASA terpolymer contents. Journal of Polymer Engineering. 2019. No. 5. Т. 39. DOI: 10.1515/polyeng-2018-0349

For citation: Khuziakhmetova K.R., Islamov A.M., Abdrakhmanova L.A., Nizamov R.K., Valieva D.M. Study of polymer matrices based on blends of polyvinyl chloride and grafted copolymers. Stroitel’nye Materialy [Construction Materials]. 2023. No. 12, pp. 70–75. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-820-12-70-75

Theoretical and Practical Aspects of the Secondary Use of Hydrolysis Productions Waste in Composite Building Materials (Review)

Number of journal: 12-2023
Autors:

Saidumov M.S.,
Murtazaev S.-A.Yu.
Mezhidov D.A.

DOI: https://doi.org/10.31659/0585-430X-2023-820-12-61-69
УДК: 622.245.422.2

 

AbstractAbout AuthorsReferences
The theoretical and practical aspects of the development of relevant technological solutions to improve the efficiency of the secondary use of waste from hydrolysis industries in composite building materials are disclosed. Based on the methods of comparative analysis, the results of domestic and foreign experience in the use of hydrolysis lignin in the practice of building materials science are presented, technological features of its application in the technology of concrete and other building composites are revealed, taking into account the influence of the sequence of introduction of raw materials components on the basic properties of the formulations obtained. The scale of production activities of the cement industry is disclosed with a presentation of the dynamics of development and assessment of the contribution of this industry to the emission of carbon dioxide into the atmosphere.
M.S. SAIDUMOV1,2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
S.-A.Yu. MURTAZAEV1,3, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
D.A. MEZHIDOV1, Postgraduate Student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Grozny State Oil Technical University named after Academician M.D. Millionshtchikov (100, Isayev Avenue, Grozny, 364051, Chechen Republic, Russian Federation)
2 Academy of Sciences of the Chechen Republic (34, Staropromyslovskoe Shosse, Grozny, 364043, Russian Federation)
3 Complex Research Institute named after Kh.I. Ibragimov, Russian Academy of Sciences (21, Staropromyslovskoe Shosse, Grozny, 364051, Russian Federation)

1. Wynn M., Jones P. Industry approaches to the Sustainable Development Goals. International Journal of Environmental Studies. 2022. Vol. 79. Iss. 1, pp. 13–18. DOI: https://doi.org/10.1080/00207233.2021.1911101
2. Tudor C., Sova R. Benchmarking GHG emissions: forecasting models for global climate policy. Electronics. 2021. Iss. 10 (24). 3149. DOI: https://doi.org/ 10.3390/electronics10243149
3. Cai B., Wang J., He J., Geng Y. Evaluating CO2 emission performance in China’s cement industry: An enterprise perspective. Applied Energy. 2016. Vol. 166, pp. 191–200. DOI: 10.1016/j.apenergy.2015.11.006
4. Dobrohotova M.V., Matushanskij A.V. Applying the best available techniques concept for the technological transformation of industry under the energy transition conditions. Economica ystoychivogo razvitiya. 2022. No. 2 (50), pp. 63–68. (In Russian).
5. Bashmakov I.A., Skobelev D.O., Borisov K.B., Guseva T.V. Benchmarking Systems for Greenhouse Gases Specific Emissions in Steel Industry. Chernaya metallurgiya. Byulleten’ nauchno-tekhnicheskoi i ekonomicheskoi informatsii. 2021. Vol. 77. Iss. 9, pp. 1071–1086. (In Russian). DOI: https://doi.org/ 10.32339/0135-5910-2021-9-1071-1086
6. Bashmakov I.A., Potapova E.N., Borisov K.B., Lebedev O.V., Guseva T.V. Cement sector decarbonization and development of environmental and energy management systems. Stroitel’nye Materialy [Construction Materials]. 2023. No. 9, pp. 4–12. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-817-9-4-12
7. Shiryaev M.V., Yashin S.N., Borisov S.A., Zhogin A.O. Carbon polygons as an element of the formation of a “green economy” in the Russian Federation. Razvitiye i bezopasnost’. 2021. No. 4 (12), pp. 95–104. (In Russian).
8. Lesovik V.S., Fomina E.V. On the problem of designing building composites to protect the human environment. In the collection: Fundamental, exploratory and applied research of the RAASN on scientific support for the development of architecture, urban planning and the construction industry of the Russian Federation in 2021. Moscow. 2022, pp. 177–185. (In Russian).
9. Saidumov M.S., Uspanova A.S., Aliev S.A. Ecological and materials science problems of using technogenic waste in post-crisis areas. In the collection: Science of the XXI century. Problems of academic mobility of a researcher and research methodology. Materials of the II International Scientific and Practical Conference. Under the general editorship of Z.A. Demchenko. 2013, pp. 440–443. (In Russian).
10. Alaskhanov A.Kh., Taimashanov Kh.E., Saidumov M.S., Murtazaeva T.S.A. Modern approaches to the development of multicomponent binders using technogenic raw materials. Vestnik of the GSOTU. Technical science. 2022. Vol. 18. No. 1 (27), pp. 63–70. (In Russian).
11. Lesovik V.S., Fomina E.V., Ayzenshtadt A.M. Some aspects of technogenic metasomatosis in construc-tion material science. Stroitel’nye Materialy [Construction Materials]. 2019. No. 1–2, pp. 100–106. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-100-106
12. Travush V.I., Kuzevanov D.V., Kaprielov S.S., Volkov Yu.S. Concrete as an ecological factor in reducing the “carbon footprint” in the living environment. Beton i Zhelezobeton [Concrete and Reinforced Concrete]. 2022. No. 3 (611), pp. 10–14. (In Russian). DOI: https://doi.org/10.31659/0005-9889-2022-611-3-10-14
13. Tokareva S.A., Kabanova M.K. Utilization of large-tonnage waste. Processing, neutralization and obtaining useful products. Stroitel’nye Materialy [Construction Materials]. 2022. No. 5, pp. 25–29. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-802-5-25-29
14. Murtazaev S.-A.Yu., Salamanova M.Sh., Alaskhanov A.Kh., Murtazaeva T.S.-A. Prospects for the use of cement industry waste for the production of modern concrete composites. Stroitel’nye Materialy [Construction Materials]. 2021. No. 5, pp. 55–62. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-791-5-55-62
15. Konyukhov V.Yu., Konovalov P.N., Suslov K.V., Vasilyeva K.S. Methods of utilization and main directions of use of lignin. Molodezhnyy vestnik of IrSTU. 2015. No. 2, pp. 20–27. (In Russian).
16. Leonovich A.A., Zakharov S.S. Development of a new composite thermal insulation material using hydrolytic lignin. LesPromInform. 2015. No. 4 (110). (In Russian).
17. Tsvetkov M.V., Salgansky E.A. Lignin: directions of use and methods of disposal (review). Zhurnal prikladnoy khimii. 2018. Vol. 91. No. 7, pp. 988–997. (In Russian).
18. Volosatova K.A. Study of the possibility of using hydrolytic lignin in the production of wall blocks for low-rise construction. Inzhenernyy vestnik Dona. 2018. No. 3 (50), pp. 125–134. (In Russian).
19. Plotnikova G.P. Composite building material using wood chemical waste in its composition. Izvestiya vuzov. Investitsii. Stroitel’stvo. Nedvizhimost’. 2021. Vol. 11. No. 3 (38), pp. 452–461. (In Russian).
20. Beregovoi V.A., Egunov D.A., Sorokin D.S. Construction materials and binders based on hydrolytic lignin. Regional’naja arhitektura i stroitel’stvo. 2017. No. 3 (32), pp. 75–79. (In Russian).
21. Kiselev V.P., Ivanova L.A., Shevchenko V.A., Bugaenko M.B., Kemenev N.V. Lignin-containing polymers in asphalt concrete mixtures. Vestnik IrSTU. 2013. No. 7 (78), pp. 61–68. (In Russian).
22. Ibe E.E., Chekalova A.Yu., Shibaeva G.N. Porous ceramics based on hydrolytic lignin. Inzhenernyy vestnik Dona. 2021. No. 7 (79), pp. 311–319. (In Russian).
23. Shurysheva G.V. Lignopolymer silicate composition for protecting concrete from organogenic corrosion. Cand. Diss. (Engineering). Krasnoyarsk. 2008. 141 p. (In Russian).
24. Selivanov Yu.V., Shiltsina A.D., Selivanov V.M. Compositions and properties of ceramic heat-insulating building materials from low-temperature foaming masses based on clay raw materials. Magazine of Civil Engineering. 2012. No. 3 (29), pp. 35–40. (In Russian).
25. Xinxing Zhou, Taher Baghaee Moghaddam, Meizhu Chen, Shaopeng Wu. Life cycle assessment of biochar modified bioasphalt derived from biomass. ACS Sustainable Chemistry & Engineering. 2020. No. 8 (38), pp. 14568–14575. https://doi.org/10.1021/acssuschemeng.0c05355
26. Christian Moretti, Blanca Corona, Ric Hoefnagels. Kraft lignin as a bio-based ingredient for Dutch asphalts: an attributional LCA. Science of the Total Environment. 2022. Vol. 806. P. 1. 150316. https://doi.org/10.1016/j.scitotenv.2021.150316
27. Murtazaev S.-A.Yu., Salamanova M.Sh. Study of the durability of cement stone on non-clinker alkaline activated binders. Vestnik of the GSOTU. Technical science. 2022. Vol. 18. No. 2 (28), pp. 98–107. (In Russian).

