Selection of Building Materials for a Thermal Insulation Layer of a Road

Number of journal: 9-2023
Autors:

Galkin A.F.,
Plotnikov N.A.

DOI: https://doi.org/10.31659/0585-430X-2023-817-9-57-64
УДК: 625.861

 

AbstractAbout AuthorsReferences
The aim of the research was to obtain the functional relationship for determining the thermal conductivity coefficient of materials used in application of a thermal insulation layer of the roads to prevent foundation soil thawing beyond the permitted depth. To achieve this aim, an algorithm of dimensionless solution was used for finding the Biot criterion and the Fourier and Stefan criteria functions. Simple engineering formulas allowing to quickly select the additional thermal insulation layer of the road structure with the required thermal resistance using the known Biot number were obtained. Variant calculations were done and their results are presented as 2D and 3D charts. It was shown that for the typical geocryological and climatic conditions of the permafrost area, the thermal conductivity coefficient of thermal insulation materials and thermal resistance of the insulation layer vary across a wide range and are significantly dependent on the permitted thawing depth of the road foundation. A convenient regularity for engineering assessments is observed: the thermal resistance of additional thermal insulation layer changes by a factor equivalent to the factor of change in the dimensionless thawing depth. Accordingly, the increase in permitted thawing depth can be considered proportional to the increase in thermal conductivity coefficient of the material when selecting the construction materials for the thermal insulation layer. For example, if the permitted thawing depth at a particular road section increases twice, the thermal insulation layer of an equivalent thickness can use a material with two times higher thermal conductivity coefficient. Considering that the physical and mechanical properties of the soil are not the same along the road length, the thermal resistance of the thermal insulation layer should be determined for individual road sections rather than for the entire road. Correspondingly, the materials used in construction at different sections of the road may also be different depending on the construction solutions of the road structure adopted by the project.
A.F. GALKIN, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
N.A. PLOTNIKOV, Engineer, Graduate student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Melnikov Permafrost Institute Siberian Branch Russian Academy of Sciences (36, Merzlotnaya Street, Yakutsk, 677010, Russian Federation)

