Log in

Trends in the Development of Scientific Directions in the Field of Road Construction Materials in Russia (Review)

Number of journal: 12-2023
Autors:

Inozemtsev S.S.,
Susanina T.V.,
Stibunov D.V.,
Keita M.L.F.

DOI: https://doi.org/10.31659/0585-430X-2023-820-12-4-19
УДК: 625.861

 

AbstractAbout AuthorsReferences
The presented article analyzes the research topics for the period from 2000 to 2023, the result of which was the defense of dissertations for the degree of Candidate and Doctor of Sciences in order to identify trends in the development of scientific directions in the field of road construction materials. Open sources, including electronic ones, were used as the research base, from which articles with the results published in the preparation of at least 100 dissertations defended in the scientific specialty “Building Materials and Products” were analyzed. For the convenience of the analysis, the works are summarized in tables: by the object of research; by the type of technical solution. It is concluded that during the period under review, there was a transformation of research directions from traditional types of materials to multicomponent composites with a complex improved structure. It is shown that in order to test the results of research in the preparation of dissertations in the period under review, the average number of publications increased from 5-6 to 13-23. The generalized tasks of further development of scientific directions in the field of road construction materials are formulated. A list of topical issues of modern science in the field of road construction materials has been identified.
S.S. INOZEMTSEV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
T.V. SUSANINA, Student (This email address is being protected from spambots. You need JavaScript enabled to view it.),
D.V. STIBUNOV, Student (This email address is being protected from spambots. You need JavaScript enabled to view it.),
M.L.F. KEITA, Graduate Student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Rudensky A.V. Algorithm for calculating variations in the characteristics of asphalt concrete pavements in non-stationary operating conditions. Trudy Giprodornii. 1981. No. 33, pp. 62–69. (In Russian).
2. Rudensky A.V. Fatigue of asphalt concrete is one of the most important criteria for the operational durability of asphalt concrete pavements. Trudy Rosdornii. 1998. No. 9, pp. 37–42. (In Russian).
3. Lukashevich V.N., Pogorely A.V. Increasing the service life of road surfaces due to dispersed reinforcement and two-stage technology for the preparation of asphalt concrete mixtures. Vestnik of the TSUACE. 2001. No. 2, p. 45. (In Russian).
4. Lukashevich V.N. Improving the technology of asphalt concrete mixtures to increase the service life of road surfaces. Stroitel’nye Materialy [Construction Materials]. 1999. No. 11, pp. 5–7. (In Russian).
5. Lukashevich V.N. Investigation of the processes of structure formation of asphalt concrete mixtures prepared using two-stage technology. Izvestiya of higher educational institutions. Construction. 2000. No. 2–3, p. 25. (In Russian).
6. Zavyalov M.A. Termodinamicheskaya teoriya zhiznennogo tsikla dorozhnogo asfal’tobetonnogo pokrytiya [Thermodynamic theory of the life cycle of asphalt concrete pavement]. Monograph. Omsk. SibADI. 2007. 283 p.
7. Zavyalov M.A., Zavyalov A.M. Relationship between entropy variation and the functional age of pavement. Transportnoye stroitel’stvo. 2006. No. 4, pp. 20–21. (In Russian).
8. Zavyalov M.A., Zavyalov A.M. Dependence of overhaul service life of asphalt concrete pavement on entropy variation during construction. Izvestiya of higher educational institutions. Construction. 2004. No. 9 (549), pp. 70–73. (In Russian).
