Modification of Composite Materials with Highly Dispersed WC and WO3 Powders

Number of journal: 10-2023
Autors:

Chayka T.V.,
Gavrish V.M.,
Cherkashina N.I.,
Sidelnikov R.V.,
Romanyuk D.S.

DOI: https://doi.org/10.31659/0585-430X-2023-818-10-121-128
УДК: 666

 

AbstractAbout AuthorsReferences
The results of studies on the modification of a cement-based composite material by replacing the binder by 1–5 wt. % highly dispersed powders of wolfram carbide WC and wolfram oxide WO3 obtained by processing hard-alloy waste, are presented. The introduction of WC and WO3 powders into the cement mixture reduces the initial and final setting time, reduces normal density, increases the spreadability of cement paste, and also promotes earlier hydration, while a decrease in the intensity of heat release of compositions with additives is observed, compared to the control composition. According to SEM images, samples containing WC and WO3 powders have a denser microstructure. X-ray phase analysis showed that the addition of highly dispersed particles to the cement paste did not significantly change the phase composition of the hardened stone, while there was an increase in the intensity of peaks belonging to calcium hydro-silicates in modified samples compared with the control composition. It has been experimentally established that the use of highly dispersed additives leads to an increase in the compressive strength of cement samples; the maximum increase in strength is 39% and 40% with an additive content of 1 wt. % WC and 2 wt. % WO3 respectively. The results obtained are important for understanding the mechanisms of action of highly dispersed WC and WO3 particles on cement materials, which can subsequently be used to improve the properties of cement-based composite materials for various areas of applications.
T.V. CHAYKA1, Assistant (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.М. GAVRISH1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it..r);
N.I. CHERKASHINA2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
R.V. SIDELNIKOV2, Graduate Student (This email address is being protected from spambots. You need JavaScript enabled to view it.),
D.S. ROMANYUK2, Graduate Student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Sevastopol State University (33, Universitetskaya Street, Sevastopol, 299053, Russian Federation)
2 Belgorod State Technological University named after V.G. Shukhov (46, Kostyukova Street, Belgorod, 308012, Russian Federation)

