Log in

Effect of Citrogypsum on Shrinkage in Slag Cements

Number of journal: 10-2023
Autors:

Kozhukhova N.I.,
Glazkov R.A.,
Kolomytceva A.I.,
Nikulin I.S.,
Cherevatova A.V.

DOI: https://doi.org/10.31659/0585-430X-2023-818-10-47-51
УДК: 666.914

 

AbstractAbout AuthorsReferences
Nowadays, numerous studies have proven that slag-alkaline systems: cements and concretes are promising materials that compete with ordinary cement concretes in the construction industry. This is justified by a wide list of their competitive properties that meet modern requirements for building materials and products. However, despite the positive aspects of this group of materials, they are characterized by significant drawbacks that limit their wider practical application, including shrinkage during hardening. Within the framework of the article, the influence of the gypsum-containing component – citrogypsum, on the character and kinetics of shrinkage deformations of slag cements of various component compositions during the hardening process was studied. It was found that, depending on the type of alkaline activator, the addition of citrogypsum had a different effect on the shrinkage values of the binding system. When the NaOH binding system is activated, the introduction of citrogypsum helps to reduce shrinkage deformations up to two times. When using Na2CO3 and Na2SiO3 salts as alkaline activators, the addition of citrogypsum contributes to a sharp increase in shrinkage from 5 to 10 times.
N.I. KOZHUKHOVA1, Candidate of Science (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
R.A. GLAZKOV1, Postgraduate Student (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.I. KOLOMYTCEVA1, Master Student (This email address is being protected from spambots. You need JavaScript enabled to view it.);
I.S. NIKULIN2,3, Candidate of Science (Physical and Mathematical) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.V. CHEREVATOVA1, Doctor of Science (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Belgorod State Technological University named after V.G. Shukhov (46, Kostyukova Street, Belgorod, 308012, Russian Federation)
2 Belgorod National Research University (85, Pobedy Street, Belgorod, 308015, Russian Federation)
3 Fund of Innovative Scientific Technologies (room 3.3, 1, Perspektivnaya Street (Novosadovy microdistrict), Novosadovy village, Belgorod region, 308518, Russian Federation)

1. Krivenko P. Why alkaline activation – 60 years of the theory and practice of alkali-activated materials. Journal of Ceramic Science and Technology. 2017. Vol. 8. No. 3, pp. 323–334. DOI:10.4416/JCST2017-00042
2. Банул А.В. Шлакощелочные составы, их свойства и технология производства сухих шлакощелочных растворных смесей. Сборник Международной научно-технической конференции «Эффективные рецептуры и технологии в строительном материаловедении». Новосибирск, 14–17 февраля. 2017. С. 196–200.
2. Banul A.V. Slag-alkali compositions, their properties and production technology of dry slag-alkali mortar mixtures. Collection of the International Scientific and Technical Conference «Effective Formulations and Technologies in Building Materials Science». Novosibirsk. February 14–17, 2017, pp. 196–200. (In Russian).
3. Kozhukhova N.I., Alfimova N.I., Kozhukhova M.I., Nikulin I.S., Glazkov R.A., Kolomytceva A.I. Supplementary mineral additive on physical and mechanical performance of granulated blast furnace slag-based alkali-activated binders. Recycling. 2023. Vol. 8(1). No. 22. DOI:10.3390/recycling8010022
4. Иванов К.С., Иванов Н.К. Комплексное использование отходов черной металлургии при изготовлении шлакощелочных мелкозернистых бетонов. Строительные материалы. 2005. № 11. С. 74–77.
4. Ivanov K.S., Ivanov N.K. Complex use of ferrous metallurgy waste in the production of slag-alkaline fine-grained concrete. Stroitel’nye Materials [Construction Materials]. 2005. No. 11, pp. 74–77. (In Russian).
5. Калмыкова Ю.С. Переработка отвальных доменных шлаков с получением шлакощелочных вяжущих. Экология и промышленность России. 2014. № 3. С. 21–25.
5. Kalmykova Yu.S. Processing of waste blast-furnace slags with the production of slag-alkaline binders. Ekologiya i promyshlennost’ Rossii. 2014. No. 3, pp. 21–25. (In Russian).
6. Kozhukhova N., Kadyshev N., Cherevatova A., Voitovich E. Reasonability of application of slags from metallurgy industry in road construction. Advances in Intelligent Systems and Computing. 2017. Vol. 692, 776–782. https://doi.org/10.1007/978-3-319-70987-1_82
7. Pudron A.O. The action of alkalis on blast furnace slag. Journal of Society of Chemical Industry. 1940. No. 59, pp. 191–202.
8. Feret R. Slag for the manufacture of cement. Revue des materiaux deconstruction et de travaux public. 1939, pp. 121–126.
9. Глуховский В.Д., Пашков Т.А., Яворский И.А. Новый строительный материал. Бюллетень технической информации Главкиевстроя. 1957. № 2. С. 43–47.
9. Gluhovsky V.D., Pashkov T.A., Yavorsky I.A. New building material. Bulletin of technical information of Glavkievstroy. 1957. No. 2, pp. 43–47. (In Russian).
10. Chang J.J., Yeih W., Hung C.C. Effects of gypsum and phosphoric acid on the properties of sodium silicate-based alkali-activated slag pastes. Cement and Concrete Composites. 2005. Vol. 27. No. 1, pp. 85–91DOI: 10.1016/j.cemconcomp.2003.12.001
11. Shi H., Guo, X. Effects of Flue Gas Desulfurization (FGD) gypsum on the performances of cement-based materials. Gypsum: Properties, Production and Applications. 2011, pp. 153–174.
12. Kozhukhova N.I., Shurakov I.M., Alfimova N.I., Zhernovskaya I.V., Kozhukhova M.I. Using of citrogypsum in alkali activated systems. Key Engineering Materials. 2022. Vol. 913, pp. 179–184. (In Russian).
13. Kozhukhova N.I., Shurakov I.M., Kozhukhova M.I., Elistratkin M.Yu., Alfimova N.I. Understanding the relationship between composition and rheology in alkali-activated binders. Journal of Physics: Conference Series. Advanced Trends in Civil Engineering 2021 (ATCE 2021). Vol. 2124. DOI 10.1088/1742-6596/2124/1/012004
14. Банул А.В. Влияние режимов обжига на прочность и огневую усадку жаростойких мелкозернистых шлакобетонов. Сборник Национальной научно-технической конференции с международным участием «Повышение качества и эффективности строительных и специальных материалов». Новосибирск, 18–22 февраля. 2019. С. 188–192.
14. Banul A.V. Influence of firing regimes on the strength and fire shrinkage of heat-resistant fine-grained slag concrete. Proceeding of the National Scientific and Technical Conference with international participation «Improving the quality and efficiency of building and special materials». Novosibirsk. 18–22 February 2019, pp. 188–192. (In Russian).
15. Алфимова Н.И., Пириева С.Ю., Елистраткин М.Ю., Кожухова Н.И., Титенко А.А. Обзорный анализ способов получения вяжущих из гипсосодержащих отходов промышленных производств // Вестник БГТУ им. В.Г. Шухова. 2021. № 11. С. 8–23. DOI: 10.34031/2071-7318-2020-5-11-8-23
15. Alfimova N.I., Pirieva S.Yu., Elistratkin M.Yu., Kozhuhova N.I., Titenko A.A. Production methods of binders containing gypsum-bearing wastes: a review. Vestnik of BSTU named after V.G. Shukhov. 2020. No. 11, pp. 8–23. (In Russian). DOI: 10.34031/2071-7318-2020-5-11-8-23
16. Omelchuk V., Ye G., Runova R., Rudenko I. Shrinkage behavior of alkali-activated slag cement pastes. Key Engineering Materials. 2018. Vol. 761, pp. 45–48. DOI:10.4028/www.scientific.net/KEM.761.45

For citation: Kozhukhova N.I., Glazkov R.A., Kolomytceva A.I., Nikulin I.S., Cherevatova A.V. Effect of citrogypsum onshrinkage in slag cements. Stroitel’nye Materialy [Construction Materials]. 2023. No. 10, pp. 47–51. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-818-10-47-51

Non-Autoclaved Aerated Concrete Based on Sulfate-Containing Technogenic Waste

Number of journal: 10-2023
Autors:

Gordina A.F.,
Yakovlev G.I.,
Pervushin G.N.,
Gumeniuk A.N.,
Ukraintseva V.M.,
Buryanov A.F.

DOI: https://doi.org/10.31659/0585-430X-2023-818-10-42-46
УДК: 691.335

 

AbstractAbout AuthorsReferences
The results of a study of the influence of complex modification on the structure and properties of non-autoclaved aerated concrete obtained from waste from the production of hydrofluoric acid – fluoroanhydrite – are presented. The effectiveness of using aqueous suspensions of chrysotile and basalt fibers in the range from 0.1 to 0.5% by weight of the binder, providing an increase in strength characteristics of up to 30% compared to the control composition, has been proven. A change in the nature of the morphology in the contact zone at the fiber–hydration products boundary, providing positive changes in the physical and mechanical characteristics of the modified compositions, was noted.
A.F. GORDINA1, Candidate of Sciences (Engineering), Docent (This email address is being protected from spambots. You need JavaScript enabled to view it.),
G.I. YAKOVLEV1, Doctor of Sciences (Engineering), Professor (This email address is being protected from spambots. You need JavaScript enabled to view it.),
G.N. PERVUSHIN1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.N. GUMENIUK1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.M. UKRAINTSEVA1, Postgraduate(This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.F. BURYANOV2, Doctor of Sciences (Engineering), Professor (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Izhevsk State Technical University named after M.T. Kalashnikov (7, Studencheskaya Street, Izhevsk, 426069, Russian Federation)
2 National Research Moscow State University of Civil Engineering (26, Yaroslavskoye Shosse, Moscow, 129337, Russian Federation)