For citation: Saidumov M.S., Murtazaev S.-A.Yu. Mezhidov D.A. Theoretical and practical aspects of the secondary use of hydrolysis productions waste in composite building materials (review). Stroitel’nye Materialy [Construction Materials]. 2023. No. 12, pp. 61–69. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-820-12-61-69

Method of Redevelopment of Underground Mining Facilities

Number of journal: 12-2023
Autors:

Man'ko A.V.,
Kopteva O.V.

DOI: https://doi.org/10.31659/0585-430X-2023-820-12-55-60
УДК: 622:624.19.035.2

 

AbstractAbout AuthorsReferences
Mining is a set of industrial branches engaged in exploration, extraction, primary processing and obtaining the initial semi-finished product of elements related to minerals. Deposits are ore, non-metallic and alluvial. These deposits are mined by open pit and closed pit methods. After the end of underground operations, empty mine fields remain, which on the surface are labeled as exclusion zones. The problem of cave-in zones, under which the waste mine fields of the mining industry are located, has been particularly acute for decades. These mines are located not only under the industrial zones of populated areas, but also under residential and public areas and cause irreversible transformation of the natural environment, which leads to catastrophic consequences. Transformation of underground space is the main task of redevelopment of industrial areas of this kind. It is possible to build underground structures for other purposes in worked-out mines. Due to the fact that these structures will be maintained and operated, the change in the secondary stress fields in the mountain massif will not have such catastrophic consequences as in the case of alienation-collapse zones. Besides, the reuse of worked-out workings is economically more favorable due to the fact that sinking will be minimal. In this paper only underground mining complexes and the possibility of their reuse will be considered.
A.V. MAN'KO, Candidate Sciences (Engineering), associate professor (This email address is being protected from spambots. You need JavaScript enabled to view it.),
O.V. KOPTEVA, Senior lecturer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Lapidus A.A., Topchiy D.V., Efremova V.E., Kuzin E.A. Redevelopment of industrial territories. Vestnik of Magnitogorsk State Technical University named after G.I. Nosov. 2019. Vol. 17. No. 4, pp. 56–61. (In Russian).
2. Basnukaev M.Sh., Shlafman A.I. Redevelopment industrial’nykh territoriy [Redevelopment of industrial territories]. SPb.: KultInformPress. 2013. 134 p.
3. Vlasova M.F., Leonova L.B. Redevelopment of industrial zones of large cities to create a comfortable urban environment in Russia. Ekonomika stroitel’stva. 2021. No. 5 (71), pp. 15–26. (In Russian).
4. Berezina M.V. Study of the feasibility of options for repairing and strengthening reinforced concrete structures of an industrial building. Engineering personnel are the future of Russia’s innovative economy. Materials of the V All-Russian Student Conference. Yoshkar-Ola. 2019. Vol. 5, pp. 10–12. (In Russian).
5. Kukina I.V. On the role of separating territories in the logical structure of a modern city. Journal of Siberian Federal University. Humanities and Social Sciences. 2012. Vol. 5. No. 5, pp. 647–661.
6. Malaya E.V., Perevednova G.V. Preservation of historical heritage in the process of renovation of enterprises (on the example of textile enterprises in Orekhovo-Zuyevo). Science, education and experimental design. Proceedings of the MAU (MARCHI): Materials of the international scientific and practical conference. Moscow. MAU. 2018. Vol. 2, pp. 473–475. (In Russian).
7. Seregina A.A. Trends in the formation of centers of historical settlements based on industrial heritage on the example of the cities of the Moscow region (Pavlovsky Posad, Orekhovo-Zuyevo, Drezna). Science, education and experimental design. Proceedings of the MAU (MARCHI): Materials of the international scientific and practical conference. Moscow. MAU. 2019, pp. 134–136. (In Russian).
8. Ulyanova G.N. Textile manufacturers Zimin and their family firms: production and trade. 1810–1918. Ekonomicheskaya istoriya (Yearbook). 2021. T. 2020, pp. 170–203. (In Russian).
9. Staritsyna I.A., Staritsyna N.A. Environmental problems of the Ural mining towns on the example of the Sverdlovsk region. Ekologicheskii vestnik Rossii. 2018. No. 2, pp. 51–55. (In Russian).
10. Collaton E., Bartsch Ch. Industrial site reuse and urban redevelopment – an overview. A Journal of Policy Development and Research. 1996. Vol. 2. No. 3, pp. 17–61.
11. Lai Y., Chen K., et al. Transformation of industrial land in urban renewal in Shenzhen, China. Land. 2020. No. 9. 371. DOI: 10.3390/land9100371
12. Popova D.D. Stages of socialization of industrial heritage in Moscow. Vestnik MSUCE. 2020. Vol. 15. No. 8, pp. 1090–1104. (In Russian). DOI: 10.22227/1997-0935.2020.8.1090-1104
13. Dmitrieva A.D., Inskirveli N. Renovation of industrial zones in modern conditions of Russian cities. Spring days of science: collection of reports of the International Conference of Students and Young Scientists. Yekaterinburg. 2021, pp. 781–786. (In Russian).