9. Kotlyarsky E.V. Structural and mechanical properties of asphalt mixtures and asphalt concrete. Vestnik of the BSTU named after V.G. Shukhov. 2008. No. 4, pp. 4–8. (In Russian).
10. Kotlyarsky E.V., Gridchin A.M., Lesovik R.V. Faktory, sposobstvuyushchiye razrusheniyu struktury asfal’tobetona v protsesse ekspluatatsii dorozhnykh asfal’tobetonnykh pokrytiy [Factors contributing to the destruction of the structure of asphalt concrete during the operation of road asphalt concrete pavements]. Belgorod: BSTU named after V.G. Shukhov. 2012. 187 p.
11. Yadykina V.V. Influence of active surface centers of silica-containing mineral components on interaction with bitumen. Izvestiya of higher educational institutions. Construction. 2003. No. 9, pp. 75–79. (In Russian).
12. Yadykina V.V. The relationship of donor-acceptor properties of the surface of mineral materials with their reactivity in the formation of organo-mineral composites. Izvestiya of higher educational institutions. Construction. 2004. No. 4, pp. 46–50. (In Russian).
13. Yadykina V.V., Grichanikov V.A. Influence of active centers of the surface of silica-containing phases on interaction with cement. Tsement i ego primeneniye. 2004. No. 2, pp. 14–15. (In Russian).
14. Gentsler I.V., Karapetyan A.S. Modification of the surface of the mineral aggregate of asphalt concrete. Izvestiya of higher educational institutions. Construction. 2001. No. 1, pp. 36–39. (In Russian).
15. Kuznetsov D.A., Yadykina V.V. Water and frost resistance of asphalt concrete on crushed stone and screening of quartzite sandstone crushing. Izvestiya of higher educational institutions. Construction. 2003. No. 3, pp. 83–86. (In Russian).
16. Trautvain A.I., Yadykina V.V., Gridchin A.M. Increasing the reactivity of fillers as a result of grinding. Stroitel’nye Materialy [Construction Materials]. 2010. No. 12, pp. 82–85. (In Russian).
17. Vysotskaya M.A. Influence of the amount of lime in mineral powder on the properties of asphalt concrete. Vestnik of the BSTU named after V.G. Shukhov. 2003. No. 5, pp. 240–243. (In Russian).
18. Vysotskaya M.A., Yadykina V.V., Kuznetsov D.A. Lime in asphalt concrete – so simple and complex. Stroitel’nye Materialy [Construction Materials]. 2006. No. 3, pp. 56–58. (In Russian).
19. Bituev A.V., Boskholov K.A. Silica-containing mineral powders for asphalt concrete. Vestnik of the TSUACE. 2007. No. 3 (16), pp. 210–212. (In Russian).
20. Yadykina V.V., Vysotsky A.V. Influence of acidic iron-containing mineral materials on the corrosion resistance of asphalt concrete. Korroziya: materialy, zashchita. 2004. No. 6, p. 43. (In Russian).
21. Romanov S.I., Ostroukhov S.B., Grammatikov G.A., Leskin A.I. Properties of carbide lime and its interaction with bitumen. Vestnik of the VolgSUACE. 2006. No. 5, pp. 116–119. (In Russian).
22. Yadykina V.V., Kutsyna N.P. The use of fibrous industrial waste in the production of crushed stone-mastic asphalt concrete. Stroitel’nye Materialy [Construction Materials]. 2007. No. 5, pp. 28–29. (In Russian).
23. Yadykina V.V., Kutsyna N.P., Vysotskaya M.A., Trautvain A.I. Crushed-stone-mastic asphalt concrete ased on technogenic raw materials. Izvestiya of higher educational institutions. Construction. 2007. No. 9 (585), pp. 43–46. (In Russian).
24. Gridchin A.M., Korotaev A.P., Yadykina V.V., Kuznetsov D.A., Vysotskaya M.A. Road composites based on dispersed expanded perlite. Stroitel’nye Materialy [Construction Materials]. 2009. No. 5, pp. 42–44. (In Russian).