1. Chao-qiang Wang, Xiao-yan Lin, Dan Wang, Ming He, Si-lan Zhang, Utilization of oil-based drilling cuttings pyrolysis residues of shale gas for the preparation of non-autoclaved aerated concrete. Construction and Building Materials. 2018. Vol. 162, pp. 359–368. https://doi.org/10.1016/j.conbuildmat.2017.11.151
2. Syed Aqeel Bukhari, Dipak Patil, Gogate N.G., Pravin R. Minde. Utilization of waste materials in non-autoclaved aerated concrete blocks: State of art review. Materials Today: Proceedings. 2023. https://doi.org/10.1016/j.matpr.2023.02.334
3. Тургунбаев У.Ж., Кудратов Б.Ш., Тухтабоев Э.И. Дисперсное армирование неавтоклавированного асбестом и стекловолокном бетона. Научные труды международной научно-технической конференции с участием зарубежных ученых «Ресурсосберегающие технологии на транспорте». 2–3 декабря 2022. Ташкент. 570 с.
3. Turgunbaev U.Zh., Kudratov B.Sh., Tukhtaboev E.I. Dispersed reinforcement of non-autoclaved aerated concrete with asbestos and fiberglass. Scientific proceedings of the international scientific and technical conference with the participation of foreign scientists “Resource-saving technologies in transport”. December 2–3, 2022. Tashkent. 570 p.
4. Lin Yang, Yun Yan, Zhihua Hu, Utilization of phosphogypsum for the preparation of non-autoclaved aerated concrete. Construction and Building Materials. 2013. Vol. 44, pp. 600–606. https://doi.org/10.1016/j.conbuildmat.2013.03.070
5. Sukmana N.C., Khifdillah M.I., Nurkholil A.S., Anggarini U. Optimization of non-autoclaved aerated concrete using phosphogypsum of industrial waste based on the taguchi method. IOP Conf. Series: Materials Science and Engineering. 2019. Vol. 509. 012095. doi: 10.1088/1757-899X/509/1/012095
6. Бархатов В.И., Добровольский И.П., Капкаев Ю.Ш. Отходы производств и потребления – резерв строительных материалов: Монография. Челябинск: Изд-во Челябинского гос. университета, 2017. 477 с.
6. Barkhatov V.I., Dobrovolsky I.P., Kapkaev Yu.Sh. Otkhody proizvodstv i potrebleniya – rezerv stroitel’nykh materialov: monografiya. [Industrial and consumption waste – a reserve of building materials: monograph]. Chelyabinsk: Chelyabinsk State University Publishing House. 2017. 477 p.
7. Гордина А.Ф., Гуменюк А.Н., Полянских И.С., Зарипова Р.И. Исследование влияния суспензии технического углерода на характеристики фторангидритовой матрицы // Нанотехнологии в строительстве. 2022. Т. 14. № 5. С. 381–391. https://doi.org/10.15828/2075-8545-2022-14-5-381-391
7. Gordina A.F., Gumenyuk A.N., Polyanskikh I.S., Zaripova R.I. Carbon-containing modifier for fluoranhydrite binder. Nanotechnologies in Construction. 2022. Vol. 14. No. 5, pp. 381–391. DOI: 10.15828/2075-8545-2022-14-5-381-391
8. Gumeniuk A., Polyanskikh I., Gordina A. [et al.] Fluorоanhydrite based composites with the thermoplastic additive. Magazine of Civil Engineering. 2022. No. 4 (112). 11210. DOI: 10.34910/MCE.112.10
9. Rahman R.A., Fazlizan A., Asim N., Thongtha A. A review on the utilization of waste material for autoclaved aerated concrete production. International Conference on Sustainable Energy and Green Technology 2019 (SEGT 2019). 11–14 December 2019. Bangkok, Thailand. DOI: 10.32604/jrm.2021.013296
10. Гильмиярова Ю.В., Овчаренко Г.И., Волков В.В. Разработка составов для производства неавтоклавного газобетона из сырьевых материалов Индии // Ползуновский альманах. 2019. Т. 1. № 2. C. 58–60.
10. Gilmiyarova Yu.V., Ovcharenko G.I., Volkov V.V. Development of compositions for the production of non-autoclaved aerated concrete from Indian raw materials. Polzunovsky Almanakh. 2019. Vol. 1. No. 2, pp. 58–60. (In Russian).
11. Яковлев Г.И., Полянских И.С., Кисляков М.А., Гырдымов Д.А. Конструкционно-теплоизоля-ционный материал на основе фторангидрита. Фотинские чтения – 2021 (весеннее собрание): Материалы VIII Международной научно-практической конференции. Ижевск. 25–27 марта. 2021. С. 193–198.
11. Yakovlev G.I., Polyanskikh I.S., Kislyakov M.A., Gyrdymov D.A. Structural and thermal insulation material based on acid fluoride. Fotin Readings – 2021 (spring meeting): Proceedings of the VIII International Scientific and Practical Conference. Izhevsk. March 25–27, 2021, pp. 193–198. (In Russian).

For citation: Gordina A.F., Yakovlev G.I., Pervushin G.N., Gumeniuk A.N., Ukraintseva V.M., Buryanov A.F. Non-autoclaved aerated concrete based on sulfate-containing technogenic waste. Stroitel’nye Materialy [Construction Materials]. 2023. No. 10, pp. 42–46. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-818-10-42-46

Development of Compositions of Composite Materials for Operation Under the Influence of Aggressive Environments

Number of journal: 10-2023
Autors:

Goncharova M.A.,
Zaeva A.G.,
Komarichev A.V.,
Monastyrev P.V.

DOI: https://doi.org/10.31659/0585-430X-2023-818-10-29-34
УДК: 666.972.55

 

AbstractAbout AuthorsReferences
The study is aimed at optimizing the compositions of powder-activated concrete developed on the basis of generalizations of theoretical and experimental ideas about the dependence of performance characteristics of composite materials on their composition and structure. At the first stage of planning the composition of the matrix – water-dispersed rheological curing system (CT) was designed. The efficiency of plasticizers introduction by two-stage methodology was shown – first dry components were mixed with 2/3 of liquid phase, and at the second stage with the remaining amount of water. As a result of tests of concrete specimens after 2 months of curing, a rational composition suitable for further studies in an aggressive environment was selected. The research made it possible to obtain a composite material possessing a number of properties necessary for operation in aggressive environments: high compressive strength of 115 MPa, flexural strength of 7.62 MPa and water absorption of 2.0% by volume. Further actions on research of the developed fine-grained concrete in conditions of influence of aggressive environments are offered.
M.A. GONCHAROVA1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.G. ZAEVA1, Еngineer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.V. KOMARICHEV1, Сandidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
P.V. MONASTYREV2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Lipetsk State Technical University (30, Moskovskaya Street, Lipetsk, 398055, Russian Federation)
2 Tambov State Technical University (106/5, Sovetskaya Street, Tambov, 392000, Russian Federation)

1. Erofeev V.T., Maksimova I.N., Tarakanov O.V., Sanyagina Ya.A., Erofeeva I.V., Suzdaltsev O.V. Decorative and finishing powder-activated concretes with a granular surface texture. Stroitel’nye Materialy [Construction Materials]. 2022. No. 10, pp. 25–40. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-807-10-25-40
2. Surovtsov M.M., Khamidulina D.D., Nekrasova S.A., Moreva Y.A. Use of ground granulated blast furnace slag in cement binder. Stroitel’nye Materialy [Construction Materials]. 2023. No. 7, pp. 43–48. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-815-7-43-48
3. Inozemtsev A.S., Korolev E.V. Comparative analysis of influence of nanomodification and micro-dispersed reinforcement on the process and parameters of destruction of high-strength lightweight concrete. Stroitel’nye Materialy [Construction Materials]. 2017. No. 7, pp. 11–15. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2017-750-7-11-15
4. Filatov E.F. Express-methods for forecasting cement activity in the plant laboratory. Stroitel’nye Materialy [Construction materials]. 2017. No. 3, pp. 46–48. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2017-746-3-46-48
5. Gryzlov V.S., Zavialova D.V. Screenings of crushing of broken slag as an efficient component of concrete. Stroitel’nye Materialy [Construction Materials]. 2018. No. 5, pp. 40–43. (In Russian). DOI: hhttps://doi.org/10.31659/0585-430X-2018-759-5-40-43
6. Тravush V.I., Karpenko N.I., Erofeev V.T., Erofeeva I.V., Maksimova I.N., Kondrashchenko V.I., Kesariyskiy A.G. Investigation of powder-activated concretes by laser interferometry methods. Stroitel’nye Materialy [Construction Materials]. 2020. No. 4–5, pp. 18–28. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-780-4-5-18-28
7. Аgamov R.E., Goncharova M.A., Pachin A.R. High-strength fiber-reinforced concrete in structures for general construction and special purposes. Stroitel’nye Materialy [Construction Materials]. 2023. No. 1–2, pp. 39–43. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-810-1-2-39-43
8. Al-Surrayvi H.G.H, Goncharova M.A., Zaeva A.G. Synthesis of composites on the basis of local raw materials under the influence of aggressive environment. Stroitel’nye Materialy [Construction Materials]. 2021. No. 5, pp. 69–74. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-791-5-69-74
9. Goncharova M.A., Komarichev A.V., Karaseva O.V. Composite injection materials with two-stage magnetic treatment of systems hardening. Stroitel’stvo i rekonstruktsiya. 2017. No. 6 (74), pp. 114–120. (In Russian).
10. Sinitsin D.A., Salov A.S., Terekhov I.G., Timofeev A.A. Highly efficient new generation concretes in the construction of high-rise buildings in the Republic of Bashkortostan. Stroitel’nye Materialy [Construction Materials]. 2020. No. 6, pp. 8–12. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-781-6-8-12
11. Balykov A.S., Nizina T.A., Makarova L.V. Criteria of efficiency of cement concretes and their use for analyzing compositions of high-strength composites. Stroitel’nye Materialy [Construction materials]. 2017. No. 6, pp. 69–75. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2017-749-6-69-75
12. Goncharova M.A., Krokhotin V.V., Ivashkin A.N. The influence of fiber reinforcement on the properties of the selfcompacting concrete mix and concrete. Solid State Phenomena. 2020. Vol. 299, pp. 112–117. DOI: 10.4028/www.scientific.net/SSP.299.112
13. Smirnov V.A., Korolev E.V. Building materials as disperse systems: multiscale modeling with dedicated software. Stroitel’nye Materialy [Construction Materials]. 2019. No. 1–2, pp. 43–53. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-43-53
14. Strokova V.V., Netsvet D.D., Nelubova V.V., Serenkov I.V. Properties of composite binder based on nanostructured suspension. Stroitel’nye Materialy [Construction materials]. 2017. No. 1–2, pp. 50–54. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2017-745-1-2-50-54
15. Тravush V.I., Karpenko N.I., Erofeev V.T., Erofeeva I.V., Tarakanov O.V., Kondrashchenko V.I., Kesariyskiy A.G. The study of crack resistance of concretes of a new generation. Stroitel’nye Materialy [Construction Materials]. 2019. No. 10, pp. 3–11. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-775-10-3-11
16. Agamov R.E., Goncharova M.A., Mraev A.V. Steelmaking slags as an effective raw material in road construction. Stroitel’nye Materialy [Construction Materials]. 2023. No. 1–2, pp. 56–60. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-810-1-2-56-60

For citation: Goncharova M.A., Zaeva A.G., Komarichev A.V., Monastyrev P.V. Development of compositions of composite materials for operation under the influence of aggressive environments. Stroitel’nye Materialy [Construction Materials]. 2023. No. 10, pp. 29–34. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-818-10-29-34

Method for Assessing the Durability of Concrete of Offshore Structures at the Construction Stage

Number of journal: 10-2023
Autors:

Malyuk V.V.,
Malyuk V.D.,
Vavreniuk S.V.,
Leonovich S.N.

DOI: https://doi.org/10.31659/0585-430X-2023-818-10-25-28
УДК: 666.972.524

 

AbstractAbout AuthorsReferences
The problems that arise when implementing design indicators for the durability of concrete at the stage of construction of offshore structures under frost conditions are considered. It is shown that the standardized indicator of durability – frost resistance, due to the lack of operational methods of determination, is not controlled at the stage of manufacturing structures, which entails the production of both “eternal” concrete, the service life of which is 100 years, and concrete with a short service life. On the basis of modern theoretical principles of the structural theory of cement concrete and experience in the construction of offshore structures, a method for ensuring standardized frost resistance at the construction stage is proposed, provided that the critical maturity of the concrete structure is ensured by the beginning of frost exposure. A methodological basis for determining the critical maturity of concrete structure is given.
V.V. MALYUK1,2, Junior Researcher, Senior Lecturer (This email address is being protected from spambots. You need JavaScript enabled to view it.);
V.D. MALYUK1,2,4, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
S.V. VAVRENIUK1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
S.V. LEONOVICH3, Doctor of Sciences (Engineering), Foreign academician of the RAACS (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Branch of FGBU “TSNIIP of Russian Minstroy”, DalNIIS (Ministry of Construction, Housing and Utilities of the Russian Federation Far-Eastern Research, Design and Technological Institute of Construction) (14, Borodinskaya Street, Vladivostok, 690033, Russian Federation)
2 Sakhalin State University (33 Kommunistichesky Prospect, Yuzhno-Sakhalinsk, 693000, Russian Federation)
3 Belarusian National Technical University (65 Nezavisimosti Prospect, Minsk,220013, Republic of Belarus)
4 LLC “Transstroy-Test” (19г Vokzalnaya Street, Korsakov, 694020, Sakhalin Region, Russian Federation