14. Petrishev V.P., Dubrovskaya S.A., Noreika S.Y. et al. About a problem of post-industrialisation of salt-mining Europian towns. Euro-eco Hannover 2014. International symposium Programm Abstracts: Internationaler Kongress Fachmesse «Okologische, Technologische und Rechtliche Aspekte der Lebensversorgung». 27–28 November 2014, pp. 133–134.
15. Babkin R.A. Industrial zones: potential for reorganization and role in the spatial development of the city (using the example of Moscow). Old and New Moscow: trends and problems of development. A collection of scientific articles presented in the form of reports at conferences within the framework of the project of the Moscow city branch of the Russian Geographical Society “The Unknown is Nearby: Five Years of New Moscow”. Moscow. 2018, pp. 37–57. (In Russian).
16. Zharaspaev M.A. Results of pilot industrial work on re-development at the Zhaman-Aybat field (Republic of Kazakhstan). Interaktivnaya nauka. 2017. No. 11, pp. 127–132. (In Russian). DOI: https://doi.org/10.21661/r-116633
17. Korchak A.V. Reuse of technogenic underground space of coal mines // Gornyi informatsionno-analiticheskii byulleten’ (scientific and technical journal). 1998. No. 6, pp. 22–27. (In Russian).
18. Collaton E., Bartsch Ch. Industrial site reuse and urban redevelopment – an overview. A Journal of Policy Development and Research. 1996. Vol. 2. No. 3, pp. 17–61.
19. Kazikaev D.M., Korotkov T.V. Features of production diversification in the combined development of mineral deposits. Gornyi informatsionno-analiticheskii byulleten’ (scientific and technical journal). 2007. No. 6, pp. 208–213. (In Russian).
20. Kokosadze A.E., Chesnokov S.A., Fridkin V.M. Features of engineering structures of underground power engineering. Izvestiya Tul’skogo gosudarstvennogo universiteta. Nauki o zemle. 2013. No. 3, pp. 55–72. (In Russian).
21. Langer P. “POST-MINING REALITY” in Western Europe: selected collieries in Belgium and France following discontinuation of coal mining. IOP Conf. Series: Materials Science and Engineering. 2019. Vol. 471. Iss. 11. DOI: 10.1088/1757-899X/471/11/112003
22. From a mine to a cultural complex. Internet journal about design and architecture BERLOGOS. Website. 2023. URL: http://berlogos.com/work/iz-shahty-v-kulturnyj-kompleks/ (Date of access 25.09.23). (In Russian).
23. Bogdanov Ya.A., Sokolova S.E., Manko A.V. Selection of the optimal type of chamber support in the rock salt massif at the Sol-Iletsk mine. Inzhenernyi vestnik Dona. 2023. No. 5 (101), pp. 607–615. (In Russian).
24. Dolotov Yu.A. Underground halotherapy in Europe and CIS. Speleologiya i spelestologiya. 2012. No. 3, pp. 270–275. (In Russian).
25. Vishnevskaya N.L. Speleotherapy in the recovery of industrial workers. Uspekhi sovremennogo estestvoznaniya. 2007. No. 10, pp. 126–127. (In Russian).
26. Prokhorenko S.N. Reuse of mine workings after the cessation of mineral extraction. Gornyi informatsionno-analiticheskii byulleten’ (scientific and technical journal). 2003. No. 7, pp. 81–83. (In Russian).

For citation: Man'ko A.V., Kopteva O.V. Method of redevelopment of underground mining facilities Stroitel’nye Materialy. Stroitel’nye Materialy [Construction Materials]. 2023. No. 12, pp. 55–60. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-820-12-55-60

Increasing the Strength of Fine-Grained Concrete with the Use of Carbon Nanotubes and Mechanical Activation of the Mixture

Number of journal: 12-2023
Autors:

Lyashenko D.A.,
Perfilov V.A.,
Nikolaev M.E.,
Lukianitsa S.V.,
Burkhanova R.A.

DOI: https://doi.org/10.31659/0585-430X-2023-820-12-49-54
УДК: 691.3:539.2

 

AbstractAbout AuthorsReferences
The results of studies to determine the effect of introducing a complex additive of carbon nanotubes and plasticizer into the composition of fine-grained concrete are presented. Two series of tests of beam samples were performed, and the strength characteristics of the studied compositions were determined. Two methods of introducing nano-additives into concretes were compared: using an ultrasonic dispersant and a linear induction wave action apparatus (LIA) by analyzing two series of tests of different compositions. It was established that the introduction of nanotubes using LIA provides a minimally greater increase in the compressive strength due to the activation of the cement binder by means of regrinding. However, the maximum increase in strength is achieved equally for each of the injection methods.
D.A. LYASHENKO, Graduate Student (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.A. PERFILOV, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
M.E. NIKOLAEV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
S.V. LUKIANITSA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
R.A. BURKHANOVA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Volgograd State Technical University, Institute of Architecture and Construction (1, Akademicheskaya Street, Volgograd, 400074, Russian Federation)

