Evaluation of the Quality of Wood Impregnation with Inorganic Fire Retardants During Autoclaving

Number of journal: 11-2023
Autors:

Fedosov S.V.,
Lazarev A.A.,
Tcvetkov D.E.,
Kotlov V.G.,
Komlev A.Yu.

DOI: https://doi.org/10.31659/0585-430X-2023-819-11-5-9
УДК: 630*841.21

 

AbstractAbout AuthorsReferences
The problem of determining the depth of impregnation of wood with an aqueous solution of sodium bicarbonate is considered. The relevance of the study is due to the need to develop a method of non-destructive testing of wood impregnated with flame retardants in order to identify industrial defects and (or) counterfeit products. The authors of the article propose a method for determining changes in the concentration of sodium bicarbonate in flushes from wood layers when impregnated with a nine percent solution of this salt under various conditions of treatment in an autoclave. In the work on determining the depth of impregnation with a nine percent sodium bicarbonate solution of wood during autoclave treatment, an experiment was conducted. Within the framework of this experiment, it was planned to confirm or refute the working hypothesis about the presence of anisotropy of wood by layer-by-layer examination of the depth of its impregnation with an aqueous solution of sodium bicarbonate in layers when they are obtained by sawing along and across the fibers. It was also planned to develop a methodology for conducting a study of samples of wood layers impregnated with a nine percent aqueous solution of sodium bicarbonate under various autoclaving conditions. It was also necessary to establish a pattern of changes in the concentration of sodium bicarbonate in flushes from wood layers with appropriate flame retardant treatment. The authors also planned to obtain equations to describe the dynamics of changes in the concentration of sodium bicarbonate in flushes from impregnated wood layers under various autoclaving conditions. The results of this experiment made it possible to obtain an equation of the dynamics of the change in the mass fraction of sodium bicarbonate in the flushing from the wood layer in the longitudinal section from the sample. The value of the coefficient of determination for the resulting equation is determined. When layer-by-layer examination of the depth of impregnation of wood with an aqueous solution of sodium bicarbonate, anisotropy was observed in the cuts of layers along and across the fibers.
S.V. FEDOSOV1, Doctor of Sciences (Engineering), Academician of RAACS(This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.A. LAZAREV2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
D.E. TCVETKOV2, Engineer, (This email address is being protected from spambots. You need JavaScript enabled to view it.);
V.G. KOTLOV3, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.Yu. KOMLEV2, Engineer, (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)
2 Ivanovo Fire and Rescue Academy of the State Fire Service of the Ministry of Emergency Situations of Russia, (33 Stroiteley Street, Ivanovo, 153011, Russian Federation)
3 Volga State University of Technology (3 Square named after V.I. Lenin, Yoshkar-Ola, 424000, Russian Federation)