1. Stepanova V.F., Falikman V.R. Modern problems of ensuring durability of reinforced concrete structures. BST: Bjulleten’ stroitel’noj tehniki. 2015. No. 2 (966), pp. 55–61. (In Russian).
2. Performance-based specifications and control of concrete durability: state-of-the-art. Report RILEM TC 230-PSC (RILEM State-of-the-Art Reports (18), Springer; 1st ed. 2016 edition (October 3, 2015), 391 p.
3. Karpenko N.I., Yarmakovsky V.N., Karpenko S.N., Kadiev D.Z. About the diagram method of determination of parametric points of microcracking formation process in concrete elements under axial compression in conditions of low negative temperatures action. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2019. No. 6, pp. 3–9. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2019-6-3-9
4. Shalyi E.E., Leonovich S.N., Kim L.V. Degradation of reinforced concrete structures of marine works from the combined impact of carbonation and chloride aggression. Stroitel’nye Materialy [Construction Materials]. 2019. No. 5, pp. 67–72. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-770-5-67-72
5. Stepanova V.F., Falikman V.R., Koroleva E.N. Monitoring and analysis of normative documents in the field of structural concrete design according to life cycle. Stroitel’nye Materialy [Construction Materials]. 2018. No. 7, pp. 14–19. (In Russian). DOI: 10.31659/0585-430Х-2018-761-7-14-19
6. Malyuk V.V., Malyuk V.D., Leonovich S.N. Analysis of the results of the survey of reinforced concrete structures of port facil ities (Sakhalin Island 1927– 2018). Beton i Zhelezobeton [Concrete and Reinforced Concrete]. 2022. No. 1 (609), pp. 3–9. (In Russian). DOI: htps://doi.org/10.31659/0005-9889-2022-609-1-3-9
7. Malyuk V.V. Frost resistance of concrete under various test methods. Problems of Modern Construction: Proceedings of the International Scientific and Technical Conference. Minsk. May 28. 2019, pp. 246–256. (In Russian).
8. Malyuk V.V., Malyuk V.D., Leonovich S.N. Improvement of design methods and technology of concrete works (on the example of Sakhalin Island).Beton i Zhelezobeton [Concrete and Reinforced Concrete]. 2022. No. 2 (610), pp. 30–34. (In Russian). DOI: https://doi.org/10.31659/0005-9889-2022-610-2-30-34
9. Malyuk V., Degradation and sudden failure of concrete structures of marine hydraulic structures in severe hydrometeorological conditions. Far East Con-2018. International Multi-Conference on Industrial Engineering and Modern technologies IOP Conf. Series: Materials Science and Engineering. 2018. Vol. 463. 022071. https://doi.org/10.1088/1757-899X/463/2/022071
10. Vavrenyuk S.V., Efimenko Yu.V., Vavrenyuk V.G., Farafonov A.E. Results of the study of the causes of destruction of concrete pavement of a sea pier on the coast of the Sea of Japan. Stroitel’nye Materialy [Construction Materials]. 2019. No. 11, pp. 37–41. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-776-11-37-41
11. Malyuk V.V., Mitina V.I. Stability of technological parameters of concrete mixture with air-entraining additives during long-term transportation. Proceedings of the V International scientific and practical conference dedicated to the 90th anniversary of FGBOU VO «SibADI». Omsk. 2020.

For citation: Malyuk V.V., Malyuk V.D., Vavreniuk S.V., Leonovich S.N. Method for assessing the durability of concrete of offshore structures at the construction stage. Stroitel’nye Materialy [Construction Materials]. 2023. No. 10, pp. 25–28. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-818-10-25-28

The Experience of Concreting a Massive Dense-Reinforced Structure with the Provision of Thermal Crack Resistance

Number of journal: 10-2023
Autors:

Kaprielov S.S.,
Sheinfeld A.V.,
Ivanov S.I.

DOI: https://doi.org/10.31659/0585-430X-2023-818-10-15-24
УДК: 691.328

 

AbstractAbout AuthorsReferences
The basic principles of the technology for the production of concrete work in the winter during the construction of a massive densely reinforced structure of a distribution beam-slab are presented. The implementation of the technology provided the design characteristics of concrete and thermal crack resistance of the structure. The volume of the structure is 730 m3, the design class of concrete is B50, the reinforcement consumption is 741 kg/m3. The features of the technology were: the use of a modified low-cement self-compacting concrete mixture with low exothermic potential (cement consumption not more than 350 kg/m3) and low temperature (+5–15оC); ensuring unimpeded heat exchange of the structure with the environment during the period of intense heat release of concrete until the maximum temperature in the middle zone of the structure is reached; regulation of the rate of cooling of the structure after reaching the maximum temperature in the middle zone of the structure by holding in tents and using thermal insulation materials. Taking into account the specifics of the design of the beam-slab, set by analogy with massive foundations, the temperature-time parameters of the technology were optimized based on the results of calculating the thermal stress state of this structure using the «Atena» program. The actual values of the concrete strength and the temperature parameters of keeping the distribution beam-slab fully complied with the calculated and regulated requirements: the actual average compressive strength of concrete was 61.3 MPa, corresponded to the actual class Bf57 and exceeded the requirements of the project (B50); the maximum temperature of concrete in the core of the structure did not exceed 61оC; the temperature difference between adjacent height levels, as well as between the surface of the structure and the environment, did not exceed 20оC; the average cooling rate of the structure did not exceed 3оC/day. As a result of inspection and flaw detection of the structure, thermal cracks were not revealed. The convergence of the calculated and actual values of the main temperature characteristics of the distribution beam-slab shows the need to substantiate the technological parameters of concreting complex massive structures by the calculated-empirical way taking into account: the design features, working conditions, compositions and properties of concrete mixtures, the kinetics of cement hydration and heat release of concrete, as well as thermal conductivity of concrete at the initial stage of hardening, when calculating its thermally stressed state.
S.S. KAPRIELOV, Doctor of Sciences (Engineering), Academician of the RAACS (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.V. SHEINFELD, Doctor of Sciences (Engineering), RAASN Advisor (This email address is being protected from spambots. You need JavaScript enabled to view it.),
S.I. IVANOV, Candidate of Sciences (Engineering)

Scientific Research Institute of Concrete and Reinforced Concrete named after A.A. Gvozdev JSC “Research Center of Construction” (6, bldg. 5. 2nd Institutskaya Street, Moscow 109428, Russian Federation)

1. ACI 207.1R-05. Guide to Mass Concrete. Report of ACI Committee 207.
2. Hirozo Mihashi, Joao Paulo de B. Leite. State-of-the-art report on controlling of cracking in early age concrete. Journal of Advanced Concrete Technology. 2004. June. Vol. 2. No. 2, pp. 141–154.
3. Kaprielov S.S., Travush V.I., Sheinfeld A.V., Karpen-ko N.I., Kardumyan G.S., Kiselyova Yu.A., Prigo-zhenko O.V. Modifiered concretes of a new genera-tion in buildings of «Moscow city». Stroitel’nye Mate-rialy [Construction Materials]. 2006. No. 10, pp. 8–12. (In Russian).
4. Shifrin S.A., Kardumian G.S. The use of organic-mineral modifiers of mb series for reducing the thermal stresses in massive concrete structures. Stroitel’nye Materialy [Construction Materials]. 2007. No. 9, pp. 9–11. (In Russian).
5. Kaprielov S.S., Sheinfeld A.V., Kardumyan G.S., Kiselyova Yu.A., Prigozhenko O.V. New concretes and technologies in structures of tall buildings. Vysotnye zdaniya. 2007. No. 5, pp. 94–101. (In Russian).
6. Kaprielov S.S., Sheinfeld A.V., Kardumyan G.S., Kiselyova Yu.A., Prigozhenko O.V. Providing thermal crack resistance of massive foundation slabs. Problems of Durability of Buildings and Structures in Contmporary Construction. Int. Conf. Saint-Petersburg, 2007, pp. 240–245. (In Russian).
7. Kaprielov S.S., Sheinfeld A.V., Kardumyan G.S. Novye modificirovannye tehnologii [A new modifiered concretes]. Moscow: Master Concrete Enterprise, Paradise. 2010. 258 p.
8. Nannan Shi, Jianshu Ouyang, Runxiao Zhang, Dahai Huang, “Experimental study on early-age crack of mass concrete under the controlled temperature history”. Advances in Materials Science and Engineering. 2014. Article ID 671795. 10 p. doi.org/10.1155/2014/671795
9. Bisch Philippe. Behavior and assessment of massive structures: cracking and shrinkage. Crack Width Calculation Methods for Large Concrete Structures. Nordic Miniseminar. Oslo, Norway. 29–30 August 2017. No. 12, pp. 11–15.
10. Kaprielov S.S., Sheinfeld A.V., Al-Omais D., Zaitsev A.S. High-Strength concretes in foundation of tall buildings complex “ÓKO” in “Moscow City” business center. Promyshlennoye i Grazhdanskoye Stroitelstvo. 2017. No. 3, pp. 53–57. (In Russian).
11. Kaprielov S.S., Sheinfeld A.V., Chilin I.A. Optimization of technology parameters to ensure thermal crack resistance of massive foundations. Stroitel’nye Materialy [Construction Materials]. 2022. No. 10, pp. 41–51. (In Russian). DOI: https://doi.org/10.31659/0585-403Х-2022-807-10-41-51
12. Kaprielov S.S., Sheinfeld A.V., Kardumyan G.S., Chilin I.A. On the selection of compositions of high-quality concretes with organo-mineTal modifi еrs. Stroitel’nye Materialy [Construction Materials]. 2017. No. 12, pp. 58–63. (In Russian).
13. Kaprielov S.S., Sheinfeld A.V. Some features of organic-mineral modifiers action on cement sistems. Seismostoykoye Stroitelstvo. Bezopasnost sooruzheniy. 2017. No. 1, pp. 40–47. (In Russian).
14. Kaprielov S.S., Sheinfeld A.V., Al-Omais D., Zaitsev A.S., Amirov R.A. A technology of erecting high-rise building frame structures using B60–B100 classes high-strength concretes. Bulletin of science and research center of construction. 2022; 33(2):106-121. (In Russian). DOI: https://doi.org/10.37538/2224-9494-2022-2(33)-106-121
15. Bolgov A.N., Nevsky A.V., Ivanov S.I., Sokurov A.Z. Numerical modeling of temperature stresses in concrete of massive structures during hardening. Promyshlennoye i Grazhdanskoye Stroitelstvo. 2022. No. 4, pp. 6–13. (In Russian). DOI: 10.33622/0869-7019.2022.04.06-13
16. Guidelines for the heating of concrete in monolithic structures. Moscow: RAASN; NIIZhB. 2005. (In Russian).
17. Červenka V.,Jendele L., Červenka J. ATENA Program Documentation. Part 1. Theory. Part 3–2 Example Manual. Prague, 2021.
18. Eduardo M.R. Fairbairn, Miguel Azenha. Thermal cracking of massive concrete structures. State of the art report of the RILEM technical committee 254-CMS. RILEM State Art Reports. DOI: https://doi.org/10.1007/978-3-319-76617-1
19. Sargam Y., Faytarounia M., Riding K. et. al. Predicting thermal performance of a mass concrete foundation – a field monitoring case study. Case Studies in Construction Materials. 2019. Vol. 11. DOI: https://doi.org/10.1016/j.cscm.2019.e00289
20. Usherov-Marshak A.V. Thermokinetic factor in cement hardening. Calorimetry of cement and concrete. 2002, pp. 57–58. (In Russian).
21. Kardumyan G.S., Ivanov S.I. The system of protection of reinforced concrete structures from groundwater “White bath”. Stroitel’nye Materialy [Construction Materials]. 2018. No. 11, pp. 21–26. (In Russian).

For citation: Kaprielov S.S., Sheinfeld A.V., Ivanov S.I. The experience of concreting a massive dense-reinforced structure with the provision of thermal crack resistance. Stroitel’nye Materialy [Construction Materials]. 2023. No. 10, pp. 15–24. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-818-10-15-24

Durability of Concrete in Aggressive Environments of XF4 Class. Design and Forecasting

Number of journal: 10-2023
Autors:

Leonovich S.N.,
Strokin K.B.,
Malyuk V.V.