1. Potapov V.V., Tumanov A.V., Zakurazhnov M.S., Serdan A.A., Kashutin A.N., Shalaev K.S. Increasing the strength of concrete by introducing SIO2 nanoparticles. Fizika i khimiya stekla. 2013. Vol. 39. No. 4, pp. 611–617. (In Russian).
2. Potapov V.V., Gorev D.S. Increasing the frost resistance of concrete modified with hydrothermal nanoparticles SIO2. Gornyy informatsionno-analiticheskiy byulleten’ (nauchno-tekhnicheskiy zhurnal). 2021. No. S19, pp. 278–287. (In Russian).
3. Zhdanok S.A., Leonovich S.N., Polonina E.N. Synergistic influence of SiO2 nanoparticles and carbon nanotubes on the properties of concrete. Reports of the National Academy of Sciences of Belarus. 2022. Vol. 66. No. 1, pp. 109–112. (In Russian).
4. Tolmachev S.N., Belichenko E.A. Features of the influence of carbon nanoparticles on the rheological properties of cement paste and technological properties of fine-grained concrete. Nanotekhnologii v stroitel’stve: scientific online journal. 2014. Vol. 6. No. 5, pp. 13–29. (In Russian).
5. Bazhenov Yu.M., Korolev E.V., Lukutsova N.P., Zavalishin S.I., Chudakova O.A. High-quality decorative fine-grained concrete modified with titanium dioxide nanoparticles. Vestnik of MSUCE. 2012. No. 6, pp. 73–78. (In Russian).
6. Potapov V.V., Tumanov A.V., Gorbach V.A., Kashutin A.N., Shalaev K.S. Preparation of a complex additive based on nanodispersed silicon dioxide to increase the strength of concrete. Khimicheskaya tekhnologiya. 2013. Vol. 14. No. 7, pp. 394–401. (In Russian).
7. Abdrakhmanova L.A. Nanomodifiers for building materials based on linear and network polymers. Stroitel’nye Materialy [Construction Materials]. 2011. No. 7, pp. 61–63. (In Russian).
8. Li Z., Ding S., Yu X., B. Han, J. Ou. Multifunctional cementitious composites modified with nano titanium dioxide: a review. Composites Part A: Applied Science and Manufacturing. 2018. Vol. 111, pp. 115–137. DOI: 10.1016/j.compositesa.2018.05.019
9. Ramezani M., Dehghani A., Sherif M.-M. Carbon nanotube reinforced cementitious composites: A comprehensive review. Construction and Building Materials. 2022. Vol. 315. 125100. DOI: 10.1016/j.conbuildmat.2021.125100
10. Tokarev Yu.V., Volkov M.A., Ageev A.V., Kuzmina N.V., Grakhov V.P., Yakovlev G.I., Khazeev D.R. Estimation of efficiency of applying aqueous dispersion of carbon particles in anhydrite binder. Stroitel’nye Materialy [Construction Materials]. 2020. No. 1–2, pp. 24–35. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-778-1-2-24-35
11. Yakovlev G.I., Grakhov V.P., Gordina A.F., Shaibadullina A.V., Saidova Z.S., Nikitina S.V., Begunova E.V., Elrefai A.E.M.M. Effect of dispersions of technical carbon on properties of fine concrete. Stroitel’nye Materialy [Construction Materials]. 2018. No. 8, pp. 89–92. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2018-762-8-89-92
12. Assed N. Haddad, Jorge F. de Morais, Ana Catarina J. Evangelista. Variation of concrete strength with the insertion of carbon nanotubes. Advanced Materials Research. 2013. Vol. 818, pp. 124–131. DOI: 10.4028/www.scientific.net/AMR.818.124
13. Yakovlev G.I., Drochytka R., Pervushin G.N., Grakhov V.P., Saidova Z.S., Gordina А.F., Shaybadullina A.V., Pudov I.A., Elrefai A.E.M.M. Fine-grained concrete modified with a suspension of chrysotile nanofibers. Stroitel’nye Materialy [Construction Materials]. 2019. No. 1–2, pp. 4–10. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-4-10
14. Ibragimov R.A., Korolev E.V., Deberdeev T.R. Mechanical activation in the production of lime-sand vixtures. Magazine of civil engineering. 2020. No. 6 (98), pp. 9804. DOI: 10.18720/MCE.98.4
15. Ibragimov R.A., Korolev E.V. Strength of composites based on modified Portland cement activated in a vortex layer apparatus. Promyshlennoye i grazhdanskoye stroitel’stvo. 2021. No. 1, pp. 35–41. (In Russian).
16. Seliverstov G.V., Motevich S.A., Voblikova Yu.O. Features of vortex layer devices. Izvestiya of Tula State University. Technical science. 2022. No. 9, pp. 614–618. (In Russian).
17. Radzyuk A.Yu., Istyagina E.B., Kulagina L.V., Zhuikov A.V. Current state of use of cavitation technologies (brief review). Izvestiya of Tomsk Polytechnic University. Georesources Engineering. 2022. Vol. 333. No. 9, pp. 209–218. (In Russian).
18. Radzyuk A.Yu., Istyagina E.B., Kulagina L.V., Zhuikov A.V., Grishaev D.A. Synthesis-analysis of the use of cavitation technologies. Journal of the Siberian Federal University. Series: Equipment and technology. 2022. Vol. 15. No. 7, pp. 774–801. (In Russian).
19. Hela R., Bodnarova L., Jarolim T., Labaj M. Carbon nanotubes dispersion, concentration, and amount of ultrasound energy required. Stroitel’nye Materialy [Construction materials]. 2017. No. 1–2, pp. 4–9. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2017-745-1-2-4-9.
20. Mainak Ghosal Ghosal, Arun Kumar Chakraborty. Application of nanomaterials on cement mortar and concrete: a study. International Journal of Structural Engineering. 2019. Vol. X. No. 1, pp. 7–15.
21. Ashwini R.M., Potharaju M., Srinivas V. Compressive and flexural strength of concrete with different nanomaterials: a critical review. Journal of Nanomaterials. 2023. No. 9, pp. 1–15 DOI: 10.1155/2023/1004597

For citation: Lyashenko D.A., Perfilov V.A., Nikolaev M.E., Lukianitsa S.V., Burkhanova R.A. Increasing the strength of fine-grained concrete with the use of carbon nanotubes and mechanical activation of the mixture. Stroitel’nye Materialy [Construction Materials]. 2023. No. 12, pp. 49–54. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-820-12-49-54

Investigation of the Working Features of Concrete Structures Manufactured Using Technologies of Additive Building Manufacturing

Number of journal: 12-2023
Autors:

Adamtsevich A.O.,
Pustovgar A.P.,
Adamtsevich L.A.,
Kramerov D.V.,
Vorobev P.Yu.