1. Seregin N.G. Losses in the manufacture of wooden building structures. Journal of Physics: Conference Series. Modelling and Methods of Structural Analysis. Vol. 1425. 13–15 November 2019. Moscow. DOI: 10.1088/1742-6596/1425/1/012133
2. Roshchina S., Lukin M., Lisyatnikov M. Compressed-bent reinforced wooden elements with long-term load. In book: Proceedings of EECE 2019, Energy, Environmental and Construction Engineering. 2020, pp. 81–91.
3. Fedosov S.V., Lazarev A.A., Kotlov V.G., Malichenko V.G., Tsvetkov D.E. Suspended ceiling safety for firefighters in case of fire in the attic. International Conference on Construction, Architecture and Technosphere Safety. ICCATS 2022: Proceedings of the 6th International Conference on Construction, Architecture and Technosphere Safety. 2022. pp. 513–522. https://doi.org/10.1007/978-3-031-21120-1_49
4. Polishchuk E.Yu., Sivenkov A.B., Kenzhehan S.K. Heating and charring of timber constructions with thin-layer fire protection. Magazine of Civil Engineering. 2018. No. 5 (81). DOI: 10.18720/MCE.81.1
5. Kantyshev A.V., Zaitseva M.I., Kolesnikov G.N. Model of wood impregnation after incomplete drying as an additional energy management tool. Journal of Physics: Conference Series. Vol. 1333. Iss. 3. http://dx.doi.org/10.1088/1742-6596/1333/3/032033
6. Gravit M.V., Serdjuks D., Vatin N., Lazarev Y.G., and Yuminova M.O. Single burning item test for timber with fire protection. Magazine of Civil Engineering. 2020. No. 3(95), pp. 19–30.
7. Kasymov D., Agafontsev M., Perminov V., Martynov P., Reyno V., Loboda E. Experimental investigation of the effect of heat flux on the fire behavior of engineered wood samples. Fire. 2020. 3 (4). 61. https://doi.org/10.3390/fire3040061
8. Полищук Е.Ю., Сивенков А.Б., Бирюков Е.П., Нормативные требования к огнезащите древесины и экспертная оценка ее качества // Пожары и чрезвычайные ситуации: предотвращение, ликвидация. 2016. № 2. С. 77–80.
8. Polishchuk E.Yu., Sivenkov A.B., Biryukov E.P., Regulatory requirements for fire protection of wood and expert assessment of its quality Pozhary i chrezvychaynyye situatsii: predotvrashcheniye, likvidatsiya. 2016. No. 2, pp. 77–80. (In Russian).
9. Мартынов А.В., Греков В.В., Попова О.В. Огнестойкость строительного элемента с интумесцентной огнезащитой: стандартная оценка и экспресс-анализ // Безопасность техногенных и природных систем. 2023. Т. 7. № 2. С. 38–46.
9. Martynov A.V., Grekov V.V., Popova O.V. Fire resistance of a building element with intumescent fire protection: standard assessment and express analysis Bezopasnost’ tekhnogennykh i prirodnykh sistem. 2023. Vol. 7. No. 2, pp. 38–46. (In Russian).
10. Бороздин С.А., Гитцович Г.А., Ветров В.В., Морозов С.С. Эффективность огнезащитных составов при нанесении их на различные породы древесины // Современные проблемы гражданской защиты. 2020. № 3 (36). С. 70–76.
10. Borozdin S.A., Gitsovich G.A., Vetrov V.V., Morozov S.S. The effectiveness of fire retardant compounds when applied to various types of wood Sovremennyye problemy grazhdanskoy zashchity. 2020. No. 3 (36), pp. 70–76. (In Russian).
11. Ратинов В.Б., Иванов Ф.М. Химия в строительстве. М.: Стройиздат, 1977. 220 с.
11. Ratinov V.B., Ivanov F.M. Khimiya v stroitel’stve. [Chemistry in construction]. Moscow: Stroyizdat. 1977. 220 p.
12. Федосов С.В., Степанова В.Ф., Румянцева В.Е. и др., Коррозия строительных материалов: проблемы, пути решения. М.: АСВ, 2022. 400 с.
12. Fedosov S.V., Stepanova V.F., Rumyantseva V.E. et al. Korroziya stroitel’nykh materialov: problemy, puti resheniya [Corrosion of building materials: problems, solutions]. Moscow: ASV. 2022. 400 p.
13. Ioannidou D., Sonnemann G., Pommier R., Habert G. Evaluating the risks in the construction wood product system through a criticality assessment framework. Resources, conservation and recycling. 2019. Vol. 146, pp. 68–76. https://doi.org/10.1016/j.resconrec.2019.03.021
14. Peng H., Salmén L., Jiang J., Lu J. Creep properties of compression wood fibers. Wood Science and Technology. 2020. Vol. 54. No. 6, pp. 1497–1510. https://doi.org/10.1007/s00226-020-01221-1
15. Орешкин Д.В. Теоретическое обоснование использования древесины мягколиственных пород в строительстве // Строительные материалы. 2015. № 7. С. 30–33.
15. Oreshkin D.V. Theoretical justification for the use of soft-leaved wood in construction. Stroitel’nye Materialy [Construction Materials]. 2015. No. 7, pp. 30–33. (In Russian).
16. Поляков Т.А., Поварова О.А. Подготовка древесных материалов для строительства и декора путем обработки древесины комбинированным воздействием ультрафиолета и СВЧ-излучения // Вестник Волгоградского государственного университета. Технические науки. 2020. № 2 (8). С. 75–77.
16. Polyakov T.A., Povarova O.A., Preparation of wood materials for construction and decoration by processing wood with the combined influence of ultraviolet and microwave radiation. Vestnik of Volgograd State University. Technical science. 2020. No. 2 (8), pp. 75–77. (In Russian).
17. Vladimirova O.A., Sopilov V.V., Bobyleva A.V., Labudin B.V., Popov E.V. Wood-сomposite structures with non-linear behavior of semi-rigid shear ties. Construction of Unique Buildings and Structures. 2021. No. 4 (97). 9702. https://doi.org/10.4123/CUBS.97.2
18. Попов Е.В., Русланова А.В., Сопилов В.В., Ждралович Н., Мамедов Ш.М., Лабудин Б.В. Контактное взаимодействие когтевой шайбы с древесиной от предельного сдвига // Известия вузов. Лесной журнал. 2020. № 4. С. 178–189. DOI: 10.37482/0536-1036-2020-4-178-189
18. Popov E.V., Ruslanova A.V., Sopilov V.V., Zdralovic N., Mamedov S.M., Labudin B.V. Contact interaction of a claw washer with wood at limiting shear. Russian Forestry Journal. 2020. No. 4 (376), pp. 178–189. (In Russian). https://doi.org/10.37482/0536-1036-2020-4-178-189
19. Labudin B.V., Karelskiy A.V., Lyapin D.M. Theoretical preconditions for determination of the elastic modulus of CLT-panels. Materials Science Forum. 2020. Vol. 992, pp. 998–1005. https://doi.org/10.4028/www.scientific.net/MSF.992.998

For citation: Fedosov S.V., Lazarev A.A., Tcvetkov D.E., Kotlov V.G., Komlev A.Yu. Assessment of the quality of wood impregnation with inorganic flame retardants during autoclaving. Stroitel’nye Materialy [Construction Materials]. 2023. No. 11, pp. 5–9. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-819-11-5-9


Print   Email