DOI: https://doi.org/10.31659/0585-430X-2023-818-10-4-8
УДК: 620.192:691.32

 

AbstractAbout AuthorsReferences
The problems arising in the assignment of concrete durability indicators for aggressive media of class XF4 at the design stage are considered. Based on the modern theoretical provisions of the structural theory of cement concretes and the experience of the construction of offshore structures, it is shown that the implementation of the normalized frost resistance at the construction stage is possible provided that the critical maturity of the concrete structure is ensured by the beginning of frost exposure. In the process of predicting the durability of concrete, it is advisable to consider concrete corrosion as a two-stage process with periods of initiation and degradation. Recommended measures to protect concrete from frost corrosion in an aggressive environment of class XF4 allow to ensure the service life of concrete structures for 100 years.
S.N. LEONOVICH1, Doctor of Sciences (Engineering), Foreign academician of the RAACS (This email address is being protected from spambots. You need JavaScript enabled to view it.);
K.B. STROKIN2, Doctor of Sciences (Economics) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
V.V. MALYUK2,3, Junior Researcher, Senior Lecturer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Belarusian National Technical University (65, Prospekt Nezavisimosti, Minsk, 220013, Belarus)
2 Sakhalin State University (33, Kommunistichesky Avenue, Yuzhno-Sakhalinsk, 693000, Russian Federation)
3 Branch of FGBU “TSNIIP of Russian Minstroy”, DalNIIS (Ministry of Construction, Housing and Utilities of the Russian Federation Far-Eastern Research,Design and Technological Institute of Construction) (14, Borodinskaya Street, Vladivostok, 690033, Russian Federation)

1. Степанова В.Ф., Фаликман В.Р. Современные проблемы обеспечения долговечности железобетонных конструкций. Бетон и железобетон – взгляд в будущее: Научные труды III Всероссийской (II Международной) конференции по бетону и железобетону: В 7 т. М.: Изд-во НИУ МГСУ, 2014. Т. 3. С. 430–444.
1. Stepanova V.F., Falikman V.R. Advanced topics in assurance of reinforced concrete structural durability. Concrete and reinforced concrete – a look into the future: Scientific papers of the III All-Russian (II International) Conference on Concrete and Reinforced Concrete in 7 vols. Moscow. 2014. Vol. 3, pp. 430–444. (In Russian).
2. Malyuk V.V., Malyuk V.D. Freezing mechanisms of the concrete in an area of variable water level of port facilities. IOP Conference Series: Earth and Environmental Science. 2022. Vol. 988. Chapter 4. 052020. DOI: http://dx.doi.org/10.1088/1755-1315/988/5/052020
3. Малюк В.В., Малюк В.Д., Леонович С.Н. Анализ результатов обследования железобетонных конструкций портовых сооружений (о. Сахалин, 1927–2018 гг.) // Бетон и железобетон. 2022. № 1 (609). С. 3–9. DOI: https://doi.org/10.31659/0005-9889-2022-609-1-3-9
3. Malyuk V.V., Malyuk V.D., Leonovich S.N. Analysis of the results of the survey of reinforced concrete structures of port facilities (Sakhalin Island 1927–2018). Beton i zhelezobeton. 2022. No. 1 (609), pp. 3–9. (In Russian). DOI: https://doi.org/10.31659/0005-9889-2022-609-1-3-9
4. Malyuk V.V., Malyuk V.D., Lobodyuk A.V. Operating conditions and damage to the concrete of port facilities on the southern coast of Sakhalin. IOP Conference Series: Earth and Environmental Science. 2022. Chapter 4. 052035. DOI: http://dx.doi.org/10.1088/1755-1315/988/5/052035
5. Malyuk V.V. Climatic conditions and experience of operation of port facilities on Sakhalin Island. Civil Engineering Research Journal. 2020. Vol. 10. Iss. 5. 555797. DOI: http://dx.doi.org/10.19080/CERJ.2020.10.555797
6. Чернышов Е.М. Морозная деструкция бетонов. Ч. 1. Механизм, критериальные условия управления // Строительные материалы. 2017. № 9. С. 40–46.
6. Chernyshov E.M. Frost destruction of concretes. Part 1. Mechanism, criterial conditions of control. Stroitel’nye Materialy [Construction Materials]. 2017. No. 9, pp. 40–46. (In Russian).
7. Шестоперов С.В. Долговечность бетона транспортных сооружений. М.: Транспорт, 1966. 500 с.
7. Shestoperov S.V. Dolgovechnost’ betona transportnykh sooruzheniy. [Durability of concrete for transport structures]. Moscow: Transport. 1966. 500 p.
8. Malyuk V.V. Degradation and sudden failure of concrete structures of marine hydraulic structures in severe hydrometeorological conditions. IOP Conference Series: Materials Science and Engineering. 2018. Vol. 463. Iss. 2. 022071. DOI: https://doi.org/10.1088/1757-899X/463/2/022071
9. Вавренюк С.В., Ефименко Ю.В., Вавренюк В.Г., Фарафонов А.Э. Результаты исследования причин разрушения бетонного покрытия морского пирса на побережье Японского моря // Строительные материалы. 2019. № 11. С. 37–41. DOI: https://doi.org/10.31659/0585-430X-2019-776-11-37-41
9. Vavreniuk S.V., Efimenko Yu.V., Vavreniuk V.G., Farafonov A.E. Results of the study of the causes of destruction of concrete pavement of a sea pier on the coast of the Sea of Japan. Stroitel’nye Materialy [Construction Materials]. 2019. No. 11, pp. 37–41. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-776-11-37-41
10. Малюк В.В. Прогнозирование долговечности конструкций морских гидротехнических сооружений из бетона по опыту строительства и эксплуатации в суровых климатических условиях. Проблемы и перспективы развития строительства, теплогазоснабжения и энергообеспечения: Материалы VIII Национальной конференции с международным участием. Саратов, 2018. С. 223–231.
10. Malyuk V.V. Forecasting the durability of structures of marine hydraulic structures made of concrete based on the experience of construction and operation in harsh climatic conditions. Problems and prospects of development of construction, heat and gas supply and energy supply: Materials of the VIII National Conference with international participation. Saratov. 2018, pp. 223–231. (In Russian).
11. Малюк В.В., Малюк В.Д., Леонович С.Н. Совершенствование методов проектирования и технологии бетонных работ (на примере о. Сахалин) // Бетон и железобетон. 2022. № 2 (610). С. 30–34. DOI: https://doi.org/10.31659/0005-9889-2022-610-2-30-34
11. Malyuk V.V., Malyuk V.D., Leonovich S.N. Improvement of design methods and technology of concrete works (on the example of Sakhalin island). Beton i zhelezobeton. 2022. No. 2 (610), pp. 30–34. (In Russian). DOI: https://doi.org/10.31659/0005-9889-2022-610-2-30-34
12. Малюк В.В. Концепция долговечности бетона для прогноза срока службы конструкций в условиях морозного воздействия // Вестник инженерной школы ДВФУ. 2020. № 4 (45). С. 105–115. DOI: http://dx.doi.org/10.24866/2227-6858/2020-4-11
12. Malyuk V.V. Concrete durability concept for predicting the service life of structures under frost conditions influences. Vestnik of the FEFU Engineering School. 2020. No. 4 (45), pp. 105–115. (In Russian). DOI: http://dx.doi.org/10.24866/2227-6858/2020-4-11

For citation: Leonovich S.N., Strokin K.B., Malyuk V.V. Durability of concrete in aggressive environments of XF4 class. Design and forecasting. Stroitel’nye Materialy [Construction Materials]. 2023. No. 10, pp. 4–8. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-818-10-4-8

Qualimetry of Wood Composite by Kinetic Modification Parameters

Number of journal: 9-2023
Autors:

Stepina I.V.,
Zheglova Y.G.

DOI: https://doi.org/10.31659/0585-430X-2023-817-9-94-101
УДК: 624.011.1

 