1. Dabić P., Damir Barbir. Implementation of natural and artificial materials in Portland cement. Hemijska industrija. 2020. Vol. 74, pp. 14–14. DOI: 10.2298/HEMIND191216014D
2. Agzamov F.A., Grigoryev A.Y. Modification of Portland cement with nanoadditives. Nanotechnologies in Construction. 2022. Vol. 14. No. 4, pp. 319–327. https://doi.org/10.15828/2075-8545-2022-14-4-319-327
3. Bakhtin A., Lyubomirskiy N., Bakhtina T., Fic S. Influence of forced carbonisation on the binding properties of sludge with a high β-Belite content. Materials. 2021. Vol. 14. No. 24. 7899. https://doi.org/10.3390/ma14247899
4. Ястребинский Р.Н., Карнаухов А.А., Павленко В.И., Городов А.И., Акименко А.В., Фанина Е.А. Радиационно-защитные характеристики композита на основе термостойкой модифицированной дроби гидрида титана // Вестник Белгородского государственного технологического университета им. В.Г. Шухова. 2022. № 12. С. 86–93. DOI: 10.34031/2071-7318-2022-7-12-86-93
4. Yastrebinskiy R.N., Karnauhov A.A., Pavlenko V.I., Gorodov A.I., Akimenko A.V., Fanina E.A. Radiation-protective characteristics of a composite based on a heat-resistant modified fraction of titanium hydride. Vestnik of Belgorod State Technological University named after. V.G. Shukhov. 2022. No. 12, pp. 86–93. (In Russian). DOI: 10.34031/2071-7318-2022-7-12-86-93
5. Fediuk R., Mochalov A., Timokhin R. Review of methods for activation of binder and concrete mixes. AIMS Materials Science. 2018. Vol. 5, pp. 916–931. DOI: 10.3934/matersci.2018.5.916
6. Saidova Z., Yakovlev G., Smirnova O., Gordina A., Kuzmina N. Modification of cement matrix with complex additive based on chrysotyl nanofibers and carbon black. Applied Sciences. 2021. Vol. 11. No. 15. 6943. DOI: 10.3390/app11156943
7. Judina A. Non-reagent methods for the activation of concrete mix raw components in the construction industry. Architecture and Engineering. 2020. Vol. 5. Iss. 1, pp. 30–35. DOI: 10.23968/2500-0055-2020-5-1-30-35
8. Ibragimov R., Korolev E., Potapova L., Deberdeev T., Khasanov A. The influence of physical activation of Portland cement in the electromagnetic vortex layer on the structure formation of cement stone: the effect of extended storage period and carbon nanotubes modification. Buildings. 2022. Vol. 12. No. 6. 711. https://doi.org/10.3390/buildings12060711
9. Ramadan M., Amin M.S., Sayed Mostafa A. Superior physico-mechanical, fire resistivity, morphological characteristics and gamma radiation shielding of hardened OPC pastes incorporating ZnFe2O4 spinel nanoparticles. Construction and Building Materials. 2020. Vol. 234. 117807. https://doi.org/10.1016/j.conbuildmat.2019.117807
10. Franco-Luján V., Montejo-Alvaro F., Ramírez-Arellanes S., Martinez H., Medina D. Nanomaterial-reinforced Portland-cement-based materials: a review. Nanomaterials. 2023. Vol. 13. No. 8, 1383. https://doi.org/10.3390/nano13081383
11. Fediuk R.S. Research on water absorption fine-grained fiber-reinforced concrete on composite binders. Fundamental research. 2016. No. 2 (Part 2), pp. 303–307. DOI 10.17513/fr.39927
12. Soudabeh Dezhampanah, Iman M. Nikbin, Sadegh Mehdipour, Reza Mohebbi, Hamid Habibi Moghadam. Fiber-reinforced concrete containing nano – TiO2 as a new gamma-ray radiation shielding materials. Journal of Building Engineering. 2021. Vol. 44. 102542. doi.org/10.1016/j.jobe.2021.102542
13. Пшембаев М.К., Ковалев Я.Н., Яглов В.Н. Особенности процессов гидратациии твердения цемента в присутствии наночастиц // Вестник ВКГТУ. 2020. № 1. С. 175–183. DOI: 10.51885/15614212_2020_1_175
13. Pshembaev M.K., Kovalev Ya.N., Yaglov V.N. Features of hydration and cement hardening processes in the presence of nanoparticles. Vestnik VKGTU. 2020. No. 1, pp. 175–183. (In Russian). DOI: 10.51885/15614212_2020_1_175
14. El-Gamal S.M.A., Abo-El-Enein S.A., El-Hosiny F.I. et al. Thermal resistance, microstructure and mechanical properties of type I Portland cement pastes containing low-cost nanoparticles. Journal of Thermal Analysis and Calorimetry. 2018. 131, pp. 949–968. https://doi.org/10.1007/s10973-017-6629-1