DOI: https://doi.org/10.31659/0585-430X-2023-820-12-38-46
УДК: 69.001.5

 

AbstractAbout AuthorsReferences
The most common approach to the application of additive manufacturing technology today, which provides for printing the contour of buildings and structures with the creation of non-removable concrete formwork for the construction of load-bearing and enclosing structures. The features of the operation of a non-removable formwork under the action of lateral pressure of a concrete mixture are investigated. The results of the experimental research stage implemented on the basis of the SMITH Research Institute of the Moscow State University of Civil Engineering are presented, in which the strength characteristics of samples selected from single-layer concrete structures made using additive manufacturing technology, as well as the bearing capacity of fragments of non-removable formwork of rectangular and closed cylindrical shape under the influence of simulated pressure of a concrete mixture were studied. In the course of the work, the influence of parameters such as the width and height of the printed layer, as well as the presence of cold seams between individual layers of the printed structure on the strength and bearing capacity of the forming elements of the permanent formwork was studied. The work execution is aimed at accelerating the introduction of advanced technologies in construction in terms of creating scientific and technical groundwork for the development of additive construction production and the development of the domestic regulatory and technical base in the field of construction 3D printing.
A.O. ADAMTSEVICH, Candidate of Sciences (Engineering), Senior Researcher, Director (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.P. PUSTOVGAR, Candidate of Sciences (Engineering), Associate Professor, Scientific Director (This email address is being protected from spambots. You need JavaScript enabled to view it.),
L.A. ADAMTSEVICH, Candidate of Sciences (Engineering), Head of Research Laboratory of Energy Efficiency, Ecology and Sustainable Construction (This email address is being protected from spambots. You need JavaScript enabled to view it.),
D.V. KRAMEROV, Head of Research Laboratory of Building Composites, Mortars and Concrete, (This email address is being protected from spambots. You need JavaScript enabled to view it.),
P.Yu. VOROBEV, Junior Researcher, Research Laboratory of Energy Efficiency, Ecology and Sustainable Construction (This email address is being protected from spambots. You need JavaScript enabled to view it.)

National Research Moscow State University of Civil Engineering, Research Institute of Construction Materials and Technologies (26, Yaroslavskoye Highway, Moscow, 129337, Russian Federation)

1. Пустовгар А.П., Адамцевич Л.А., Адамцевич А.О. Международный опыт исследований в области аддитивного строительного производства // Жилищное строительство. 2023. № 11. С. 4–10. DOI: https://doi.org/10.31659/0044-4472-2023-11-4-10
1. Pustovgar A.P., Adamtsevich L.A., Adamtsevich A.O. International research experience in the field of additive construction manufacturing. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 11, pp. 4–10. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-11-4-10
2. Wangler T., Roussel N., Bos F.P., Salet T.A.M., Flatt R.J. Digital concrete: a review. Cement and Concrete Research. 2019. Vol. 123. 105780. https://doi.org/10.1016/j.cemconres.2019.105780
3. Bing Lu, Yiwei Weng, Mingyang Li, Ye Qian, Kah Fai Leong, Ming Jen Tan, Shunzhi Qian. A systematical review of 3D printable cementitious materials. Construction and Building Materials. 2019. Vol. 207, pp. 477–490. https://doi.org/10.1016/j.conbuildmat.2019.02.144
4. Shakor Pshtiwan, Nejadi Shami, Paul Gavin, Malek Sardar. Review of emerging additive manufacturing technologies in 3D printing of cementitious materials in the construction industry. Frontiers in Built Environment. 2018. Vol. 4. https://doi.org/10.3389/fbuil.2018.00085
5. Shaodan Hou, Zhenhua Duan, Jianzhuang Xiao, Jun Ye. A review of 3D printed concrete: Performance requirements, testing measurements and mix design. Construction and Building Materials. 2021. Vol. 273. 121745. https://doi.org/10.1016/j.conbuildmat.2020.121745
6. Lyu F., Zhao D., Hou X., Sun L., Zhang Q. Overview of the development of 3d-printing concrete: a review. Applied Sciences. 2021. No. 11. 9822 https://doi.org/10.3390/app11219822
7. Пустовгар А.П., Адамцевич А.О., Волков А.А. Технология и организация аддитивного строительства // Промышленное и гражданское строительство. 2018. № 9. С. 12–20.
7. Pustovgar A.P., Adamtsevich A.O., Volkov A.A. Technology and organization of additive construction. Promyshlennoye i grazhdanskoye stroitel’stvo. 2018. No. 9, pp. 12–20. (In Russian).
8. Славчева Г.С. Строительная 3D-печать сегодня: потенциал, проблемы и перспективы практической реализации // Строительные материалы. 2021. № 5. С. 28–36. DOI: https://doi.org/10.31659/0585-430X-2021-791-5-28-36
8. Slavcheva G.S. 3D-build printing today: potential, challenges and prospects for implementation. Stroitel’nye Materialy [Construction Materials]. 2021. No. 5, pp. 28–36. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-791-5-28-36
9. Рязанов А.Н., Шигапов Р.И., Синицин Д.А., Кинзябулатова Д.Ф., Недосеко И.В. Использование гипсовых композиций в технологиях строительной 3D-печати малоэтажных жилых зданий. Проблемы и перспективы // Строительные материалы. 2021. № 8. С. 39–44. DOI: https://doi.org/10.31659/0585-430X-2021-794-8-39-44
9. Ryazanov A.N., Shigapov R.I., Sinitsin D.A., Kinzyabulatova D.F., Nedoseko I.V. The use of gypsum compositions in the technologies of construction 3D printing of low-rise residential buildings. Problems and prospects. Stroitel’nye Materialy [Construction Materials]. 2021. No. 8, pp. 39–44. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-794-8-39-44
10. Binrong Zhu, Behzad Nematollahi, Jinlong Pan, Yang Zhang, Zhenxin Zhou, Yamei Zhang. 3D concrete printing of permanent formwork for concrete column construction. Cement and Concrete Composites. 2021. Vol. 121. 104039. https://doi.org/10.1016/j.cemconcomp.2021.104039
11. Leung C., Qian C. Development of pseudo-ductile permanent formwork for durable concrete structures. Materials and Structures. 2010. Vol. 43 (7), pp. 993-1007. https://doi.org/10.1617/s11527-009-9561-4
12. Адамцевич А.О., Пустовгар А.П. Аддитивное строительное производство: исследование эффекта анизотропии прочностных характеристик бетона // Строительные материалы. 2022. № 9. С. 18–24. DOI: https://doi.org/10.31659/0585-430X-2022-806-9-18-24
12. Adamtsevich A.O., Pustovgar A.P. Additive manufacturing in construction: the research of the anisotropy concrete strength effect. Stroitel’nye Materialy
[Construction Materials]. 2022. No. 9, pp. 18–24. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-806-9-18-24
13. Panda B., Mohamed N.A.N., Paul S.C., Singh G.V.P.B., Tan M.J., Šavija B., The effect of material fresh properties and process parameters on buildability and interlayer adhesion of 3D printed concrete. Materials. 2019. Vol. 12 (13). 2149. https://doi.org/10.3390/ma12132149
14. Wolfs R.J.M., Bos F.P., Salet T.A.M. Hardened properties of 3D printed concrete: The influence of process parameters on interlayer adhesion. Cement and Concrete Research. 2019. Vol. 119, pp. 132–140. https://doi.org/10.1016/j.cemconres.2019.02.017
15. Nerella V.N., Hempel S., Mechtcherine V. Effects of layer-interface properties on mechanical performance of concrete elements produced by extrusion-based 3D-printing. Construction and Building Materials. 2019. Vol. 205, pp. 586–601. https://doi.org/10.1016/j.conbuildmat.2019.01.235
16. Tay Y.W.D., Ting G.H.A., Qian Y., Panda B., He L., Tan M.J. Time gap effect on bond strength of 3D-printed concrete. Virtual and Physical Prototyping. 2019. Vol. 14. Iss. 1, pp. 104-113. https://doi.org/10.1080/17452759.2018.1500420
17. Rahul, A.V., Santhanam, M., Meena, H., Ghani, Z., Mechanical characterization of 3D printable concrete. Construction and Building Materials. 2019. Vol. 227. 116710. https://doi.org/10.1016/j.conbuildmat.2019.116710
18. Wang L., Tian Z., Ma G., Zhang M. Interlayer bonding improvement of 3D printed concrete with polymer modified mortar: Experiments and molecular dynamics studies. Cement and Concrete Composites. 2020. Vol. 110. 103571. https://doi.org/10.1016/j.cemconcomp.2020.103571
19. Hosseini E., Zakertabrizi M., Korayem A.H., Xu G. A novel method to enhance the interlayer bonding of 3D printing concrete: An experimental and computational investigation. Cement and Concrete Composites. 2019. Vol. 99, pp. 112–119. https://doi.org/10.1016/j.cemconcomp.2019.03.008
20. Dressler I., Freund N., Lowke D. The effect of accelerator dosage on fresh concrete properties and on interlayer strength in shotcrete 3D printing. Materials. 2020. Vol. 13. Iss. 2. 374. https://doi.org/10.3390/ma13020374
21. Kloft H., Krauss et all. Influence of process parameters on the interlayer bond strength of concrete elements additive manufactured by Shotcrete 3D Printing (SC3DP). Cement and Concrete Research. 2020. Vol. 134. 106078. https://doi.org/10.1016/j.cemconres.2020.106078