AbstractAbout AuthorsReferences
The reliability of building structures is primarily due to the quality of the materials used in construction. Wood is very popular in residential construction. But its quality can decline during operation as a result of fire and biocorrosion. To protect the wood structures it is modified, thereby guaranteeing the quality of the material. In this regard, the purpose of the study was to assess the quality of wood through the degree of modification by kinetic parameters. As a result of the work, the influence of organophosphorus compounds of different nature on the degree of modification of the substrate by organochlorine compounds at different modification times was established by methods of correlation analysis. It was found that there was a strong direct correlation between the time of modification and the percentage of silicon content in cellulose. Correlation analysis was used to determine the most effective organophosphorus “conductors” of organosilicon into wood depending on the nature of the latter and the modification temperature. A single-factor analysis of variance revealed the effect of the conditions of treatment with organosilicon compounds on the silicon content in cellulose in % by mass at different temperatures.
I.V. STEPINA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
Y.G. ZHEGLOVA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Крутасов Б.В., Машкин Н.А. Повышение стойкости деревянных элементов очистных сооружений угольных шахт Кузбасса. Повышение качества и эффективности строительных и специальных материалов: Сборник Национальной научно-технической конференции с международным участием. Новосибирск, 2019. С. 245–249.
1. Krutasov B.V., Mashkin N.A. Increasing the durability of wooden elements of wastewater treatment plants at coal mines in Kuzbass. Improving the quality and efficiency of building and special materials: Collection of the National Scientific and Technical Conference with international participation. Novosibirsk. 2019, pp. 245–249 (In Russian).
2. Шведов В.Н., Крутасов Б.В., Машкин Н.А. Долговечность модифицированной древесины в конструкциях вентиляторных градирен и очистных сооружений // Известия высших учебных заведений. Строительство. 2020. № 3 (735). С. 126–134. DOI: 10.32683/0536-1052-2020-735-3-126-134.
2. Shvedov V.N., Krutasov B.V., Mashkin N.A. Durability of modified wood in the construction of fan cooling towers and treatment facilities. Izvestiya vysshikh uchebnykh zavedeniy. Stroitel’stvo. 2020. No. 3 (735), pp. 126–134. (In Russian). DOI: 10.32683/0536-1052-2020-735-3-126-134
3. Цветкова И.Н., Кычкин А.К., Шилова О.А. Атмосферостойкие покрытия для защиты древесины в Якутии. Новые материалы и технологии в условиях Арктики: Материалы V Международной конференции с элементами научной школы. Якутск, 2022. С. 83–84.
3. Tsvetkova I.N., Kychkin A.K., Shilova O.A. Weather-resistant coatings for wood protection in Yakutia. New materials and technologies in the Arctic: Proceedings of the V International Conference with elements of a scientific school. Yakutsk. 2022, pp. 83–84. (In Russian).
4. Castellano M., Gandini A., Fabbri P., Belgacem M.N. Modification of cellulose fibres with organosilanes: Under what conditions does coupling occur? Journal of Colloid and Interface Science. 2004. Vol. 273. Iss. 2, pp. 505–511. https://doi.org/10.1016/j.jcis.2003.09.044
5. Stiubianu G., Racles C., Nistor A., Cazacu M., Simionescu B.C. Cellulose modification by crosslinking with siloxane diacids. Cellulose chemistry and technology. 2011. Vol. 45. No. 3–4, pp. 157–162.
6. Ganicz T., Olejnik K., Rózga-Wijas K., & Kurjata J. New method of paper hydrophobization based on starch-cellulose-siloxane interactions. BioResources. 2020. Vol. 15 (2), pp. 4124–4142. DOI: 10.15376/biores.15.2.4124-4142
7. Xiao F., Gao J., Huang X. et al. Effect of poly(methylhydrogen)siloxane modification on adjusting mechanical properties of bamboo flour-reinforced HDPE composites. Cellulose. 2021. Vol. 28, pp. 5463–5475. DOI: https://doi.org/10.1007/s10570-021-03849-z
8. Jiang Z., Xu D., Ma X. et al. Facile synthesis of novel reactive phosphoramidate siloxane and application to flame retardant cellulose fabrics. Cellulose. 2019. Vol. 26, pp. 5783–5796. DOI: https://doi.org/10.1007/s10570-019-02465-2
9. Лунева Н.К., Езовитова Т.И., Шевчук В.В., Смичник А.Д. Получение фосфорилированной целлюлозы и оценка ее огнезащитных и прочностных свойств // Известия Национальной академии наук Беларуси. Химическая серия. 2018. Т. 54. № 2. С. 204–215. DOI: https://doi.org/10.29235/1561-8331-2018-54-2-204-215
9. Luneva N.K., Ezovitova T.I., Shevchuk V.V., Smichnik A. D. Preparation of phosphorylated cellulose and evaluation of its flame retardant and strength properties. Izvestiya of the National Academy of Sciences of Belarus. Chemical series. 2018. Vol. 54. No. 2, pp. 204–215. (In Russian). DOI: httрs://doi.org/10.29235/1561-8331-2018-54-2-204-215
10. Мнускина Ю.В., Руденский А.Р. Средства огнезащиты древесины // Пожарная и техносферная безопасность: проблемы и пути совершенствования. 2021. № 2 (9). С. 258–263.
10. Mnuskina Yu.V., Rudensky A.R. Means of fire protection of wood. Pozharnaya i tekhnosfernaya bezopasnost’: problemy i puti sovershenstvovaniya. 2021. No. 2 (9), pp. 258–263. (In Russian).
11. Нигматуллина Д.М., Сивенков А.Б., Полищук Е.Ю. Физико-механические и пожароопасные свойства древесины с глубокой пропиткой огнебиозащитными составами // Пожаровзрывобезопасность. 2017. Т. 26. № 6. C. 43–52.
11. Nigmatullina D.M., Sivenkov A.B., Polishchuk E.Yu. Physico-mechanical and fire hazardous properties of wood with deep impregnation with fire-bioprotective compositions. Pozharovzryvobezopasnost’. 2017. Vol. 26. No. 6, pp. 43–52 (In Russian).
12. Осовская И.И., Васильева А.П. Новейшие огнезащитные средства для древесины. Леса России: политика, промышленность, наука, образование: Материалы VI Всероссийской научно-технической конференции. СПб., 2021. Т. 2. С. 76–79.
12. Osovskaya I.I. Vasilyeva A.P. The latest fire retardants for wood. Forests of Russia: politics, industry, science, education: Proceedings of the VI All-Russian Scientific and Technical Conference. St. Petersburg. 2021. Vol. 2, pp. 76–79 (In Russian).
13. Pokrovskaya E. N. Increase of fire protection and strength of wooden structures by modification in a thin surface layer by nanodispersion composites. Journal of Physics: Conference Series. Vol. 1425. Modelling and Methods of Structural Analysis. 13–15 November 2019, Moscow, Russian Federation. DOI: 10.1088/1742-6596/1425/1/012091
14. Скрипник И.Л. Использование антипиренов для повышения огнестойкости древесных конструкций. Сборник конференции «Инновационные технологии, экономика и менеджмент в промышленности». 2021. Москва. РУДН. С. 79–81.
14. Skripnik I.L. The use of fire retardants to increase the fire resistance of wood structures. Collection of the conference Innovative technologies, economics and management in industry. 2021. Moscow, pp. 79–81. (In Russian).
15. Покровская Е.Н., Портнов Ф.А. Огнебиозащитный состав для древесины с эффективными дымогасящими компонентами // Вестник МГСУ. 2015. Т. 10. C. 106–115.
15. Pokrovskaya E.N., Portnov F.A. Fire-retardant composition for wood with effective smoke-extinguishing components. Vestnik of MUCE. 2015. Vol. 10, pp. 106–115. (In Russian).
16. Котенева И.В. Боразотные модификаторы поверхности для защиты древесины строительных конструкций: Монография. М.: МГСУ, 2011. 191 c.
16. Koteneva I.V. Borazotnyye modifikatory poverkhnosti dlya zashchity drevesiny stroitel’nykh konstruktsiy: monografiya [Borozote surface modifiers for protecting wood of building structures: monograph]. Moscow: MUCE. 2011. 191 p.
17. Корниенко В.С. Математическая статистика. Решение задач по теме «Однофакторный дисперсионный анализ». Волгоград: Волгогр. гос. с.-х. акад., 2010. 20 c.
17. Kornienko V.S. Matematicheskaya statistika. Resheniye zadach po teme «Odnofaktornyy dispersionnyy analiz» [Math statistics. Solving problems on the topic «One-factor analysis of variance»]. Volgograd: Volgograd State Agricultural Academy, 2010. 20 p.
18. Левин Д.М., Стефан Д.К., Тимоти С., Беренсон М.Л. Статистика для менеджеров с использованием Microsoft Excel. М.: Вильямс, 2004. 1312 с.
18. Levin D.M., Stephan D.C., Timothy S., Berenson M.L. Statistika dlya menedzherov s ispol’zovaniyem Microsoft Excel [Statistics for managers using Microsoft Excel]. Moscow: Williams. 2004. 1312 p.

For citation: Stepina I.V., Zheglova Y.G. Qualimetry of wood composite by kinetic parameters of modification. Stroitel’nye Materialy [Construction Materials]. 2023. No. 9, pp. 94–101. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-817-9-94-101

Filtration of Suspension in a Porous Material

Number of journal: 9-2023
Autors:

Kuzmina L.I.,
Osipov Yu.V.

DOI: https://doi.org/10.31659/0585-430X-2023-817-9-89-93
УДК: 624.131:532.546

 

AbstractAbout AuthorsReferences
Filtration of suspended solid particles in porous material simulates the processes of strengthening foundations, creating waterproof walls in rock, construction and reconstruction of roads, colmatation (deposition of particles) in the bottom-hole zone of the well by components of drilling fluid during oil production, the operation of filter elements of treatment facilities, and much more. The purpose of this work was to study the filtration of a monodisperse suspension of high concentration in a homogeneous porous medium having pores of various sizes and configurations. A suspension was pumped into the porous medium under pressure, displacing pure liquid containing no particles from the pores. It is assumed that the main reason for particle retention is a size mechanism: particles pass freely through large pores and become stuck in narrow pores, the diameter of which is smaller than the particle size. The nonlinear dependence of the sediment growth rate on the concentration of suspended particles, characteristic of a highly concentrated suspension, is modeled. With the slow movement of the suspension in the porous material, the deposited particles remain motionless. They cannot be torn away from the framework of the porous medium by the carrier fluid and impacts of suspended particles. A mathematical model describes the transformation of suspended particles into sediment and sets the rate of sediment growth. A solution to the filtration problem in implicit integral form and a simple algebraic relation (Riemann invariant) relating the concentrations of suspended and deposited particles are obtained. The problem is solved for a linear filtration function and a general nonlinear concentration function. An asymptotic solution was constructed near the concentration front of suspended and deposited particles, specifying an approximate solution in the form of explicit algebraic formulas. It is shown that the asymptotic behavior is close to the exact solution; the error decreases with increasing order of the asymptotic expansion.
Keywords: filtration, porous material, suspension, dimensional particle retention mechanism, exact solution, asymptotics.
L.I. KUZMINA1, Candidate of Sciences (Physics and Mathematics), Associate Professor (This email address is being protected from spambots. You need JavaScript enabled to view it.);
Yu.V. OSIPOV2, Candidate of Sciences (Physics and Mathematics), Professor

1 National Research University Higher School of Economics (20, Myasnitskaya Street, Moscow, 101000, Russian Federation)
2 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Zhu G., Zhang Q., Liu R., Bai J., Li W., Xiao Feng X. Experimental and numerical study on the permeation grouting diffusion mechanism considering filtration effects. Geofluids. 2021. ID 6613990. DOI: https://doi.org/10.1155/2021/6613990
2. Ибрагимов М.Н., Семкин В.В., Шапошников А.В. Цементация грунтов инъекцией растворов в строительстве. М.: АСВ, 2017. 266 с.
2. Ibragimov M.N., Semkin V.V., Shaposhnikov A.V. Tsementatsiya gruntov inektsiei rastvorov v stroitel’stve [Cementation of soils by injection of solutions in construction]. Moscow: ASV. 2017. 266 p.
3. Christodoulou D., Lokkas P., Droudakis A., Spiliotis X., Kasiteropoulou D., Alamanis N. The development of practice in permeation grouting by using fine-grained cement suspensions. Asian Journal of Engineering and Technology. 2021. Vol. 9 (6), pp. 92–101. DOI: https://doi.org/10.24203/ajet.v9i6.6846
4. Мамедов Г.Н., Сулейманова И.Г., Тагиров Б.М. Высокоэффективный легкий заполнитель из стек-лосодержащих отходов // Строительные материалы. 2020. № 12. С. 66–71. DOI: https://doi.org/10.31659/0585-430X-2020-787-12-66-71
4. Mammadov H.N., Suleimanova I.H., Tahirov B.M. High-effective lightweight aggregate obtained from glass-containing waste. Stroitel’nye Materialy [Construction Materials]. 2020. No. 12, pp. 66–71. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-787-12-66-71
5. Федорова Г.Д., Александров Г.Н., Скрябин А.П. Активация структурообразующих свойств оксида графена в цементных композитах // Строительные материалы. 2020. № 1–2. С. 17–23. DOI: https://doi.org/10.31659/0585-430X-2020-778-1-2-17-23
5. Fedorova G.D., Aleksandrov G.N., Scryabin A.P. Activation of structure-forming properties of graphene oxide in cement composites. Stroitel’nye Materialy [Construction Materials]. 2020. No. 1–2, pp. 17–23. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-778-1-2-17-23
6. Федорова Г.Д., Скрябин А.П., Александров Г.Н. Исследование влияния оксида графена на прочность цементного раствора // Строительные материалы. 2019. № 1–2. С. 16–22. DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-16-22
6. Fedorova G.D., Skriabin A.P., Aleksandrov G.N. The study of the influence of graphene oxide on the strength of cement stone using river sand. Stroitel’nye Materialy [Construction Materials]. 2019. No. 1–2, pp. 16–22. DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-16-22 (In Russian).
7. Santos A., Bedrikovetsky P., Fontoura S. Analytical micro model for size exclusion: Pore blocking and permeability reduction. Journal of Membrane Science. 2008. Vol. 308, pp. 115–127. DOI: https://doi.org/10.1016/j.memsci.2007.09.054
8. Bashtani F., Ayatollahi S., Habibi A., Masihi M. Permeability reduction of membranes during particulate suspension flow; analytical micro model of size exclusion mechanism. Journal of Membrane Science. 2013. Vol. 435, pp. 155–164. DOI: 10.1016/j.memsci.2013.01.043
9. Галагуз Ю.П., Кузьмина Л.И., Осипов Ю.В. Задача фильтрации суспензии в пористой среде с осадком // Механика жидкости и газа. Известия Российской академии наук (Изв. РАН. МЖГ). 2019. № 1. С. 86–98. DOI: 10.1134/S0568528119010067
9. Galaguz Yu.P., Kuzmina L.I., Osipov Yu.V. The problem of filtering a suspension in a porous medium with sediment. Mekhanika zhidkosti i gaza. Izvestiya Rossiiskoi akademii nauk (Izv. RAN. MZhG). 2019. Vol. 54(1), pp. 85–97. (In Russian). DOI: https://doi.org/10.1134/S0015462819010063
10. Kuzmina L.I., Osipov Yu.V. Determining the Lengmur coefficient of the filtration problem. International Journal for Computational Civil and Structural Engineering. 2020. Vol. 16(4), pp. 48–54. DOI: 10.22337/2587-9618-2020-16-4-48-54
11. Сафина Г.Л. Моделирование фильтрации двухчастичной суспензии в пористой среде // Промышленное и гражданское строительство. 2022. № 2. С. 31–35. DOI: https://doi.org/10.33622/0869-7019.2022.02.31-35
11. Safina G.L. Modelling of filtration of a two-particle suspension in a porous medium. Promyshlennoe i grazhdanskoe stroitel’stvo. 2022. No. 2, pp. 31–35. (In Russian). DOI: https://doi.org/10.33622/0869-7019.2022.02.31-35
12. Сафина Г.Л. Расчет профилей осадка двухчастичной суспензии в пористой среде // Промышленное и гражданское строительство. 2020. № 11. C. 110–114. DOI: https://doi.org/10.33622/0869-7019.2020.11.110-114
12. Safina G.L. Calculation of deposit profiles of a two-particle suspension in a porous medium. Promyshlennoe i grazhdanskoe stroitel’stvo. 2020. № 11. С. 110–114. (In Russian). DOI: https://doi.org/10.33622/0869-7019.2020.11.110-114
13. Zhang H., Malgaresi G.V.C., Bedrikovetsky P. Exact solutions for suspension colloidal transport with multiple capture mechanisms. International Journal of Non-Linear Mechanics. 2018. Vol. 105, pp. 27–42. DOI: https://doi.org/10.1016/j.ijnonlinmec.2018.07.007
14. Kuzmina L.I., Nazaikinskii V.E., Osipov Y.V. On a deep bed filtration problem with finite blocking time. Russian Journal of Mathematical Physics. 2019. Vol. 26 (1), pp. 130–134. DOI: 10.1134/S1061920819010138
15. Vyazmina E.A., Bedrikovetskii P.G., Polyanin A.D. New classes of exact solutions to nonlinear sets of equations in the theory of filtration and convective mass transfer. Theoretical Foundations of Chemical Engineering. 2007. Vol. 41(5), pp. 556–564. DOI: 10.1134/S0040579507050168
16. Осипов Ю.В., Жеглова Ю.Г. Моделирование переноса и захвата частиц в пористой среде // Промышленное и гражданское строительство. 2019. № 11. С. 31–35. DOI: 10.33622/0869-7019.2019.11.56-60
16. Osipov Yu.V., Zheglova Yu.G. Modelling of transport and retention of particles in porous media. Promyshlennoe i grazhdanskoe stroitel’stvo. 2019. No. 11, pp. 56–60. (In Russian). DOI: 10.33622/0869-7019.2019.11.56-60
17. Malgaresi G., Collins B., Alvaro P., Bedrikovetsky P. Explaining non-monotonic retention profiles during flow of size-distributed colloids. Chemical Engineering Journal. 2019. Vol. 375. ID 121984. DOI: 10.1016/j.cej.2019.121984
18. Vaz A, Maffra D, Carageorgos T, Bedrikovetsky P. Characterisation of formation damage during reactive flows in porous media. Journal of Natural Gas Science and Engineering. 2016. Vol. 34, pp. 1422–1433. DOI: 10.1016/j.jngse.2016.08.016
19. Кузьмина Л.И., Осипов Ю.В., Царева В.И. Обратная задача для линейной функции фильтрации // Промышленное и гражданское строительство. 2020. № 6. С. 64–68. DOI: 10.33622/0869-7019.2020.06.64-68
19. Kuzmina L.I., Osipov Yu.V., Tsareva V.I. Inverse problem for a linear filtration function. Promyshlennoe i grazhdanskoe stroitel’stvo. 2020. No. 6, pp. 64–68. (In Russian). DOI: 10.33622/0869-7019.2020.06.64-68
20. Alvarez A.C., Hime G., Marchesin D., Bedrikovetsky P.G. The inverse problem of determining the filtration function and permeability reduction in flow of water with particles in porous media. Transport in Porous Media. 2007. Vol. 70 (1), pp. 43–62. DOI: https://doi.org/10.1007/s11242-006-9082-3

