Thermal Insulation Products Based on Modified Polyurethane Foam with Fire-Resistant Coating

Number of journal: 11-2023
Autors:

Bruyako M.G.,
Lipka P.A.,
Kalinina M.S.

DOI: https://doi.org/10.31659/0585-430X-2023-819-11-14-19
УДК: 691.175.664

 

AbstractAbout AuthorsReferences
As part of the study, thermal insulation products based on rigid polyurethane foam (PPU) with a reduced flammability group were obtained. The effect of modification of polyurethane foam with oxidized thermally expansive graphite (OTG) on physical, mechanical and fire hazard properties was studied. A two-component factory-ready system with a G4 flammability group was used as the initial composition for modification. OTG brand: KR 350-80 was used as a modifier, characterized by a degree of expansion of at least 370 ml/g, a temperature of the onset of expansion of 170°C. Products made from polyurethane foam were modified by the method of dispersing OTG in a reactive composition, as well as by applying a fire-retardant coating during injection molding of masses. Samples were made and tests were carried out to determine the flammability group in accordance with GOST 30244. It was established that an increase in the concentration of OTG in the fire retardant coating and the structure of the material reduces the flammability of products, while modification by the dispersion method makes it possible to obtain a material with a flammability group (G3), but has an effect on the technological properties of the initial composition, leads to an increase in the viscosity of the reactive composition and an increase in the density of the products, while the modification of the fire retardant coating with honey does not affect the technological and physical-mechanical properties of the final product, and makes it possible to obtain a flammability group G1–G2 depending on the concentration of OTG.
M.G. BRUYAKO, Candidate of Sciences (Engineering), (This email address is being protected from spambots. You need JavaScript enabled to view it.),
P.A. LIPKA, Graduate student (This email address is being protected from spambots. You need JavaScript enabled to view it.),
M.S. KALININA, Bachelor (This email address is being protected from spambots. You need JavaScript enabled to view it.)