25. Gridchin A.M., Yadykina V.V., Vysotskaya M.A., Korotaev A.P. Asphalt binder based on porous mineral powder. Stroitel’nye Materialy, oborudovaniye, tekhnologii XXI veka. 2014. No. 3 (182), pp. 15–16. (In Russian).
26. Galdina V.D., Nadykto G.I., Podrez G.A. Physical-mechanical and deformative properties of asphalt concrete on porous aggregate. Vestnik of the SibADI. 2009. Iss. 2 (12), pp. 39–43. (In Russian).
27. Soldatov A.A., Borisenko Yu.G. Structures of the surface of porous powders based on screenings of expanded clay crushing and their adsorption activity. Stroitel’nye Materialy [Construction Materials]. 2011. No. 6, pp. 36–38. (In Russian).
28. Ageikin V.N., Svintitskikh L.E., Shabanova T.N., Klyusov A.A. Study of the effect of expanded vermiculite sand on the properties of bituminous compositions and asphalt concrete. Stroitel’nye Materialy [Construction Materials]. 2003. No. 7, pp. 40–43. (In Russian).
29. Svintitskikh L.E., Shabanova T.N., Klyusov A.A., Ageikin V.N. Influence of dispersity of expanded vermiculite on the properties of bituminous binder and asphalt concrete. Stroitel’nye Materialy [Construction Materials]. 2004. No. 9, pp. 32–33. (In Russian).
30. Yadykina V.V., Lukash E.A. Changes in the surface properties of fillers and cement composites under the influence of ultraviolet irradiation. Stroitel’nye Materialy [Construction Materials]. 2007. No. 8, pp. 50–51. (In Russian).
31. Yadykina V.V., Lukash E.A. Improving the quality of asphalt concrete by UV-activation of mineral powders from technogenic raw materials of the Kursk magnetic anomaly. Izvestiya of higher educational institutions. Con-struction. 2007. No. 12 (588), pp. 44–48. (In Russian).
32. Razinkova O.A., Malkanduev Yu.A., Marishev M.Kh., Slonov A.L. Ways of using dump cakes of hydrometallurgy in the production of building materials and products. Vestnik of the VolgSUACE. 2010. No. 19 (38), pp. 64–68. (In Russian).
33. Khafizov E.R. Influence of bitumen viscosity and thermoplastic elastomer concentration on the physical and mechanical properties of bitumen. Collection of scientific papers. Kazan. KazGASA. 2001, pp. 86–89. (In Russian).
34. Chernov S.A. Investigation of the resistance to aging of complex-modified cold asphalt concrete mixes. Stroitel’stvo i rekonstruktsiya. 2011. No. 2 (34), pp. 110–115. (In Russian).
35. Chernov S.A., Mardirosova I.V. Complex modified binder for cold asphalt mixes. Dorogi i mosty. 2010. No. 1 (23), pp. 228–238. (In Russian).
36. Daragan N.S., Ilyin S.V. The relationship between the quality of asphalt concrete and the adhesive-cohesive properties of bitumen. In the collection: New technologies, structures and materials in the construction, reconstruction and repair of highways. Materials of the All-Russian Scientific and Technical Conference. Krasnodar. 2002, pp. 133–136. (In Russian).
37. Balabanov V.B., Konovalov N.P., Sambarov N.N. Changes in the properties of polymer bitumen binders during long-term storage. Stroitel’nye Materialy [Construction Materials]. 2004. No. 8, pp. 45–47. (In Russian).
38. Cherskov R.M. The use of rubber-polyolefin modifier as a way to improve the shear and crack resistance of asphalt concrete. Vestnik of the VolgSUACE. 2009. No. 13 (32), pp. 100–104. (In Russian).
39. Strokin A.S., Kalgin Yu.I. Polymer surfactant “Mobit” to improve the deformation-strength characteristics of asphalt concrete frame structure and durability of road surfaces. Vestnik of the VolgSUACE. 2008. No. 11 (30), pp. 52–56. (In Russian).
40. Yadykina V.V., Gridchin A.M., Vysotskaya M.A., Yakimovich I.V. Efficiency of application of the adhesive additive DAD-1. Stroitel’nye Materialy [Construction Materials]. 2009. No. 7, pp. 14–17. (In Russian).