For citation: Kuzmina L.I., Osipov Yu.V. Filtration of suspension in a porous material. Stroitel’nye Materialy [Construction Materials]. 2023. No. 9, pp. 89–93. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-817-9-89-93

Influence of Binary Modifying Additives on the Processes of Hydration of Cement Systems

Number of journal: 9-2023
Autors:

Kulikova А.А.,
Kopanitsa N.O.,
Dmitrieva M.A.,
Demyanenko О.V.,
Petrov A.G.

DOI: https://doi.org/10.31659/0585-430X-2023-817-9-83-88
УДК: 666.96

 

AbstractAbout AuthorsReferences
One of the important components in the production of building mixtures for various purposes are modifying additives. A promising direction in the development of technologies for the production of building mixtures is the creation of multifunctional additives that make it possible to simultaneously regulate several operational characteristics of a building mixture, ensuring their multi-functionality. The introduction of such additives, as a rule, in an amount of several percent by weight of cement, makes it possible to actively influence the processes of hydration and formation of the structure of hardened cement stone. The paper presents the results of research related to the study of the influence of binary modifying additives consisting of marble production waste – microcalcite (MCa) and nanosilicon dioxide (SiO2) on the properties of cement systems. The resulting additives make it possible to obtain an increase in strength in the initial stages of hardening up to 40%, and at 28 days of age up to 51% compared to the control composition. A number of calorimetric studies were also carried out, the results of which were used to estimate the effective parameters of the macrokinetics equation, in particular the apparent activation energy of modified cement compositions under isothermal conditions.
А.А. KULIKOVA1, Assistant (This email address is being protected from spambots. You need JavaScript enabled to view it.),
N.O. KOPANITSA1, Doctor of Sciences (Engineering), Professor (This email address is being protected from spambots. You need JavaScript enabled to view it.);
M.A. DMITRIEVA2, Doctor of Sciences (Physics and Mathematics), Professor (This email address is being protected from spambots. You need JavaScript enabled to view it.);
О.V. DEMYANENKO1, Candidate of Sciences (Engineering), associate professor (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.G. PETROV1, Candidate of Sciences (Engineering), associate professor (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Tomsk State University of Architecture and Building (2, Solyanaya Square, Tomsk, 634003, Russian Federation)
2 Immanuel Kant Baltic Federal University (14, A. Nevsky Street, Kaliningrad, 236041, Russian Federation)

1. Pustovgar A.P. Modifying additives for dry building mixtures. Izvestiya vysshikh uchebnykh zavedeniy. Stroitel’stvo. 2002. No. 4 (520). P. 8. (In Russian).
2. Kudyakov A.I., Belykh S.A., Daminova A.M. Dry cement mortar mixes with micro-granulated air-entraining additives. Stroitel’nye Materialy [Construction Materials]. 2010. No. 1, рр. 52–53. (In Russian).
3. Kudyakov A.I., Simakova A.S., Kondratenko V.A., Steshenko A.B. Influence of organic additives on the properties of cement paste and stone. Vestnik of the Tomsk State University of Architecture and Civil Engineering. 2018. Vol. 20. No. 6, pp. 138–147. (In Russian).
4. Botka E.N. Dry building mixes market in Russia: half-year results. Stroitel’nye Materialy [Construc-tion Materials]. 2022. No. 9, pp. 15–17. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-806-9-15-17
5. Kjellsen K.O., Lagerblad B. Influence of natural minerals in the filler fraction on hydratation and properties of mortars. Stockholm: Swedish Cement and Concrete Research Institute. 1995. 41 p.
6. Oshio A., Sone T., Matsui A. Properties of concrete containing mineral powders. Cement Association of Japan Review. 1987, pp. 114117.
7. Wakizaka Y., Morya S., Kawano H. Relationship between Mineral Assemblages of Rocks and Their Alkali Reactivities. Cement Association of Japan Review. 1987, pp. 292295.
8. Lkhasaranov S.A. Modified concrete on composite binders using nanosilica. Cand. Diss. (Engineering). Ulan-Ude, 2013. 140 p. (In Russian).
9. Urkhanova L.A., Lkhasaranov S.A., Bardakhanov S.P. Modified concrete with nanodispersed additives. Stroitel’nye Materialy [Construction Materials]. 2014. No. 8. pp. 52–55. (In Russian).
10. Urkhanova L.A., Dorzhieva E.V., Gonchikova E.V., Yakovlev A.P. Synthesis of a colloid additive based on aluminosilicate rocks for cement stone modification. Stroitel’nye Materialy [Construction Materials]. 2022. No. 1–2, pp. 50–56. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-799-1-2-50-56
11. Kulikova A.A., Demyanenko O.V. Modifying additives based on nanomodifiers in the production of building materials. Prospects for the development of fundamental sciences: a collection of proceedings of the XVIII International Conference of Students, Postgraduates and Young Scientists. 2021. Vol. 6, pp. 53–55 (In Russian).
12. Kulikova A.A., Demyanenko O.V., Kopanitsa N.O. Influence of nanodioxide silicon on the properties of cement stone. Proceedings of the III International Scientific and Practical Conference “Quality. Technologies. Innovations”. Novosibirsk. 2020, pp. 23–28 (In Russian).
13. Kopanitsa N.O., Demyanenko O.V., Kulikova A.A. Effective polyfunctional additive for composite materials based on cement. In book: Digital Technologies in Construction Engineering. 2022, pp. 125–131. https://doi.org/10.1007/978-3-030-81289-8_17
14. Kulikova A.A., Dem’yanenko O.V., Sorokina E.A., Kopanitsa N.O. Complex modifying additives for building mixtures on a cement basis. Vestnik of the Tomsk State University of Architecture and Civil Engineering. 2019. Vol. 21. No. 6, pp. 140–148. (In Russian).DOI: 10.31675/1607-1859-2019-21-6-140-148
15. Dem’yanenko O.V., Kulikova A.A., Kopanitsa N.O. Evaluation of the influence of a complex polyfunctional additive on the performance characteristics of cement stone and concrete. Vestnik of the Tomsk State University of Architecture and Civil Engineering. 2020. Vol. 22. No. 5, pp. 139–152. (In Russian). DOI: 10.31675/1607-1859-2020-22-5-139-152
16. Dem’yanenko O.V., Kulikova A.A., Kopanitsa N.O., Petrov A.G. Influence of complex modifying additives on the operational properties of heavy concrete. Izvestiya vuzov. Stroitel’stvo. 2021. No. 5, pp. 23–32. (In Russian). DOI: 10.32683/0536-1052-2021-749-5-23-32
17. Thomas J.J., Biernacki J.J., Bullard J.W., Bishnoi S., Dolado J.S., Scherer G.W., Luttgeg A. Modeling and simulation of cement hydration kinetics and microstructure development. Cement and Concrete Research. 2011. Vol. 41. Iss. 12, pp. 1257–1278.
18. Meguid S., Weng G. Micromechanics and nanomechanics of composite solids. Switzerland: Springer. 2018. eBook
19. Frank-Kamenetskii D.A. Diffuziya i teploperedacha v khimicheskoi kinetike [Diffusion and heat transfer in chemical kinetics]. Moscow: Nauka. 1987. 492 p.
20. Poole J.L., Riding K.A., Juenger M.C.G., Folliard K.J., Schindler A.K. Effects of supplementary cementitious materials on apparent activation energy. Journal of ASTM International. 2010. No. 7 (9), pp. 1–16.
21. Kada-Benameur, H., Wirquin, E., Duthoit, B. Determination of apparent activation energy of concrete by isothermal calorimetry. Cement and Concrete Research. 2000. Vol. 30 (2), pp. 301–305.
22. Leitsin V.N., Dmitrieva M.A. Modelirovaniye svyazannykh protsessov v reagiruyushchikh sredakh: monografiya [Modeling of related processes in reacting environments: monograph]. Kaliningrad: I. Kant. BFU. 2012. 240 p. (In Russian).

For citation: Kulikova А.А., Kopanitsa N.O., Dmitrieva M.A., Demyanenko О.V., Petrov A.G. Influence of binary modifying additives on the processes of hydration of cement systems. Stroitel’nye Materialy [Construction Materials]. 2023. No. 9, pp. 83–88. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-817-9-83-88

Non-Combustibile Polystyrene Concrete — a New Generation of Heat-Insulating and Structural Materials

Number of journal: 9-2023
Autors:

Rakhmanov V.A.,
Melikhov V.I.,
Yunkevich A.V.,
Kekina S.N.