National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Асеева P.M., Заиков Г.Е. Горение полимерных материалов. М.: Наука, 1981. 280 с.
1. Aseeva R.M., Zaikov G.E. Goreniye polimernykh materialov [Combustion of polymer materials]. Moscow: Nauka. 1981. 280 p.
2. Jelle B.P. Traditional, state-of-the-art and future thermal building insulation materials and solutions – Properties, requirements and possibilities. Energy and Buildings. 2011. Vol. 43. Iss. 10, pp. 2549–2563. https://doi.org/10.1016/j.enbuild.2011.05.015
3. Гравит М.В., Кулешин А.С., Беляева С.В. Национальные стандарты для жестких напыляемых PUR и PIR пен // Строительные материалы. 2017. № 10. С. 58–64.
3. Gravit M.V., Kuleshin A.S., Belyaeva S.V. National standards for rigid sprayed PUR and PIR foams. Stroitel’nye Materialy [Construction Materials]. 2017. No. 10, pp. 58–64. (In Russian).
4. Кочерженко А.В., Марушко М.В., Рябчевский И.С. Пенополиуретановая теплоизоляция с улучшенными эксплуатационными свойствами. Наукоем-кие технологии и инновации: Сборник докладов Международной научно-практической конференции, посвященной 65-летию БГТУ им. В.Г. Шухова. Белгород. 29 апреля 2019. С. 84–88.
4. Kocherzhenko A.V., Marushko M.V., Ryabchevsky I.S. Polyurethane foam thermal insulation with improved performance properties. High-tech technologies and innovations: Collection of reports of the International scientific and practical conference dedicated to the 65th anniversary of BSTU named after V.G. Shukhov. Belgorod. April 29, 2019, pp. 84–88. (In Russian).
5. Кочерженко А.В. Получение наполненного пенополиуретана с улучшенными эксплуатационными свойствами // Вестник Белгородского государственного технологического университета им. В.Г. Шухова. 2019. № 4. С. 47–52. DOI: 10.34031/article_5cb1e65f6791b0.52319300
5. Kocherzhenko A.V. Obtaining filled polyurethane foam with improved performance properties. Vestnik of the Belgorod State Technological University named after. V.G. Shukhov. 2019. No. 4, pp. 47–52. (In Russian). DOI: 10.34031/article_5cb1e65f6791b0.52319300
6. Захарченко А.А. Изучение термоокислительной деструкции и горения модифицированных пенополиуретанов. XXVI Региональная конференция молодых ученых и исследователей Волгоградской области: Сборник материалов конференции. Волгоград. 16–28 ноября 2021. С. 6–7.
6. Zakharchenko A.A. Study of thermal-oxidative destruction and combustion of modified polyurethane foams. XXVI Regional Conference of Young Scientists and Researchers of the Volgograd Region: collection of conference materials. Volgograd. November 16–28, 2021, pp. 6–7. (In Russian).
7. Патент № 2726212 C1 Российская Федерация, МПК C08G 18/48, C08G 18/76, C08K 5/49. Композиция для получения жесткого пенополиуретана пониженной горючести: № 2019141894 / Захарченко А.А., Шокова Д.В., Ваниев М.А. и др. Заявл. 17.12.2019. Опубл. 09.07.2020.
7. Patent No. 2726212 C1 Russian Federation, IPC C08G 18/48, C08G 18/76, C08K 5/49. Kompozitsiya dlya polucheniya zhestkogo penopoliuretana ponizhennoy goryuchesti [Composition for producing rigid polyurethane foam of reduced flammability]: No. 2019141894 / Zakharchenko A.A., Shokova D.V., Vaniev M.A. and others. Appl. 12/17/2019. Publ. 07/09/2020. (In Russian).
8. Каблов В.Ф., Новопольцева О.М., Кочетков В.Г., Лапина А.Г. Основные способы и механизмы повышения огнетеплозащитной стойкости материалов // Известия Волгоградского государственного технического университета. 2016. № 4 (183). С. 46–60.
8. Kablov V.F., Novopoltseva O.M., Kochetkov V.G., Lapina A.G. Basic methods and mechanisms for increasing the fire and heat resistance of materials. Izvestiya of the Volgograd State Technical University. 2016. No. 4 (183), pp. 46–60. (In Russian).
9. Халтуринский Н.А., Рудакова Т.А. Физические аспекты горения полимеров и механизм действия ингибиторов // Химическая физика. 2008. Т. 27. № 6. С. 73–84.
9. Khalturinsky N.A., Rudakova T.A. Physical aspects of polymer combustion and the mechanism of action of inhibitors. Khimicheskaya fizika. 2008. Vol. 27. No. 6, pp. 73–84. (In Russian).