For citation: Adamtsevich A.O., Pustovgar A.P., Adamtsevich L.A., Kramerov D.V., Vorobev P.Yu. Investigation of the working features of concrete structures manufactured using technologies of additive building manufacturing. Stroitel’nye Materialy [Construction Materials]. 2023. No. 12, pp. 38–46. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-820-12-38-46

The Effect of a Hot Humid Climate on Corrosion of Reinforced Concrete

Number of journal: 12-2023
Autors:

Rozental N.K.

DOI: https://doi.org/10.31659/0585-430X-2023-820-12-32-37
УДК: 624.012.45:631.413.6

 

AbstractAbout AuthorsReferences
The expansion of economic cooperation with countries located in areas with hot, humid climates and the construction of reinforced concrete buildings and structures in coastal zones of non–freezing seas poses the task of assessing the impact of climate on the corrosive state of reinforced concrete structures, primarily carbonation of concrete and seawater aerosol containing chlorides. The effect of low negative temperature is not considered in this work. The data on the carbonation of concrete under conditions of increased insolation and the action of sea salt aerosol are summarized, mainly using the example of the hot humid climate of Cuba for further development of research, and subsequently the development of standards for protection against corrosion and carbonation of concrete and steel reinforcement in areas with a tropical climate. Based on the results of a survey of the condition of reinforced concrete structures and structures manufactured and erected in Cuba, as well as the results of observations, the results of an analysis of aggressive environmental factors of the Republic of Cuba affecting the corrosion of reinforced concrete structures, the results of studies of concrete carbonation and the effects of sea salt aerosol are presented. When designing and building structures on the seashore by domestic organizations in countries with hot, humid climates, the aggressive effects of seawater aerosol and accelerated carbonation of concrete, which reduce the durability of reinforced concrete structures, should be taken into account.
N.K. ROZENTAL, Doctor of Sciences (Engineering), Professor (This email address is being protected from spambots. You need JavaScript enabled to view it.)

JSC «Research Centre of Construction» (6 Ryazansky Prospect, Moscow, 109428, Russian Federation)

1. Stepanova V.F., Rozental N.K., Chekhny G.V., Baev S.M. Determination of corrosion resistance of shotcrete as a protective coating of concrete and reinforced concrete structures. Stroitel’nye Materialy [Construction Materials]. 2018. No. 8, pp. 69–72. (In Russian). DOI: 10.31659/0585-430Х-2018-762-8-69-72
2. Usachev I.N., Rosental N.K. Half a century of experience in the operation of reinforced concrete structures of the Kislaya Guba tidal power station in the Barents sea. Stroitel’nye Materialy [Construction Materials]. 2022. No. 10, pp. 68–72. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-807-10-68-72
3. Rozental N.K. Permeability and corrosion resistance of concrete. Promyshlennoe i grazhdanskoe stroitelstvo. 2013. No. 1, pp. 35–37. (In Russian).
4. Stepanova V.F., Rosental N.K., Chehniy G.V. Change No. 1 to SP 72.13330.2016 «SNIP 3.04.03–85 Protection of building structures and structures from corrosion». BST. 2019. No. 7, pp. 12–13. (In Russian).
5. Ivashchenko Yu.V., Troncha L.A., Ryabukhin A.K. Development of an effective solution of a protective structure in difficult construction conditions. Scientific provision of the agro-industrial complex Collection of articles on the materials of the IX All-Russian Conference of Young Scientists. Krasnodar. 2016, pp. 793–794. (In Russian).
6. Stepanova V.F., Rosental N.K., Chehniy G.V. Development of the manual to the code of Rules 28.13330.2017 «Protection of building structures from corrosion». Vestnik NITSStroitelstvo. 2018. No. 4 (19), pp. 93–103. (In Russian).
7. Usachev I.N., Rosenthal N.K. Pioneer Russian tidal power plant – a monument of science and techno-logy of Russia. Energetik. 2019. No. 2, pp. 19–25. (In Russian).
8. Usachev I.N. The experience of creation and half-century operation of the Kislogubskaya tidal power plant – the basis for the development of the Arctic and the Northern Sea Route. Gidrotechnika. 2021. No. 4, pp. 73–75. (In Russian).

