Investigation of the Working Features of Concrete Structures Manufactured Using Technologies of Additive Building Manufacturing

Number of journal: 12-2023
Autors:

Adamtsevich A.O.,
Pustovgar A.P.,
Adamtsevich L.A.,
Kramerov D.V.,
Vorobev P.Yu.

DOI: https://doi.org/10.31659/0585-430X-2023-820-12-38-46
УДК: 69.001.5

 

AbstractAbout AuthorsReferences
The most common approach to the application of additive manufacturing technology today, which provides for printing the contour of buildings and structures with the creation of non-removable concrete formwork for the construction of load-bearing and enclosing structures. The features of the operation of a non-removable formwork under the action of lateral pressure of a concrete mixture are investigated. The results of the experimental research stage implemented on the basis of the SMITH Research Institute of the Moscow State University of Civil Engineering are presented, in which the strength characteristics of samples selected from single-layer concrete structures made using additive manufacturing technology, as well as the bearing capacity of fragments of non-removable formwork of rectangular and closed cylindrical shape under the influence of simulated pressure of a concrete mixture were studied. In the course of the work, the influence of parameters such as the width and height of the printed layer, as well as the presence of cold seams between individual layers of the printed structure on the strength and bearing capacity of the forming elements of the permanent formwork was studied. The work execution is aimed at accelerating the introduction of advanced technologies in construction in terms of creating scientific and technical groundwork for the development of additive construction production and the development of the domestic regulatory and technical base in the field of construction 3D printing.
A.O. ADAMTSEVICH, Candidate of Sciences (Engineering), Senior Researcher, Director (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.P. PUSTOVGAR, Candidate of Sciences (Engineering), Associate Professor, Scientific Director (This email address is being protected from spambots. You need JavaScript enabled to view it.),
L.A. ADAMTSEVICH, Candidate of Sciences (Engineering), Head of Research Laboratory of Energy Efficiency, Ecology and Sustainable Construction (This email address is being protected from spambots. You need JavaScript enabled to view it.),
D.V. KRAMEROV, Head of Research Laboratory of Building Composites, Mortars and Concrete, (This email address is being protected from spambots. You need JavaScript enabled to view it.),
P.Yu. VOROBEV, Junior Researcher, Research Laboratory of Energy Efficiency, Ecology and Sustainable Construction (This email address is being protected from spambots. You need JavaScript enabled to view it.)

National Research Moscow State University of Civil Engineering, Research Institute of Construction Materials and Technologies (26, Yaroslavskoye Highway, Moscow, 129337, Russian Federation)