41. Kotlyarevsky A.A., Korolev S.A., Vovko V.V., Akchurin T.K. Evaluation of the effectiveness of repair and construction, highways on the example of cast asphalt concrete technology Vestnik of the VolgSUACE. 2006. No. 6, pp. 125–127. (In Russian).
42. Ayupov D.A., Murafa A.V., Khakimullin Yu.N., Khozin V.G. Modified bituminous binders for construction purposes. Stroitel’nye Materialy [Construction Materials]. 2009. No. 8, pp. 50–51. (In Russian).
43. Ayupov D.A., Murafa A.V., Khakimullin Yu.N. Modification of road bitumen by radiation regenerates of butyl rubbers. Stroitel’nye Materialy [Construction Materials]. 2009. No. 12, pp. 44–45. (In Russian).
44. Ivanova T.L., Prokopets V.S. Mechanically activated rubber powder for asphalt concrete. Stroitel’nye Materialy [Construction Materials]. 2008. No. 8, pp. 82–85. (In Russian).
45. Ivanova T.L., Prokopets B.C. Mathematical model of the efficiency of mechanoactivation processes in building materials. Stroitel’nyye materialy, oborudovaniye, tekhnologii XXI veka. 2005. No. 8, pp. 71–73. (In Russian).
46. Chan N.Kh., Mardirosova I.V., Balabanov O.A. Complex-modified asphalt concrete of increased resistance to the effects of a hot and humid climate. Izvestiya of higher educational institutions. Construction. 2011. No. 7 (631), pp. 54–61. (In Russian).
47. Gorbatovsky A.A., Dronov S.V., Ivanov A.A. Optimal mixing temperature of components in the manufacture of polymer-bitumen compositions. Stroitel’nye Materialy [Construction Materials]. 2011. No. 1, pp. 10–13. (In Russian).
48. Patent RF 2160237. Sposob regeneratsii asfal’tobetona [Asphalt concrete regeneration method]. Iliopolov S.K., Maksimenko V.A., Uglova E.V., Mardirosova I.V., Shitikov S.V., Kucherov V.A. Declared 27.05.1999. Published 10.12.2000. (In Russian).
49. Iliopolov S.K., Kotov V.L., Mardirosova I.V. Use of old asphalt concrete scrap in cast mixtures. Collection of materials from the international scientific and practical conference “Construction-2002”. Part 1. Rostov-on-Don. 2002, pp. 11–12. (In Russian).
50. Petrovich P.P., Shchelkunov V.V., Fadeev M.V., Dmitrichev A.V., Lupanov A.P., Lupanov V.A. Application of granulate in rolled concrete. Abstracts of the reports of the International Seminar “Prospects and Efficiency of Using Cement Concrete in Road Construction”. MADI–STU. Moscow. 2002, pp. 49–53. (In Russian).
51. Evteeva S.M. Reclaimed asphalt with dispersed shale bitumen. Vestnik of the VolgSUACE. 2008. No. 11 (30), pp. 91–96. (In Russian).
52. Vasiliev Yu.E., Yumashev V.M., Subbotin I.V. Mechanochemical activation of bitumen. Promysh-lennoye i grazhdanskoye stroitel’stvo. 2010. No. 2, pp. 38–39. (In Russian).
53. Pronin S.A. Determination of changes in the dispersion of mechanically activated bitumen and water resistance of asphalt concrete samples based on it. Vestnik of the VolgSUACE. 2002. Iss. 2 (5), pp. 245–248. (In Russian).
54. Romanov S.I, Pronin S.A. Selection of the mode of low-temperature mechanical activation of bitumen. Nauka i tekhnika v dorozhnoy otrasli. 2002. No. 3, pp. 15–16. (In Russian).
55. Doroshev V.F., Petcheniy B.G., Skorikov S.V. Nuevos metodos de reciclaje de los asfaltos envejecidos у carpetas asfalticas. 2-as jornadas internationals del asfalto. Bucaramanga, Colombia. 2000, pp. 97–102. (In Spanish).
56. Pecheniy B.G., Tyrtyshov Yu.P., Doroshev V.F., Sanabria L.E. Aging and cracking in asphalt concrete pavements in Russia and Colombia. In the book: Scientific directions of SevKavSTU. Stavropol. 2001, pp. 226–231. (In Russian).