10. Ушков В.А., Сокорева Е.В., Славин А.М., Орлова А.М. Пожарная опасность резольных пенофенопластов и жестких пенополиуретанов // Промышленное и гражданское строительство. 2014. № 5. С. 65–68.
10. Ushkov V.A., Sokoreva E.V., Slavin A.M., Orlova A.M. Fire hazard of resole foam phenolic plastics and rigid polyurethane foams. Promyshlennoye i grazhdanskoye stroitel’stvo. 2014. No. 5, pp. 65–68. (In Russian).
11. Guo H., Gao Q., Ouyang C.F. Research on properties of rigid polyurethane foam with heteroaromatic and brominated benzyl polyols. Journal of Applied Polymer Science. 2015. Vol. 132 (33) DOI: 10.1002/APP.42349
12. Ming-Jun Chen, Chun-Rong Chen, Yi Tan, Jian-Qian Huang. Inherently flame-retardant flexible polyurethane foam with low content of phosphorus-containing cross linking agent // Industrial & Engineering Chemistry Research. 2014. Vol. 53. Iss. 3, pp. 1160–117. https://doi.org/10.1021/ie4036753
13. Method for producing flame-retardant polyurethane foam materials having good long-term use properties: Int. Cl. C 08 G 18/409/ Klesczewski B., Otten M., Meyer-Ahrens S.; Covestro Deutschland AG. CA2767469 (A1); Appl. 2010.07.06; Publ. 2011.01.13.
14. Two-component polyurethane/vinyl ester hybrid foam system and its use as a flame retardant material and material for filling openings in buildings with foam: Int. Cl. C 08G 18/638 / Reinheimer A.; Hilti AG. US2008132593 (A1); Appl. 2007.11.28; Publ. 2012.07.10.
15. Halogen-free flame-retardant microcellular foam polyurethane material: Int. Cl. C 08 J 9/06/Z / Rongdong L. Yue; Dongguan Antuopu Plastic Polymer Technology Co., Ltd. CN105802193 (A); Appl. 2016.05.31; Publ. 2016.07.27.
16. Composition for flame-retardant flexible polyurethane foam: Int. Cl. C 08 G 18/4829 / Tokuyasu N., Hamada T.; Daihachi Chem Ind. MY139727 (A); Appl. 2003.11.06; Publ. 2009.10.30.
17. Polyurethane foam containing flame-retardant mixture: Int. Cl. C 08 G 18/3851 / Weihong L., Petrovsky A., Stoel G.K., Levchik S., Yinzhong G.; Sopresta LLC. CN101616945 (A); Appl. 2007.11.19; Publ. 2009.12.30.
18. Chen H. еtc. Highly efficient flame retardant polyurethane foam with alginate/clay aerogel coating. ACS Applied Materials & Interfaces. 2016. Vol. 8 (47), pp. 32557–32564. https://doi.org/10.1021/acsami.6b11659
19. Патент RU2616639C2. Строительная изоляционная панель и способ ее изготовления / ФАОТТО Уго (IT). Патентообладатель СИЛЬКАРТ С.П.А. (IT). Заявка: 2015129825, 27.12.2012. Опубл. 18.04.2017. Бюл. № 11.
19. Patent RU2616639C2. Stroitel’naya izolyatsionnaya panel’ i sposob yeye izgotovleniya [Construction insulating panel and method of its manufacture]. Faotto Ugo (IT). Patent holder SILKART S.P.A. (IT). Appl.: 2015129825, 12/27/2012. Publ. 04/18/2017. Bull. No. 11.
20. Zhao B. and etc. Bi-phase flame-retardant actions of water-blown rigid polyurethane foam containing diethyl-N,N-bis(2-hydroxyethyl) phosphoramide and expandable graphite. Journal of Analytical and Applied Pyrolysis. 2017. Vol. 124, pp. 247–255. https://doi.org/10.1016/j.jaap.2016.12.032
21. Xi W. and etc. Addition flame-retardant behaviors of expandable graphite and [bis(2-hydroxyethyl)amino]-methyl-phosphonic acid dimethyl ester in rigid polyurethane foams. Polymer Degradation and Stability. 2015. Vol. 122, pp. 36–43. https://doi.org/10.1016/j.polymdegradstab.2015.10.013
22. Шафигуллин Л.Н., Романова Н.В., Шафигуллина Г.Р. Исследования влияния терморасширяющегося графита на свойства пенополиуретана // Социально-экономические и технические системы: исследование, проектирование, оптимизация. 2021. № 2 (88). С. 158–167.
22. Shafigullin L.N., Romanova N.V., Shafigullina G.R. Research on the influence of thermally expanding graphite on the properties of polyurethane foam. Sotsial’no-ekonomicheskiye i tekhnicheskiye sistemy: issledovaniye, proyektirovaniye, optimizatsiya. 2021. No. 2 (88), pp. 158–167. (In Russian).

For citation: Bruyako M.G., Lipka P.A., Kalinina M.S. Thermal insulation products based on modified polyurethane foam with a fire retardant coating. Stroitel’nye Materialy [Construction Materials]. 2023. No. 11, pp. 14–19. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-819-11-14-19


Print   Email