For citation: Rozental N.K. The effect of a hot humid climate on corrosion of reinforced concrete. Stroitel’nye Materialy [Construction Materials]. 2023. No. 12, pp. 32–37. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-820-12-32-37

Influence of Parameters of the Reinforced Base on the Change of Components of the Stress-Strain State of the Transformed Base

Number of journal: 12-2023
Autors:

Avanesov V.S.,
Tursunbaeva K.O.

DOI: https://doi.org/10.31659/0585-430X-2023-820-12-26-31
УДК: 624.15

 

AbstractAbout AuthorsReferences
The choice of the foundation type is a crucial issue for ensuring safety and reliability in the construction of buildings and structures of various levels of responsibility. The main advantages of the construction of man-made bases are both their operational properties and the cost-effectiveness of the construction. At the same time, in case of exceeding settlements the reinforcement of soil base allows to reduce them. The paper presents the formulation and solution of the problem of behaviour of the stress-strain state (SSS) in the system «reinforcing elements – surrounding soil» on the example of a 21-storey building with a height of 65.7 m. Finite-element modelling related to the application of reinforcement elements of various parameters such as length, stiffness and geometry, as well as conventional methods of foundation construction such as slab or pile foundation. Analysis demonstrates that reinforcement elements have significant variability and could be effectively used in cases where the installation of a slab foundation settlements exceeding ultimate values. In addition, it shows which geometry of reinforcement elements is relevant to rational application in terms of settlements and forces in such elements.
V.S. AVANESOV, Candidate of Sciences (Engineering), Associate Professor of the Department of Soil Mechanics and Geotechnics (This email address is being protected from spambots. You need JavaScript enabled to view it.),
K.O. TURSUNBAEVA, Master of the Department of Soil Mechanics and Geotechnics (This email address is being protected from spambots. You need JavaScript enabled to view it.)

National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Ter-Martirosyan Z.G. Mekhanika gruntov [Soil mechanics]. Moscow: ASV, 2009. 550 p.
2. Ter-Martirosyan Z.G., Strunin P.V. Strengthening of weak soils in the bottom of base plates using the technology of jet grouting of soils. Vestnik of the MSUCE. 2010. No. 4, pp. 310–315. (In Russian).
3. Jones D.K. Sooruzheniya iz armirovannogo grunta [Construction of reinforced soil]. Moscow: Stroyizdat. 1989. 280 p.
4. Popov A.O. Settlement calculation of clay bed reinforced with vertical elements. Magazine of Civil Engineering. 2015. No.4, pp. 19–27. (In Russian). DOI: https://doi.org/10.5862/MCE.56.3
5. Il’ichev V.A., Mangushev R.A. Spravochnik geotehnika. Osnovaniya, fundamenty i podzemnye sooruzheniya [Handbook of geotechnics. Foundations and underground structures]. Moscow: ASV. 2016. 1031 p.
6. Marinichev M.B., Tkachev I.G., Schlee J. Practical reinforcement for non-homogeneous bases as a method to reduce non-uniform deformability of subsoil and compensate seismic loads to upper structure. Nauchnyi zhurnal KubGAU. 2013. No. 94 (10), 2013, 15 p. http://ej.kubagro.ru/2013/10/pdf/51.pdf (Date of access 26.12.2021) (In Russian).
7. Ter-Martirosyan Z.G., Ter-Martirosyan A.Z., Anzhelo G.O. The interaction of non-filtering crushed stone pile (column) with the surrounding consolidating soil and plate in the pile-slab foundation. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2019. No. 4, pp. 19–23. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2019-4-19-23
8. Mirsayapov I.T., Popov A.O. Stress-strain state of reinforced soil massifs. Inzhenernaya geologiya. 2008. No. 1, pp. 40–82. (In Russian).
9. Mirsayapov I.T., Popov A.O. Estimation of stability and deformability of reinforced ground bases. Geotehnika. 2010. No. 4, pp. 58–67. (In Russian).
10. Kashevarova G.G., Khusainov I.I., Makovetskiy O.A. The experience of using jet grouting for arrangement of sunstructures. Vestnik of the Volgograd State University of Architecture and Civil Engineering. Series: Civil Engineering and Architecture. 2013. Iss. 31 (50). P. 2, pp. 258–263. (In Russian).
11. Mangushev A.G., Gotman A.L., Znamenskii V.V., Ponomarev A.B. Svai i svainye fundamenty. Konstruktsii, proektirovanie i tekhnologii [Piles and pile foundations. Structures, design and technology]. Moscow: ASV. 2015. 320 p.
12. Ter-Martirosyan Z.G., Ter-Martirosyan A.Z., Anzhelo G.O. Interaction of the crushed stone pile with the surrounding soil and the substructure. Osnovaniya, fundamenty i mekhanika gruntov. 2019. No. 3, pp. 2–6. (In Russian).
13. Razvodovskii D.E., Skorikov A.V. Problems and possible ways of developing regulatory literature in the field of pile foundation design. Vestnik NITs «Stroitel’stvo». 2020. No. 3 (26), pp. 74–85. (In Russian). DOI: https://doi.org/10.37538/2224-9494-2020-3(26)-74-85
14. Mirnyi A.Yu., Ter-Martirosyan A.Z. Areas of application of modern mechanical models of soils. Geotekhnika. 2017. No. 1, pp. 20–26. (In Russian).
15. Boldyrev G.G., Merkul’ev E.V., Kubetskii V.L. Soil testing complex for foundation inspections. Geotekhnika. 2014. No. 3, pp. 32–39. (In Russian).
16. Chunyuk D.Yu. Ensuring safety and risk reduction in geotechnical construction. Vestnik MGSU. 2008. No. 2, pp. 107–111. (In Russian).