57. Nikolaeva L.A., Kopylov V.E., Burenina O.N., Popov S.N., Portnyagina V.V. The use of modified asphalt concrete for the development of the transport infrastructure of mining enterprises in Yakutia. Gornyy informatsionno-analiticheskiy byulleten’. 2014. No. 9, pp. 398–404. (In Russian).
58. Kopylov V.E., Burenina O.N. Mineral raw materials of the Republic of Sakha (Yakutia) for the production of asphalt concrete. Internet-zhurnal Naukovedeniye. 2016. Vol. 8. No. 1 (32), p. 42. (In Russian).
59. Burenina O.N., Nikolaeva L.A., Kopylov V.E. Development of modified asphalt concrete mixtures for the construction of highways in the north. Dorogi i mosty. 2013. No. 1 (29), pp. 205–211. (In Russian).
60. Lebedev M.S., Strokova V.V., Zhernovsky I.V., Potapova I.Yu. Changes in the properties of mineral powders from aluminosilicate raw materials under the influence of thermal modification. Stroitel’nye Materialy [Construction Materials]. 2012. No. 9, pp. 68–71. (In Russian).
61. Lebedev M.S., Strokova V.V., Potapova I.Yu., Kotlyarsky E.V. Influence of additives of low-calcium fly ash from thermal power plants on the characteristics of road bituminous binder. Stroitel’nye Materialy [Construction Materials]. 2014. No. 11, pp. 8–11. (In Russian).
62. Vysotskaya M.A., Fedorov M.Yu., Kuznetsov D.A. Adsorption and structuring activity of perlite as a filler for asphalt concrete. Izvestiya of higher educational institutions. Construction. 2012. No. 7–8 (643–644), pp. 21–26. (In Russian).
63. Vysotskaya M.A., Kuznetsov D.A., Fedorov M.Yu. Evaluation of the quality of bitumen-mineral composites using porous fillers. Dorogi i mosty. 2012. No. 1 (27), pp. 240–252. (In Russian).
64. Vysotskaya M.A., Fedorov M.Yu. Development of a nanomodified filler for asphalt concrete mixtures. Vestnik of the BSTU named after V.G. Shukhov. 2013. No. 6, pp. 61–65. (In Russian).
65. Inozemtsev S.S., Korolev E.V. Development of nanomodifiers and study of their influence on the properties of bituminous binders. Vestnik of the MSUCE. 2013. No. 10, pp. 131–139. (In Russian).
66. Inozemtsev S.S., Pozdnyakov M.K., Korolev E.V. Investigation of the adsorption-solvation layer of bitumen on the surface of mineral powder. Vestnik of the MSUCE. 2012. No. 11, pp. 159–167. (In Russian).
67. Korolev E.V., Tarasov R.V., Makarova L.V., Inozemtsev S.S., Smirnov V.A. Modeling of bituminous composition with structural units of nanometric dimensions. Regional’naya arkhitektura i stroitel’stvo. 2012. No. 3, pp. 26–32. (In Russian).
68. Inozemtsev S.S., Korolev E.V. Operational properties of nanomodified crushed stone-mastic asphalt concrete. Vestnik of the MSUCE. 2015. No. 3, pp. 29–39. (In Russian).
69. Shestakov N.I., Urkhanova L.A., Buyantuev S.L., Semenov A.P., Smirnyagina N.N. Asphalt concrete with the use of carbon nanomodifiers. Vestnik of the BSTU named after V.G. Shukhov. 2015. No. 6, pp. 21–24. (In Russian).
70. Urkhanova L.A., Shestakov N.I., Mognonov D.M., Buyantuev S.L., Ayurova O.Zh. Influence of nanodispersed additives on the physical-mechanical and hydrophysical properties of asphalt concrete. Voprosy materialovedeniya. 2015. No. 2 (82), pp. 54–59. (In Russian).
71. Urkhanova L.A., Shestakov N.I., Buyantuev S.L., Dorzhieva E.V. The use of carbon nanomaterials to obtain an effective road-building composite. Vestnik of the ESSUTM. 2014. No. 6 (51), pp. 67–72. (In Russian).
72. Vysotskaya M.A., Rusina S.Yu. On the prospects for the use of nanotubes in the preparation of polymer-bitumen binders. Dorogi i mosty. 2014. No. 2 (32), pp. 171–187. (In Russian).