1. Zheleznyak M.N., Shesternev D.M., Litovko A.V. Problems of stability of highways in the cryolithozone. Proceedings of the Fourteenth All-Russian Scientific and Practical Conference and Exhibition of Research Organizations “Prospects for the Development of Engineering Research in Construction in the Russian Federation”. Moscow. 2018, pp. 223–227. (In Russian).
2. Handbook of construction on permafrost soils [Handbook of construction on permafrost soils / Edited by Yu.Ya. Veli, V.V. Dokuchaeva, N.F. Fedorova]. Leningrad: Stroyizdat. 1977. 552 p. (In Russian).
3. Shats M.M. The current state of the city infrastructure of Yakutsk and ways to improve its reliability. Georisk. 2011. No. 2, pp. 40–46. (In Russian).
4. Kondratiev V.G., Kondratiev S.V. How to protect the federal highway “Amur” Chita – Khabarovsk from dangerous geocryological engineering processes and phenomena. Inzhenernaya geologiya. 2013. No. 5, pp. 40-47. (In Russian).
5. Grechishchev S.E., Chistotinov L.V., Shur Yu. L. Kriogennye fiziko-geologicheskie protsessy i ikh prognoz [Cryogenic physico-geological processes and their forecast]. Moscow: Nedra. 1980. 384 p.
6. Pankov V.Yu. The problem of mechanical loads on pavement of roads in the cryolithic zone. 2022. E3S Web Conf. Vol. 363. XV International Scientific Conference on Precision Agriculture and Agricultural Machinery Industry “State and Prospects for the Development of Agribusiness – INTERAGROMASH 2022”. https://doi.org/10.1051/e3sconf/202236301039
7. Isakov A., Razuvaev D., Gudkova I., Chakhlov M. Modeling the operation of road pavement during the thawing of soil in the subgrade of highways. 2018. MATEC Web Conf. Vol. 239. Siberian Transport Forum – TransSiberia 2018. https://doi.org/10.1051/matecconf/201823905001
8. Guofang Xu, Jilin Qi, Wei Wu. Temperature effect on the compressive strength of frozen soils: a review. Recent advances in geotechnical research. Springer Series in Geomechanics and Geoengineering. 2019, рр. 227–236. https://doi.org/10.1007/978-3-319-89671-7_19
9. Shapran V.V., Fazilova Z.T. Factors influencing the development of longitudinal profile deformations of the roadbed in the cryolithozon. Mir transporta. 2020. Vol. 18. No. 2, pp. 82–101. (In Russian).
10. Stanilovskaya Yu.V., Merzlyakov V.P., Sergeev D.O., Khimenkov A.N. Assessment of the danger of polygonal-vein ice for linear structures. Geoekologiya. Inzhenernaya geologiya. Gidrogeologiya. Geokriologiya. 2014. No. 4, pp. 367–378. (In Russian).
11. Vyalov S.S. Reologicheskie osnovy mekhaniki merzlykh gruntov [Rheological foundations of mechanics of frozen soils]. Moscow: Vysshaya shkola. 1978. 447 p.
12. Tsytovich N.A. Mekhanika merzlykh gruntov [Mechanics of frozen soils]. Moscow: Vysshaya shkola. 1973. 448 p.
13. Hu X.D., Wang J.T., Yu X.F. Laboratory test of uniaxial compressive strength of shanghai frozen soils under freeze-thaw cycle. Advanced Materials Research. 2013. Vol. 716, pp. 688–692. https://doi.org/10.4028/www.scientific.net/AMR.716.688
14. Crepeau J., Siahpush A.S. Solid–liquid phase change driven by internal heat generation. Comptes Rendus Mecanique. 2012. Vol. 340. Iss. 7, pp. 471–476.
15. Votyakov I.N. Fiziko-mekhanicheskie svoistva merzlykh i ottaivayushchikh gruntov Yakutii [Physico-mechanical properties of frozen and thawing soils of Yakutia]. Novosibirsk: Nauka. 1975. 176 p.
16. Zhang X., Feng S.G., Chen P.C. Thawing settlement risk of running pipeline in permafrost regions. Oil Gas Storage Transporation. 2013. No. 6, pp. 365–369.
17. Galkin A.F., Zheleznyak M.N., Zhirkov A.F. Increasing the thermal stability of the embankment in permafrost regions. Stroitel’nye Materialy [Construction Materials]. 2021. No. 7, pp. 26–31. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-793-7-26-31
18. Bessonov I.V., Zhukov A.D., Bobrova E.Yu., Govryakov I.S., Gorbunova E.A. Analysis of design solutions depending on the type of insulating materials in road surfaces in permafrost soils. Transportnoe stroitel’stvo. 2022. No. 1, pp. 14–17. (In Russian). DOI: 10.18635/2071-2219-2020-4-24-28
19. Bek-Bulatov A.I. Application of Styrodur®S in road construction Stroitel’nye Materialy [Construction Materials]. 2000. No. 12, pp. 22–23. (In Russian).
20. Yartsev V.P., Ivanov D.V., Andrianov K.A. Forecasting the durability of extruded polystyrene foam in road structures. Nauchnyj vestnik VGASU. Stroitel’stvo i arhitektura. 2010. No. 3, pp. 99–104. (In Russian).