DOI: https://doi.org/10.31659/0585-430X-2023-817-9-77-82
УДК: 666.973.2

 

AbstractAbout AuthorsReferences
The results of research by the VNIIzhelezobeton Institute on the development and production of non-combustible polystyrene concrete and its effective use in energy-saving wall structures are presented. The results of conducted tests of the non-combustible samples with density D300, strength class not lower than B1, frost resistance not lower than F75 and wall fragments in the form of block masonry from such material for wind loads, as well as for fire hazard and fire resistance, open up the possibility of using non-combustible polystyrene concrete in external wall enclosing structures without their obligatory non-combustible coating for residential and public buildings of up to 75 m high (up to 25 floors) throughout almost the entire territory of the Russian Federation.
V.A. RAKHMANOV, Сorresponding Member of RAACS, Professor (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.I. MELIKHOV, Candidate of Sciences (Engineering), Deputy General Director for Science (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.V. YUNKEVICH, Engineer, General Director (This email address is being protected from spambots. You need JavaScript enabled to view it.),
S.N. KEKINA, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

LLC «Institute VNIIzhelezobeton» (7, Plekhanova Street, Moscow, 111114, Russian Federation)

1. Rakhmanov V.A. Polistirolbeton sistemy «Yunikon» – energoeffektivnyy material XXI veka. [Polystyrene concrete of the Unicon system is an energy-efficient
material of the 21st century. Monograph]. Moscow: Zolotoye secheniye. 2017. 512 p.
2. Bazhenov Yu.M., Korol E.A., Erofeev V.T., Mitina E.A. Ograzhdayushchiye konstruktsii s ispol’zovaniyem betonov nizkoy teploprovodnosti (osnovy teorii, metody rascheta i tekhnologicheskoye proyektirovaniye) [Enclosing structures using concrete with low thermal conductivity (fundamentals of theory, calculation methods and technological design)]. Moscow: ASV. 2008, pp. 141–153. (In Russian).
3. Patent for invention RU 2230717 C1 Konstruktsionno-teploizolyatsionnyi ekologicheski chistyi polistirolbeton, sposob izgotovleniya iz nego izdelii i sposob vozvedeniya iz nikh teploeffektivnykh ograzhdayushchikh konstruktsii zdanii po sisteme «YuNIKON» [Structural and thermal insulation environmentally friendly polystyrene concrete, a method for manufacturing products from it and a method for constructing heat-efficient building envelopes from them using the UNICON system] / Rakhmanov V.A., Dovzhik V.G., Melikhov V.I., Kozlovsky A.I., Amkhanitsky G.Ya., Roslyak Yu.V., Voronin A.I., Kazarin S.K., Karpenko V.V. 20/06/2004. Application No. 2002129773/03 10.11.2002. (In Russian).
4. Rakhmanov V.A. Thermally efficient building envelopes using polystyrene concrete developed by the VNIIzhelezobeton Institute. Promyshlennoye i grazhdanskoye stroitel’stvo. 2017. No. 2, pp. 9–18. (In Russian).
5. Rakhmanov V.A., Melikhov V.A., Kapaev G.I., Kozlovsky A.I. Innovative special technology for producing new generation polystyrene concrete. Promyshlennoye i grazhdanskoye stroitel’stvo. 2017. No. 2, pp. 29–31. (In Russian).
6. Rakhmanov V.A. Non-combustible polystyrene concrete and its construction and technical properties. Fundamental, exploratory and applied research of the RAASN on scientific support for the development of architecture, urban planning and the construction industry of the Russian Federation in 2021. Collection of scientific works of the RAACS. Moscow. 2022, pp. 368–378. (In Russian).
7. Patent No. 2753832 RU Sposob polucheniya negoryuchego polistirolbetona [Method for producing non-flammable polystyrene concrete] / Rakhmanov V.A., Melikhov V.I., Kapaev G.I. Applicant and patent holder VNIIzhelezobeton. Priority 08/10/2020 Published 08/23/2021 Bulletin. No. 24.
8. Rakhmanov V.A., Melikhov V.I., Safonov A.A. Tests on wind loads of wall masonry made of non-combustible polystyrene concrete blocks. Beton i zhelezobeton [Concrete and reinforced concrete]. 2023. No. 3 (617), pp. 15–23. DOI: https://doi.org/10.37538/0005-9889-2023-3(617)-15-23

For citation: Rakhmanov V.A., Melikhov V.I., Yunkevich A.V., Kekina S.N. Non-combustible polystyrene concrete – a new generation of heat-insulating and structural materials. Stroitel’nye Materialy [Construction Materials]. 2023. No. 9, pp. 77–82. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-817-9-77-82

Prediction of Granulometric Composition of Granulated Asphalt Concrete Mixture

Number of journal: 9-2023
Autors:

Gerasimov D.V.

DOI: https://doi.org/10.31659/0585-430X-2023-817-9-65-71
УДК: 625.861

 

AbstractAbout AuthorsReferences
The subject of this research is asphalt-concrete mixture for road construction made with phosphogypsum and secondary polyethylene terephthalate by granulation pelletizing method. The aim of the research is to predict the granulometric composition of the material in question. The urgency of the problem is caused by the necessity of further definition of technological parameters of production, compaction regimes and structure of building conglomerate as a part of road pavement on macro-, meso- and microlevels. By the methods of sieve and numerical analysis of the kernels of granules (crushed stone) and rounded granules the granulometric composition by mass and the number of fractions particles was established. The integral function of particle size distribution has been simulated; its correspondence with the experimental data was carried out by statistical methods using Pearson’s criterion. It was found that the thickness of the built-up shell is proportional to the initial size of the crushed stone cores. The integral function of particle size distribution was determined by regression methods based on the values of fractions of particles of each fraction. With a reliability of γ=0,90, it was found that the predicted theoretical distribution did not contradict the experimental data. The maximum discrepancy in the fractions mass does not exceed 15%.
D.V. GERASIMOV, Master, Postgraduate student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Yaroslavl State Technical University (88, Moskovsky Avenue, Yaroslavl, 150999, Russian Federation)

1. Novichenkova T.B., Petropavlovskaya V.В., Zavad’ko M.Yu., Buryanov A.F., Pustovgar A.P., Petropavlovskii K.S. The use of dusty wastes of basalt production as a filler for gypsum compositions. Stroitel’nye Materialy [Construction Materials]. 2018. No. 8, pp. 9–13. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2018-762-8-9-13
2. Oreshkin D.V., Shadrunova I.V., Chekushina T.V., Proshlyakov A.N. Disposal of waste marble and drill cuttings in the production of building materials. Stroitel’nye Materialy [Construction Materials]. 2019. No. 4, pp. 65–72. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-769-4-65-72
3. Rudensky A.V. Rational application of building materials and resource saving – actual way of improving works efficiency when constructing and repairing automobile roads. Stroitel’nye Materialy [Construction Materials]. 2017. No. 3, pp. 76–80. (In Russian).
4. Kotlyarskiy E.V. Scientific and methodical bases of an estimation of structural and mechanical properties of composite materials on the basis of organic binders. Stroitel’nye Materialy [Construction Materials]. 2011. No. 10, pp. 36-41. (In Russian).
5. Rybiev I.A. Stroitel’nye materialy na osnove vyazhushchih veshchestv [Construction materials on the basis of binders]. Moscow: Vysshaya shkola. 1978. 309 p.
6. Patent RF 2762177. Sposob polucheniya granulirovannoj asfal’tobetonnoj smesi na osnove dispersnyh promyshlennyh i bytovyh othodov [Method of obtaining granulated asphalt-concrete mixture on the basis of dispersed industrial and municipal wastes]. Gerasimov D.V., Gotovtsev V.M., Ignatiev A.A. Application. 22.01.2021. Published 16.12. 2021. Bulletin no. 35. (In Russian).
7. Terent’ev A.M., Stepanyants N.I. Analytical description of pellet growth law in drum granulator-dryers. Teoreticheskie osnovy himicheskoj tekhnologii. 1988. Vol. 22. No. 2, p. 270. (In Russian).
8. Popov AM, Plotnikov KB, Ustinova AV, Kruk RV, Plotnikova I.O. The study of the kinetics of drying polydisperse products. Vestnik VGUIT. 2021. No. 3 (89), pp. 30–37. (In Russian). DOI: http://doi.org/10.20914/2310-1202-2021-3-30-37.
9. Lichak D., Bytev D., Zaitsev A., Murashov A. Production of two-layer granules in machines with screw grooves. XVI Ogolnopolska konferencia inzynierii chemiczeji procesowtj. Krakow – Muslyna. 1998. Vol. 2, pp. 263–272.
10. Taran A.L., Nosov G.A. Evaluation of conditions ensuring powders granulation by pelletizing on retur particles. Himicheskaya promyshlennost’. 2000. No. 3, pp. 45–48. (In Russian).
11. Lobovikov D.V., Matygullina E.V. Poluchenie kompozicionnyh granulirovannyh materialov v planetarnom granulyatore [Obtaining composite granulated materials in a planetary granulator]. Perm: Izdatel’stvo Permskogo gosudarstvennogo tekhnicheskogo universiteta. 2008. 153 p.
12. Odintsov A.V., Lipin A.G., Stepanov V.V. Mineral fertilizers encapsulation in the disk granulator. Sovremennye naukoemkie tekhnologii. Regional’noe prilozhenie. 2009. No. 4, pp. 64–68. (In Russian).
13. Lipin A.G., Odintsov A.V. Prediction of the granulometric composition in obtaining two-layer pellets. Izvestiya vuzov. Himiya i himicheskaya tekhnologiya. 2010. Vol. 53. No. 5, pp. 120–122. (In Russian).
14. Sakharov P.V. Methods of designing asphalt concrete mixtures. Transport i dorogi goroda. 1935. No. 12, pp. 22–26. (In Russian).
15. Shiryaev A.O., Vysotskaya M.A. Mineral powder in a modern design system of asphalt concrete. Vestnik of Belgorod State Technological University named after V.G. Shukhov. 2022. No. 2, pp. 8–19. (In Russian). DOI: https://doi.org/10.34031/2071-7318-2021-7-2-8-19
16. Kocserha R. Some research results of conventional mineral fillers used in road construction. Materials Science and Engineering. 2020. Vol. 45. No. 1, pp. 96–105. DOI: 10.32974.mse.2020.009.
17. Gotovtsev V.M., Shatunov A.G., Rumyantsev A.N., Sukhov V.D. Principles of formation of the optimal structure of asphalt concrete. Fundamental’nye issledovaniya. 2012. No. 11/1, pp. 124–128. (In Russian).
18. Kiryukhin G.N. To a question about the theory of asphalt concrete structure. Dorogi i mosty: sbornik. 2019. No. 41/1, pp. 247–261. (In Russian).
19. Rimša V., Kačianauskas R., Sivilevičius H. Numerical analysis of as-phalt mixture and comparison with physical Marshall test. Journal of Civil Engineering and Management. 2014. No. 20 (4), pp. 570–580. DOI: https://doi.org/10.3846/13923730.2014. 920413
20. Unsiwilai S., Sangpetngam B. Influences of particle size and content on deformation resistance of crumb rubber modified asphalt using dry process mix. Engineering Journal. 2018. Vol. 22. No. 3. DOI: 10.4186/ej.2018.22.3.181
21. Greenwood P.E., Nikulin M.S. A guide to chi-squared testing. New York: Wiley, 1996. 280 p.

For citation: Gerasimov D.V. Prediction of granulometric composition of granulated asphalt concrete mixture. Stroitel’nye Materialy [Construction Materials]. 2023. No. 9, pp. 65–71. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-817-9-65-71

Selection of Building Materials for a Thermal Insulation Layer of a Road

Number of journal: 9-2023
Autors:

Galkin A.F.,
Plotnikov N.A.