73. Shekhovtsova S.Yu., Vysotskaya M.A. Nanoscale modifier as a tool to improve the rutting resistance of asphalt concrete from plastic deformations. Vestnik of the VolgSUACE. 2018. No. 51 (70), pp. 120–129. (In Russian).
74. Alekseenko V.V., Zhitov R.G., Kizhnyaev V.N., Mityugin A.V. New technologies for producing bitumen-rubber composite binders for road construction. Nauka i tekhnika v dorozhnoy otrasli. 2010. No. 1. P. 25. (In Russian).
75. Zhitov R.G., Kizhnyaev V.N., Alekseenko V.V., Smirnov A.I. Bitumen-rubber composite binders for the production of asphalt concrete. Zhurnal prikladnoy khimii. 2011. V. 84. No. 11, pp. 1898–1902. (In Russian).
76. Solomatin D.V., Kuznetsova O.P., Zvereva U.G., Rochev V.Ya., Bekeshev V.G., Prut E.V. The mechanism of formation of fine rubber powders based on triple ethylene-propylene-diene vulcanizates. Khimicheskaya fizika. 2016. Vol. 35. No. 7, pp. 60–70. (In Russian).
77. Solomatin D.V., Kuznetsova O.P., Zvereva U.G., Prut E.V. Mechanical and rheological properties of compositions based on isotactic polypropylene and rubber powder. Fiziko-khimiya polimerov: sintez, svoystva i primeneniye. 2015. No. 21, pp. 236–241. (In Russian).
78. Khristoforova A.A., Filippov S.E., Lebedev A.V., Gogolev I.N., Sokolova M.D., Zarovnyaev B.N. Prospects for the use of crumb rubber in the composition of road surfaces of deep quarries. Polythematic network electronic scientific journal of the KubSCU. 2011. No. 74, pp. 137–147. (In Russian).
79. Khristoforova A.A., Sokolova M.D. Rubber-bitumen compositions for road construction in areas with a cold climate. Vestnik mashinostroeniya. 2009. No. 7, pp. 89–92. (In Russian).
80. Khristoforova A.A., Sokolova M.D. Mechanical activation method for processing crushed vulcanizates. Khimiya v interesakh ustoychivogo razvitiya. 2009. Vol. 17. No. 4, pp. 435–438. (In Russian).
81. Asadullina Z.U., Yakovlev V.V. Involvement of waste roofing materials in the production of bitumen. Bezopasnost’ zhiznedeyatel’nosti. 2012. No. 11 (143), pp. 53–56. (In Russian).
82. Asadullina Z.U., Yakovlev V.V. Selection of the bituminous binder formulation with the addition of roofing chips and features of the technology for the preparation of asphalt concrete mixtures. Elektronnyy nauchnyy zhurnal “Neftegazovoye delo”. 2013. No. 1, pp. 383–390. (In Russian).
83. Gladkikh V.A., Korolev E.V. Reducing the emission of hydrogen sulfide and sulfur dioxide from sulfur-bitumen materials. Internet-vestnik of the VolgSUSCE. 2014. No. 2 (33). P. 3. (In Russian).
84. Le Kh.T., Gladkikh V.A., Korolev E.V. Efficiency of various toxic gas emission neutralizers in sulfur asphalt concrete technology. Stroitel’stvo i rekonstruktsiya. 2020. No. 2 (88), pp. 143–150. (In Russian).
85. Korolev E.V., Grishina A.N., Gladkikh V.A., Le T.Kh.Model of formation of an additional volume of pore space in sulfur asphalt concrete. Promyshlennoye i grazhdanskoye stroitel’stvo. 2021. No. 7, pp. 16–21. (In Russian).
86. Le H.T., Gladkikh V.A., Korolev E.V., Grishina A.N. Moisture resistance of sulfur-extended asphalt concrete. Results of the study and features of definition. Stroitel’nye Materialy [Construction Materials]. 2021. No. 3, pp. 39–44. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-789-3-39-44
87. Solomentsev A.B., Baranov I.A. The structure of road bitumen and its interaction with stabilizing fibrous additives for crushed-stone-mastic asphalt concrete. Stroitel’stvo i rekonstruktsiya. 2013. No. 4 (48), pp. 75–83. (In Russian).
88. Markov A.Yu., Bezrodnykh A.A., Markova I.Yu., Strokova V.V., Dmitrieva T.V., Stepanenko M.A. Forecasting the strength of Portland cement in the presence of fuel ash. Vestnik of the BSTU named after V.G. Shukhov. 2020. No. 3, pp. 26–33. (In Russian).