15. Копаница Н.О., Демьяненко О.В., Куликова А.А., Самченко С.В., Козлова И.В., Лукьянова Н.А. Влияние способов активации на структурно-технологические характеристики наномодифицированных цементных композиций // Нанотехнологии в строительстве. 2022. Т. 14. № 6. С. 481–492. https://doi.org/10.15828/2075-8545-2022-14-6-481-492
15. Kopanitsa N.O., Demyanenko О.V., Kulikova А.А., Samchenko S.V., Kozlova I.V., Lukyanova N.A. Influence of activation methods on the structural and technological characteristics of nanomodified cement compositions. Nanotekhnologii v stroitel’stve. 2022. Vol. 14. No. 6, pp. 481–492. (In Russian). https://doi.org/10.15828/2075-8545-2022-14-6-481-492
16. Aref Sadeghi-Nik, Javad Berenjian, Ali Bahari, Abdul Sattar Safaei, Mehdi Dehestani. Modification of microstructure and mechanical properties of cement by nanoparticles through a sustainable development approach. Construction and Building Materials. 2017. Vol. 155, pp. 880–891. https://doi.org/10.1016/j.conbuildmat.2017.08.107
17. Muzenski Scott, Flores Vivian Ismael, Sobolev K. Ultra-high strength cement-based composites designed with aluminum oxide nano-fibers. Construction and Building Materials. 2019. Vol. 220, pp. 177–186. 10.1016/j.conbuildmat.2019.05.175
18. Abo-El-Enein S.A., El-Hosiny F.I., El-Gamal S.M.A., Amin M.S., Ramadan M. Gamma radiation shielding, fire resistance and physicochemical characteristics of Portland cement pastes modified with synthesized Fe2O3 and ZnO nanoparticles. Construction and Building Materials. 2018. Vol. 173, pp. 687–706. https://doi.org/10.1016/j.conbuildmat.2018.04.071
19. Madani Hesam, Boroujeni Amir, Pourjahanshahi Amin. Mechanical properties and photocatalytic reactions of zinc oxide nanoparticles in the cement environment. Amirkabir (Journal of Science and Technology). 2018. Vol. 50. 257. DOI:10.22060/ceej.2017.12333.519
20. Karthik Chintalapudi, Rama Mohan Rao Pannem. Strength properties of graphene oxide cement composites. Materials Today: Proceedings. 2021. Vol. 45. Part 4, pp. 3971–3975. https://doi.org/10.1016/j.matpr.2020.08.369
21. Liu Y., Shi T., Zhao Y. et al. Autogenous shrinkage and crack resistance of carbon nanotubes reinforced cement-based materials. International Journal of Concrete Structures and Materials. 2020. Vol. 14. 43. https://doi.org/10.1186/s40069-020-00421-0
22. Dong Lu, Xianming Shi, Jing Zhong. Interfacial bonding between graphene oxide coated carbon nanotube fiber and cement paste matrix. Cement and Concrete Composites. 2022. Vol. 134, 104802. https://doi.org/10.1016/j.cemconcomp.2022.104802
23. Nehal Hamed, M.S. El-Feky, Mohamed Kohail, El-Sayed A.R. Nasr. Effect of nano-clay de-agglomeration on mechanical properties of concrete. Construction and Building Materials. 2019. Vol. 205, pp. 245–256. https://doi.org/10.1016/j.conbuildmat.2019.02.018
24. Zemei Wu, Caijun Shi, K.H. Khayat, Shu Wan. Effects of different nanomaterials on hardening and performance of ultra-high strength concrete (UHSC). Cement and Concrete Composites. 2016. Vol. 70, pp. 24–34. https://doi.org/10.1016/j.cemconcomp.2016.03.003
25. Khuzin A., Ibragimov R. Processes of structure formation and paste matrix hydration with multilayer carbon nanotubes additives. Journal of Building Engineering. 2020. Vol. 35. 102030. DOI: 10.1016/j.jobe.2020.102030
26. Chen Wei, Xu Longfei, Hua, Wang, Huang Heng Li, Zhou. Mechanical properties and shrinkage behavior of concrete-containing graphene-oxide nanosheets. Materials (Basel). 2020. Vol. 13. 590. DOI: 10.3390/ma13030590
27. Karthik Chintalapudi, Rama Mohan Rao Pannem. Enhanced chemical resistance to sulphuric acid attack by reinforcing graphene oxide in ordinary and Portland pozzolana cement mortars. Case Studies in Construction Materials. 2022. Vol. 17. e01452. https://doi.org/10.1016/j.cscm.2022.e01452