DOI: https://doi.org/10.31659/0585-430X-2023-817-9-57-64
УДК: 625.861

 

AbstractAbout AuthorsReferences
The aim of the research was to obtain the functional relationship for determining the thermal conductivity coefficient of materials used in application of a thermal insulation layer of the roads to prevent foundation soil thawing beyond the permitted depth. To achieve this aim, an algorithm of dimensionless solution was used for finding the Biot criterion and the Fourier and Stefan criteria functions. Simple engineering formulas allowing to quickly select the additional thermal insulation layer of the road structure with the required thermal resistance using the known Biot number were obtained. Variant calculations were done and their results are presented as 2D and 3D charts. It was shown that for the typical geocryological and climatic conditions of the permafrost area, the thermal conductivity coefficient of thermal insulation materials and thermal resistance of the insulation layer vary across a wide range and are significantly dependent on the permitted thawing depth of the road foundation. A convenient regularity for engineering assessments is observed: the thermal resistance of additional thermal insulation layer changes by a factor equivalent to the factor of change in the dimensionless thawing depth. Accordingly, the increase in permitted thawing depth can be considered proportional to the increase in thermal conductivity coefficient of the material when selecting the construction materials for the thermal insulation layer. For example, if the permitted thawing depth at a particular road section increases twice, the thermal insulation layer of an equivalent thickness can use a material with two times higher thermal conductivity coefficient. Considering that the physical and mechanical properties of the soil are not the same along the road length, the thermal resistance of the thermal insulation layer should be determined for individual road sections rather than for the entire road. Correspondingly, the materials used in construction at different sections of the road may also be different depending on the construction solutions of the road structure adopted by the project.
A.F. GALKIN, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
N.A. PLOTNIKOV, Engineer, Graduate student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Melnikov Permafrost Institute Siberian Branch Russian Academy of Sciences (36, Merzlotnaya Street, Yakutsk, 677010, Russian Federation)

1. Zheleznyak M.N., Shesternev D.M., Litovko A.V. Problems of stability of highways in the cryolithozone. Proceedings of the Fourteenth All-Russian Scientific and Practical Conference and Exhibition of Research Organizations “Prospects for the Development of Engineering Research in Construction in the Russian Federation”. Moscow. 2018, pp. 223–227. (In Russian).
2. Handbook of construction on permafrost soils [Handbook of construction on permafrost soils / Edited by Yu.Ya. Veli, V.V. Dokuchaeva, N.F. Fedorova]. Leningrad: Stroyizdat. 1977. 552 p. (In Russian).
3. Shats M.M. The current state of the city infrastructure of Yakutsk and ways to improve its reliability. Georisk. 2011. No. 2, pp. 40–46. (In Russian).
4. Kondratiev V.G., Kondratiev S.V. How to protect the federal highway “Amur” Chita – Khabarovsk from dangerous geocryological engineering processes and phenomena. Inzhenernaya geologiya. 2013. No. 5, pp. 40-47. (In Russian).
5. Grechishchev S.E., Chistotinov L.V., Shur Yu. L. Kriogennye fiziko-geologicheskie protsessy i ikh prognoz [Cryogenic physico-geological processes and their forecast]. Moscow: Nedra. 1980. 384 p.
6. Pankov V.Yu. The problem of mechanical loads on pavement of roads in the cryolithic zone. 2022. E3S Web Conf. Vol. 363. XV International Scientific Conference on Precision Agriculture and Agricultural Machinery Industry “State and Prospects for the Development of Agribusiness – INTERAGROMASH 2022”. https://doi.org/10.1051/e3sconf/202236301039
7. Isakov A., Razuvaev D., Gudkova I., Chakhlov M. Modeling the operation of road pavement during the thawing of soil in the subgrade of highways. 2018. MATEC Web Conf. Vol. 239. Siberian Transport Forum – TransSiberia 2018. https://doi.org/10.1051/matecconf/201823905001
8. Guofang Xu, Jilin Qi, Wei Wu. Temperature effect on the compressive strength of frozen soils: a review. Recent advances in geotechnical research. Springer Series in Geomechanics and Geoengineering. 2019, рр. 227–236. https://doi.org/10.1007/978-3-319-89671-7_19
9. Shapran V.V., Fazilova Z.T. Factors influencing the development of longitudinal profile deformations of the roadbed in the cryolithozon. Mir transporta. 2020. Vol. 18. No. 2, pp. 82–101. (In Russian).
10. Stanilovskaya Yu.V., Merzlyakov V.P., Sergeev D.O., Khimenkov A.N. Assessment of the danger of polygonal-vein ice for linear structures. Geoekologiya. Inzhenernaya geologiya. Gidrogeologiya. Geokriologiya. 2014. No. 4, pp. 367–378. (In Russian).
11. Vyalov S.S. Reologicheskie osnovy mekhaniki merzlykh gruntov [Rheological foundations of mechanics of frozen soils]. Moscow: Vysshaya shkola. 1978. 447 p.
12. Tsytovich N.A. Mekhanika merzlykh gruntov [Mechanics of frozen soils]. Moscow: Vysshaya shkola. 1973. 448 p.
13. Hu X.D., Wang J.T., Yu X.F. Laboratory test of uniaxial compressive strength of shanghai frozen soils under freeze-thaw cycle. Advanced Materials Research. 2013. Vol. 716, pp. 688–692. https://doi.org/10.4028/www.scientific.net/AMR.716.688
14. Crepeau J., Siahpush A.S. Solid–liquid phase change driven by internal heat generation. Comptes Rendus Mecanique. 2012. Vol. 340. Iss. 7, pp. 471–476.
15. Votyakov I.N. Fiziko-mekhanicheskie svoistva merzlykh i ottaivayushchikh gruntov Yakutii [Physico-mechanical properties of frozen and thawing soils of Yakutia]. Novosibirsk: Nauka. 1975. 176 p.
16. Zhang X., Feng S.G., Chen P.C. Thawing settlement risk of running pipeline in permafrost regions. Oil Gas Storage Transporation. 2013. No. 6, pp. 365–369.
17. Galkin A.F., Zheleznyak M.N., Zhirkov A.F. Increasing the thermal stability of the embankment in permafrost regions. Stroitel’nye Materialy [Construction Materials]. 2021. No. 7, pp. 26–31. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-793-7-26-31
18. Bessonov I.V., Zhukov A.D., Bobrova E.Yu., Govryakov I.S., Gorbunova E.A. Analysis of design solutions depending on the type of insulating materials in road surfaces in permafrost soils. Transportnoe stroitel’stvo. 2022. No. 1, pp. 14–17. (In Russian). DOI: 10.18635/2071-2219-2020-4-24-28
19. Bek-Bulatov A.I. Application of Styrodur®S in road construction Stroitel’nye Materialy [Construction Materials]. 2000. No. 12, pp. 22–23. (In Russian).
20. Yartsev V.P., Ivanov D.V., Andrianov K.A. Forecasting the durability of extruded polystyrene foam in road structures. Nauchnyj vestnik VGASU. Stroitel’stvo i arhitektura. 2010. No. 3, pp. 99–104. (In Russian).
21. Galkin A.F., Pankov V.Yu. Thermal protection of roads in the permafrost zone. Journal of Applied Engineering Science. 2022. Vol. 20. No. 2, pp. 395–399.
22. Ashpiz E.S., Savin A.N. The construction of a new and stabilization of the exploited roadbed in the conditions of the spread of permafrost soils of the northern latitudinal course. In the collection: Modern studies of the transformation of the cryosphere and issues of geotechnical safety of structures in the Arctic. Salekhard, 2021. pp. 27–29. (In Russian).
23. Zhang A.A. Calculation of the position of the upper boundary of permafrost soils in the body and base of the roadbed in the presence of thermal insulation on the slopes. The cryosphere of the Earth. 2019. Vol. 23. No. 4, pp. 54–59. (In Russian).
24. Pankov V.Yu., Burnasheva S.G. Analysis of ways to protect highways from negative cryogenic processes. In the collection “The best student article 2020”. ICNS “Science and Education”. 2020, pp. 52–55. (In Russian).
25. Klochkov Y.V., Nepomnyashchikh E.V., Lineytsev V.Yu. Application of foam glass to regulate the thermal regime of soils in difficult climatic conditions. Vestnik of the Transbaikal State University. 2015. No. 6 (121), pp. 9–15. (In Russian).
26. Galkin A.F. Calculation of parameters of thermal protective coatings of underground structures of the criolithic zone. Izvestiya vuzov. Gornyy zhurnal. 2008. No. 6, pp. 81–89. (In Russian).
27. Galkin A.F. Efficiency evaluation of thermal insulation use in criolithic zone mine openings. Metallurgical and Mining Industry. 2015. No. 10, pp. 234–237.
28. Galkin A.F. Controlling the thermal regime of the road surface in the cryolithic zone. Transportation Research Procedia. 2022. Vol. 63, pp. 1224–1228. DOI://doi.org/10.1016/j.trpro.2022.06.128
29. Galkin A.F. Determination of the permissible depth of thawing of the roadway in the cryolithozone. Energobezopasnost’ i energosberezhenie. 2021. No. 5, pp. 18–22. (In Russian). DOI: 10.18635/2071-2219-2021-5-18-22
30. Galkin A., Pankov V. Precision of determination of thawing depth of the frozen rocks. Journal of Physics: Conference Series. 2021. Vol. 2131. 052079. DOI: 10.1088/1742-6596/2131/5/052079
31. Galkin A. F., Kurta I. V. Influence of temperature on the depth of thawing of frozen rocks. Gornyi informatsionno-analiticheskii byulleten’. 2020. No. 2, pp. 82–91. (In Russian). DOI: 10.25018/0236-1493-2020-2-0-82-91
32. Recommendations for the design and construction of dams from soil materials for industrial and drinking water supply in the Far North and permafrost. Moscow: Stroyizdat. 1976. 112 p.
33. Galkin A.F. Calculation of the Fourier criterion when predicting the thermal regime of thawed and frozen dispersed rocks. Arktika i Antarktika. 2022. No. 3, pp. 1–10. (In Russian). DOI: 10.7256/2453-8922.2022.3.38555
34. Galkin A.F., Pankov V.Yu. Heat capacity of dispersed rocks. Journal of Physics: Conference Series. 2022. Vol. 2131 (5). 052076. DOI: 10.1088/1742-6596/2131/5/052076
35. Galkin A.F., Pankov V.Yu., Bolshakov V.A. Determination of the Stefan number for forecasting the thermal regime of highways in the cryolithic zone. Estestvennyye i tekhnicheskiye nauki. 2021. No. 4, pp. 282–285. (In Russian).
36. Isachenko V.P., Osipova V.A., Sukomel A.S. Teploperedacha [Heat transfer]. Moscow: Energoizdat. 1981. 416 p.
37. Perlstein G.Z. Vodno-teplovaya melioratsiya merzlykh porod na Severo-Vostoke SSSR [Water-thermal reclamation of frozen rocks in the North-East of the USSR] Novosibirsk: Nauka. 1979. 304 p.
38. Pankov V.Yu., Burnasheva S.G. The influence of wind speed on the surface temperature of the roadway. Tendentsii razvitiya nauki i obrazovaniya. 2020. No. 8, pp. 116–121. (In Russian). DOI: 10.18411/lj-08-2020-63
39. Galkin A.F., Zheleznyak M.N., Zhirkov A.F. Criterion of selection of building materials for thermal insulation layers of road clothes and bases. Uspekhi sovremennogo yestestvoznaniya. 2022. No. 8, pp. 108–113. (In Russian). https ://doi.org/10.17513/us e.37875

For citation: Galkin A.F., Plotnikov N.A. Selection of building materials for the thermal insulation layer of road clothing. Stroitel’nye Materialy [Construction Materials]. 2023. No. 9, pp. 57–64. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-817-9-57-64

https://www.traditionrolex.com/10