1. Пустовгар А.П., Адамцевич Л.А., Адамцевич А.О. Международный опыт исследований в области аддитивного строительного производства // Жилищное строительство. 2023. № 11. С. 4–10. DOI: https://doi.org/10.31659/0044-4472-2023-11-4-10
1. Pustovgar A.P., Adamtsevich L.A., Adamtsevich A.O. International research experience in the field of additive construction manufacturing. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 11, pp. 4–10. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-11-4-10
2. Wangler T., Roussel N., Bos F.P., Salet T.A.M., Flatt R.J. Digital concrete: a review. Cement and Concrete Research. 2019. Vol. 123. 105780. https://doi.org/10.1016/j.cemconres.2019.105780
3. Bing Lu, Yiwei Weng, Mingyang Li, Ye Qian, Kah Fai Leong, Ming Jen Tan, Shunzhi Qian. A systematical review of 3D printable cementitious materials. Construction and Building Materials. 2019. Vol. 207, pp. 477–490. https://doi.org/10.1016/j.conbuildmat.2019.02.144
4. Shakor Pshtiwan, Nejadi Shami, Paul Gavin, Malek Sardar. Review of emerging additive manufacturing technologies in 3D printing of cementitious materials in the construction industry. Frontiers in Built Environment. 2018. Vol. 4. https://doi.org/10.3389/fbuil.2018.00085
5. Shaodan Hou, Zhenhua Duan, Jianzhuang Xiao, Jun Ye. A review of 3D printed concrete: Performance requirements, testing measurements and mix design. Construction and Building Materials. 2021. Vol. 273. 121745. https://doi.org/10.1016/j.conbuildmat.2020.121745
6. Lyu F., Zhao D., Hou X., Sun L., Zhang Q. Overview of the development of 3d-printing concrete: a review. Applied Sciences. 2021. No. 11. 9822 https://doi.org/10.3390/app11219822
7. Пустовгар А.П., Адамцевич А.О., Волков А.А. Технология и организация аддитивного строительства // Промышленное и гражданское строительство. 2018. № 9. С. 12–20.
7. Pustovgar A.P., Adamtsevich A.O., Volkov A.A. Technology and organization of additive construction. Promyshlennoye i grazhdanskoye stroitel’stvo. 2018. No. 9, pp. 12–20. (In Russian).
8. Славчева Г.С. Строительная 3D-печать сегодня: потенциал, проблемы и перспективы практической реализации // Строительные материалы. 2021. № 5. С. 28–36. DOI: https://doi.org/10.31659/0585-430X-2021-791-5-28-36
8. Slavcheva G.S. 3D-build printing today: potential, challenges and prospects for implementation. Stroitel’nye Materialy [Construction Materials]. 2021. No. 5, pp. 28–36. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-791-5-28-36
9. Рязанов А.Н., Шигапов Р.И., Синицин Д.А., Кинзябулатова Д.Ф., Недосеко И.В. Использование гипсовых композиций в технологиях строительной 3D-печати малоэтажных жилых зданий. Проблемы и перспективы // Строительные материалы. 2021. № 8. С. 39–44. DOI: https://doi.org/10.31659/0585-430X-2021-794-8-39-44
9. Ryazanov A.N., Shigapov R.I., Sinitsin D.A., Kinzyabulatova D.F., Nedoseko I.V. The use of gypsum compositions in the technologies of construction 3D printing of low-rise residential buildings. Problems and prospects. Stroitel’nye Materialy [Construction Materials]. 2021. No. 8, pp. 39–44. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-794-8-39-44
10. Binrong Zhu, Behzad Nematollahi, Jinlong Pan, Yang Zhang, Zhenxin Zhou, Yamei Zhang. 3D concrete printing of permanent formwork for concrete column construction. Cement and Concrete Composites. 2021. Vol. 121. 104039. https://doi.org/10.1016/j.cemconcomp.2021.104039
11. Leung C., Qian C. Development of pseudo-ductile permanent formwork for durable concrete structures. Materials and Structures. 2010. Vol. 43 (7), pp. 993-1007. https://doi.org/10.1617/s11527-009-9561-4
12. Адамцевич А.О., Пустовгар А.П. Аддитивное строительное производство: исследование эффекта анизотропии прочностных характеристик бетона // Строительные материалы. 2022. № 9. С. 18–24. DOI: https://doi.org/10.31659/0585-430X-2022-806-9-18-24
12. Adamtsevich A.O., Pustovgar A.P. Additive manufacturing in construction: the research of the anisotropy concrete strength effect. Stroitel’nye Materialy
[Construction Materials]. 2022. No. 9, pp. 18–24. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-806-9-18-24
13. Panda B., Mohamed N.A.N., Paul S.C., Singh G.V.P.B., Tan M.J., Šavija B., The effect of material fresh properties and process parameters on buildability and interlayer adhesion of 3D printed concrete. Materials. 2019. Vol. 12 (13). 2149. https://doi.org/10.3390/ma12132149
14. Wolfs R.J.M., Bos F.P., Salet T.A.M. Hardened properties of 3D printed concrete: The influence of process parameters on interlayer adhesion. Cement and Concrete Research. 2019. Vol. 119, pp. 132–140. https://doi.org/10.1016/j.cemconres.2019.02.017
15. Nerella V.N., Hempel S., Mechtcherine V. Effects of layer-interface properties on mechanical performance of concrete elements produced by extrusion-based 3D-printing. Construction and Building Materials. 2019. Vol. 205, pp. 586–601. https://doi.org/10.1016/j.conbuildmat.2019.01.235
16. Tay Y.W.D., Ting G.H.A., Qian Y., Panda B., He L., Tan M.J. Time gap effect on bond strength of 3D-printed concrete. Virtual and Physical Prototyping. 2019. Vol. 14. Iss. 1, pp. 104-113. https://doi.org/10.1080/17452759.2018.1500420
17. Rahul, A.V., Santhanam, M., Meena, H., Ghani, Z., Mechanical characterization of 3D printable concrete. Construction and Building Materials. 2019. Vol. 227. 116710. https://doi.org/10.1016/j.conbuildmat.2019.116710
18. Wang L., Tian Z., Ma G., Zhang M. Interlayer bonding improvement of 3D printed concrete with polymer modified mortar: Experiments and molecular dynamics studies. Cement and Concrete Composites. 2020. Vol. 110. 103571. https://doi.org/10.1016/j.cemconcomp.2020.103571
19. Hosseini E., Zakertabrizi M., Korayem A.H., Xu G. A novel method to enhance the interlayer bonding of 3D printing concrete: An experimental and computational investigation. Cement and Concrete Composites. 2019. Vol. 99, pp. 112–119. https://doi.org/10.1016/j.cemconcomp.2019.03.008
20. Dressler I., Freund N., Lowke D. The effect of accelerator dosage on fresh concrete properties and on interlayer strength in shotcrete 3D printing. Materials. 2020. Vol. 13. Iss. 2. 374. https://doi.org/10.3390/ma13020374
21. Kloft H., Krauss et all. Influence of process parameters on the interlayer bond strength of concrete elements additive manufactured by Shotcrete 3D Printing (SC3DP). Cement and Concrete Research. 2020. Vol. 134. 106078. https://doi.org/10.1016/j.cemconres.2020.106078

For citation: Adamtsevich A.O., Pustovgar A.P., Adamtsevich L.A., Kramerov D.V., Vorobev P.Yu. Investigation of the working features of concrete structures manufactured using technologies of additive building manufacturing. Stroitel’nye Materialy [Construction Materials]. 2023. No. 12, pp. 38–46. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-820-12-38-46


Print   Email