28. Liu Changjiang, He Xin, Deng Xiaowei, Wu Yuyou, Zheng Zhoulian, Liu Jian, Hui David. Application of nanomaterials in ultra-high performance concrete: a review. Nanotechnology Reviews. 2020. Vol. 9. No. 1, pp. 1427–1444. https://doi.org/10.1515/ntrev-2020-0107
29. Jamal A. Abdalla, Blessen Skariah Thomas, Rami A. Hawileh, Jian Yang, Bharat Bhushan Jindal, Erandi Ariyachandra. Influence of nano-TiO2, nano-Fe2O3, nanoclay and nano-CaCO3 on the properties of cement/geopolymer concrete. Cleaner Materials. 2022. Vol. 4, 100061. https://doi.org/10.1016/j.clema.2022.100061
30. Yakovlev G., Drochytka R., Skripkiūnas G., Urkhanova L., Polyanskikh I., Pudov I., Karpova E., Saidova Z., Elrefai A.E.M.M. Effect of ultrafine additives on the morphology of cement hydration products. Crystals. 2021. Vol. 11, 1002. https://doi.org/10.3390/cryst11081002
31. Patent ЕР 3 138 932 А1 Verfahren und vorrichtung zur gewinnung eines pulvers aus partikeln von wolfram oder wolframverbindungen mit einer partikelgrцsse im nano-,mikron- oder submikronbereich. Galuga A., Baranov G., Gavrish V., Smirnov S., Losenkov A., Vostrognutov S. Declared 01.09.2015. Published 08.03.2017.
32. Gavrish V., Chayka T., Baranov G., Oleynik A.Y., Shagova Y.O. Investigation of the influence of tungsten carbide nanopowder WC and the mixture of tungsten carbides and titanium carbides (WC, TiC) on the change of concrete performance properties. Journal of Physics: Conference Series. 2021. Vol. 1866. No. 1. 012008. DOI: 10.1088/1742-6596/1866/1/012008
33. Чайка Т.В., Гавриш В.М., Павленко В.И., Черкашина Н.И. Влияние высокодисперсного порошка смеси WC и TiC на свойства композиционных материалов // Нанотехнологии в строительстве. 2023. Т. 15. № 1. С. 14–26. https://doi. org/10.15828/2075-8545-2023-15-1-14-26.
33. Chayka T.V., Gavrish V.M., Pavlenko V.I., Cherkashina N.I. Influence of high-dispersive powder mixture of WC and TiC on the composite materials properties. Nanotekhnologii v stroitel’stve. 2023. Vol. 15. No. 1, pp. 14–26. (In Russian).https://doi. org/10.15828/2075-8545-2023-15-1-14-26
34. Tan Z., Bernal S.A. Provis J.L. Reproducible mini-slump test procedure for measuring the yield stress of cementitious pastes. Materials and Structures. 2017. Vol. 50. 235. DOI:10.1617/s11527-017-1103-x
35. Xiang Chen, Haiming Chen, Qian Chen, Abubakar. S. Lawi, Jie Chen. Effect of partial substitution of cement with dolomite powder on glass-fiber-reinforced mortar. Construction and Building Materials. 2022. Vol. 344. 128201. DOI: 10.1016/j.conbuildmat.2022.128201
36. Ahmad Alzaza, Katja Ohenoja, Rawia Dabbebi, Mirja Illikainen. Enhancing the hardened properties of blended cement paste cured at 0оC by using alkali-treated ground granulated blast furnace slag. Cement and Concrete Composites. 2022. Vol. 134. 104757. https://doi.org/10.1016/j.cemconcomp.2022.104757
37. Elijah Adesanya, Amarachi Ezu, Hoang Nguyen, Christine Rößler, Harisankar Sreenivasan, Katja Ohenoja, Paivo Kinnunen, Mirja Illikainen. Hydration of blended ladle slag and calcium aluminate cement. Journal of Building Engineering. 2023. Vol. 66. 105855. https://doi.org/10.1016/j.jobe.2023.105855
38. Klemczak B., Batog M. Heat of hydration of low-clinker cements. Journal of Thermal Analysis and Calorimetry. 2016. Vol. 123, pp. 1351–1360. https://doi.org/10.1007/s10973-015-4782-y
39. Maria C.G. Juenger, Rafat Siddique. Recent advances in understanding the role of supplementary cementitious materials in concrete. Cement and Concrete Research. 2015. Vol. 78. Part A, pp. 71–80. https://doi.org/10.1016/j.cemconres.2015.03.018
40. Ouyang X., Koleva D.A., Ye G. et al. Insights into the mechanisms of nucleation and growth of C–S–H on fillers. Materials and Structures. 2017. Vol. 50. 213. https://doi.org/10.1617/s11527-017-1082-y

For citation: Chayka T.V., Gavrish V.M., Cherkashina N.I., Sidelnikov R.V., Romanyuk D.S. Modification of composite materials with highly dispersed WC and WO3 powders. Stroitel’nye Materialy [Construction Materials]. 2023. No. 10, pp. 121–128. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-818-10-121-128


Print   Email