For citation: Avanesov V.S., Tursunbaeva K.O. Influence of parameters of the reinforced base on the change of components of the stress-strain state of the transformed base. Stroitel’nye Materialy [Construction Materials]. 2023. No. 12, pp. 26–31. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-820-12-26-31

Analysis of Standardized Properties of Slag Crushed Stone Resulting From Crystal-Chemical Stabilization

Number of journal: 12-2023
Autors:

Bodyakov A.N.,
Markova I.Yu.,
Strokova V.V.,
Bondarenko D.O.,
Gubareva E.N.,
Bukovtsova A.I.

DOI: https://doi.org/10.31659/0585-430X-2023-820-12-20-25
УДК: 625.861

 

AbstractAbout AuthorsReferences
The shortage of high-quality stone materials for road construction requires the search for alternative materials, the use of which will ensure the proper quality of road pavements. Metallurgical slags are a valuable raw material for the construction industry in general and for road construction in particular due to its properties. However, they are characterized by heterogeneity of composition in different batches and, as a result, physical and mechanical characteristics that change over time. The use of various methods for stabilizing that kind of technogenic raw materials makes it possible to obtain stone raw materials with specified properties. The paper considers the effect of crystal-chemical stabilization of slag in the process of draining on the complex of standardized indicators of the final material – slag rubble. Stabilization of furnace slag during draining made it possible to improve the following standardized indicators: compressive strength grades from 800 to 1200, abrasion grades from IV to II, structural stability of slag against decay from StS2 to StS1, frost resistance to F50. The physical and mechanical properties of the resulting stone material make it possible to use it for the construction of base layers and as part of composite materials for the construction of coatings in road pavement structures.
A.N. BODYAKOV, Senior Lecturer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
I.Y. MARKOVA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.V. STROKOVA, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
D.O. BONDARENKO, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
E.N. GUBAREVA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.I. BUKOVTSOVA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Belgorod State Technological University named after V.G. Shukhov (46, Kostyukova Street, Belgorod, 308012, Russian Federation)

1. Agamov R.E., Goncharova M.A., Mraev A.V. Steelmaking slags as an effective raw material in road construction. Stroitel’nye Materialy [Construction Materials]. 2023. No. 1–2, pp. 56–60. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-810-1-2-56-60
2. Babkov V.V., Nedoseko I.V., Glazachev A.O., Sinitsin D.A., Parfenova A.A., Kayumova E.I. Composite materials for road construction based on waste from the chemical and metallurgical industries. Stroitel’nye Materialy [Construction Materials]. 2023. No. 1–2, pp. 88–94. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-810-1-2-88-94
3. Kudrin V.A. Metallurgical slag is a new material. Use. Materialovedeniye. 2015. No. 1, pp. 11–14. (In Russian).
4. Yudina L.V., Yudin A. Metallurgicheskiye i toplivnyye shlaki v stroitel’stve [Metallurgical and fuel slags in construction]. Izhevsk: Udmurtia. 1995. 160 p.
5. Rakhimov R.Z. Ecology, metallurgy, mineral binders and building materials industry. Stroitel’nye Materialy [Construction Materials]. 2022. No. 9, pp. 26–31. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-806-9-26-31
6. Goncharova M.A., Bondarev B.A., Korneev A.D. Crystalline metallurgical slags in road construction. Stroitel’nye Materialy [Construction Materials]. 2009. No. 11, pp. 23–25. (In Russian).
7. Valuev D.V., Gizatulin R.A. Tekhnologii pererabotki metallurgicheskikh otkhodov: uchebnoye posobiye [Technologies for processing metallurgical waste: a textbook]. Tomsk: National Research Tomsk Polytechnic University. 2013. 191 p.
8. Bulatov K.V., Gazaleeva G.I. Prospects for the development of technologies for processing waste from ferrous metallurgy. Fundamental research and applied development of processes for processing and utilization of technogenic formations: proceedings of the V Congress with international participation and the Conference of Young Scientists «TECHNOGEN-2021». Ekaterinburg. 2021, pp. 21–33. DOI: 10.34923/technogen-ural.2021.60.16.003
9. Yusupkhodzhaev A.A., Valiev Kh.R., Khudoyarov S.R. Pererabotka vtorichnykh tekhnogennykh obrazovaniy v chernoy metallurgii. [Processing of secondary technogenic formations in ferrous metallurgy]. Tashkent: Tashkent State Technical University. 2014. 138 p.
10. Pugin K.G., Vaisman Ya.I., Yushkov B.S., Maksimovich N.G. Snizheniye ekologicheskoy nagruzki pri obrashchenii so shlakami chernoy metallurgii [Reducing the environmental load when handling ferrous metallurgy slags]. Perm: Perm National Research Polytechnic University. 2008. 315 p.
11. Bodyakov A.N., Meshkova K.V., Dukhovny G.S. Stabilization of metallurgical slug from arc steel-making furnaces. IOP Conference Series: Materials Science and Engineering. 2020. Vol. 945. No. 1, pp. 012082. DOI: 10.1088/1757-899X/945/1/012082
12. Patent RF 2752914 Sostav i sposob stabilizatsii raspadayushchikhsya metallurgicheskikh shlakov [Composition and method of stabilization of decaying metallurgical slags]. Dukhovny G.S., Evtushenko E.I., Rubanov Yu.K., Bodyakov A.N., Deev V.V., Bondarenko S.N. Appl. 07/29/2020. Publ. 08/11/2021. Bull. No. 23.
13. Bondarenko S.N., Bodyakov A.N., Lebedev M.S. Metallurgical waste recycling for transport construction. Proceedings of the International Conference Industrial and Civil Construction. 2021. pp. 79–84. DOI: https://doi.org/10.1007/978-3-030-68984-1_12
14. Bodyakov A.N., Markova I.Yu., Logvinenko A.A., Botsman L.N., Ogurtsova Yu.N. Properties of metallurgical slag stabilized in industrial conditions. Regional’naya arkhitektura i stroitel’stvo. 2023.No. 2 (55), pp. 44–51. (In Russian). DOI: 10.54734/20722958_2023_2_44

For citation: Bodyakov A.N., Markova I.Yu., Strokova V.V., Bondarenko D.O., Gubareva E.N., Bukovtsova A.I. Analysis of standardized properties of slag crushed stone resulting from crystal-chemical stabilization. Stroitel’nye Materialy [Construction Materials]. 2023. No. 12, pp. 20–25. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-820-12-20-25

https://www.traditionrolex.com/10