21. Galkin A.F., Pankov V.Yu. Thermal protection of roads in the permafrost zone. Journal of Applied Engineering Science. 2022. Vol. 20. No. 2, pp. 395–399.
22. Ashpiz E.S., Savin A.N. The construction of a new and stabilization of the exploited roadbed in the conditions of the spread of permafrost soils of the northern latitudinal course. In the collection: Modern studies of the transformation of the cryosphere and issues of geotechnical safety of structures in the Arctic. Salekhard, 2021. pp. 27–29. (In Russian).
23. Zhang A.A. Calculation of the position of the upper boundary of permafrost soils in the body and base of the roadbed in the presence of thermal insulation on the slopes. The cryosphere of the Earth. 2019. Vol. 23. No. 4, pp. 54–59. (In Russian).
24. Pankov V.Yu., Burnasheva S.G. Analysis of ways to protect highways from negative cryogenic processes. In the collection “The best student article 2020”. ICNS “Science and Education”. 2020, pp. 52–55. (In Russian).
25. Klochkov Y.V., Nepomnyashchikh E.V., Lineytsev V.Yu. Application of foam glass to regulate the thermal regime of soils in difficult climatic conditions. Vestnik of the Transbaikal State University. 2015. No. 6 (121), pp. 9–15. (In Russian).
26. Galkin A.F. Calculation of parameters of thermal protective coatings of underground structures of the criolithic zone. Izvestiya vuzov. Gornyy zhurnal. 2008. No. 6, pp. 81–89. (In Russian).
27. Galkin A.F. Efficiency evaluation of thermal insulation use in criolithic zone mine openings. Metallurgical and Mining Industry. 2015. No. 10, pp. 234–237.
28. Galkin A.F. Controlling the thermal regime of the road surface in the cryolithic zone. Transportation Research Procedia. 2022. Vol. 63, pp. 1224–1228. DOI://doi.org/10.1016/j.trpro.2022.06.128
29. Galkin A.F. Determination of the permissible depth of thawing of the roadway in the cryolithozone. Energobezopasnost’ i energosberezhenie. 2021. No. 5, pp. 18–22. (In Russian). DOI: 10.18635/2071-2219-2021-5-18-22
30. Galkin A., Pankov V. Precision of determination of thawing depth of the frozen rocks. Journal of Physics: Conference Series. 2021. Vol. 2131. 052079. DOI: 10.1088/1742-6596/2131/5/052079
31. Galkin A. F., Kurta I. V. Influence of temperature on the depth of thawing of frozen rocks. Gornyi informatsionno-analiticheskii byulleten’. 2020. No. 2, pp. 82–91. (In Russian). DOI: 10.25018/0236-1493-2020-2-0-82-91
32. Recommendations for the design and construction of dams from soil materials for industrial and drinking water supply in the Far North and permafrost. Moscow: Stroyizdat. 1976. 112 p.
33. Galkin A.F. Calculation of the Fourier criterion when predicting the thermal regime of thawed and frozen dispersed rocks. Arktika i Antarktika. 2022. No. 3, pp. 1–10. (In Russian). DOI: 10.7256/2453-8922.2022.3.38555
34. Galkin A.F., Pankov V.Yu. Heat capacity of dispersed rocks. Journal of Physics: Conference Series. 2022. Vol. 2131 (5). 052076. DOI: 10.1088/1742-6596/2131/5/052076
35. Galkin A.F., Pankov V.Yu., Bolshakov V.A. Determination of the Stefan number for forecasting the thermal regime of highways in the cryolithic zone. Estestvennyye i tekhnicheskiye nauki. 2021. No. 4, pp. 282–285. (In Russian).
36. Isachenko V.P., Osipova V.A., Sukomel A.S. Teploperedacha [Heat transfer]. Moscow: Energoizdat. 1981. 416 p.
37. Perlstein G.Z. Vodno-teplovaya melioratsiya merzlykh porod na Severo-Vostoke SSSR [Water-thermal reclamation of frozen rocks in the North-East of the USSR] Novosibirsk: Nauka. 1979. 304 p.
38. Pankov V.Yu., Burnasheva S.G. The influence of wind speed on the surface temperature of the roadway. Tendentsii razvitiya nauki i obrazovaniya. 2020. No. 8, pp. 116–121. (In Russian). DOI: 10.18411/lj-08-2020-63
39. Galkin A.F., Zheleznyak M.N., Zhirkov A.F. Criterion of selection of building materials for thermal insulation layers of road clothes and bases. Uspekhi sovremennogo yestestvoznaniya. 2022. No. 8, pp. 108–113. (In Russian). https ://doi.org/10.17513/us e.37875

For citation: Galkin A.F., Plotnikov N.A. Selection of building materials for the thermal insulation layer of road clothing. Stroitel’nye Materialy [Construction Materials]. 2023. No. 9, pp. 57–64. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-817-9-57-64


Print   Email