89. Markov A.Yu., Strokova V.V., Markova I.Yu. Evaluation of properties of fuel ashes as components of composite materials. Stroitel’nye Materialy [Construction Materials]. 2019. No. 4, pp. 77–83. DOI: https://doi.org/10.31659/0585-430X-2019-769-4-77-83 (In Russian).
90. Lesovik R.V., Ageeva M.S., Kazlitina O.V., Sopin D.M., Mitrokhin A.A. On the issue of optimizing the structure of high-strength fiber-reinforced concrete through the use of a nanodispersed modifier. Vestnik of the ESSUTM. 2017. No. 4 (67), pp. 64–70. (In Russian).
91. Cherkashin Yu.N., Lesovik R.V., Sopin D.S. High-quality concrete using raw material resources of the KMA. Vestnik of the BSTU named after V.G. Shukhov. 2009. No. 4, pp. 21–24. (In Russian).
92. Zakhezin A.E., Chernykh T.N., Trofimov B.Ya., Kramar L.Ya. Influence of redispersible powders on the properties of cement mortars. Stroitel’nye Materialy [Construction Materials]. 2004. No. 10, pp. 6–7. (In Russian).
93. Chan T.M., Korovyakov V.F. Self-compacting concrete mixes for road construction. Vestnik of the MSUCE. 2012. No. 3, pp. 131–137. (In Russian).
94. Korolev E.V., Bazhenov Yu.M., Albakasov A.I. Radiatsionno-zashchitnyye i khimicheski stoykiye sernyye stroitel’nyye materialy [Radiation-protective and chemically resistant sulfur building materials]. Penza, Orenburg: IPK OGU. 2010. 364 p.
95. Drovaleva O.V. Laboratory modes of fatigue testing of asphalt concrete, taking into account the operating conditions of the material in the coating. Vestnik of the TSUACE. 2009. No. 1 (22), pp. 159–168. (In Russian).
96. Drovaleva O.V. Evaluation of the fatigue life of asphalt concrete under the influence of cyclic loads under intensive high-speed traffic flow. Izvestiya of higher educational institutions. Construction. 2009. No. 11–12 (611–612), pp. 65–71. (In Russian).
97. Trautvain A.I., Akimov A.E., Denisov V.P., Lashin M.V. Features of the method of volumetric design of asphalt concrete using Superpave technology. Vestnik of the BSTU named after V.G. Shukhov. 2019. No. 3, pp. 8–14. (In Russian).
98. Inozemtsev S.S., Korolev E.V. Aggressiveness of operational conditions of road-climatic zones in Russia. Nauka i tekhnika v dorozhnoy otrasli. 2019. No. 3, pp. 22–26. (In Russian).

For citation: Inozemtsev S.S., Susanina T.V., Stibunov D.V., Keita M.L.F. Trends in the development of scientific directions in the field of road construction materials in Russia (review). Stroitel’nye Materialy [Construction Materials]. 2023. No. 12, pp. 4–19. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-820-12-4-19

Modification of Composite Materials with Highly Dispersed WC and WO3 Powders

Number of journal: 10-2023
Autors:

Chayka T.V.,
Gavrish V.M.,
Cherkashina N.I.,
Sidelnikov R.V.,
Romanyuk D.S.

DOI: https://doi.org/10.31659/0585-430X-2023-818-10-121-128
УДК: 666

 

AbstractAbout AuthorsReferences
The results of studies on the modification of a cement-based composite material by replacing the binder by 1–5 wt. % highly dispersed powders of wolfram carbide WC and wolfram oxide WO3 obtained by processing hard-alloy waste, are presented. The introduction of WC and WO3 powders into the cement mixture reduces the initial and final setting time, reduces normal density, increases the spreadability of cement paste, and also promotes earlier hydration, while a decrease in the intensity of heat release of compositions with additives is observed, compared to the control composition. According to SEM images, samples containing WC and WO3 powders have a denser microstructure. X-ray phase analysis showed that the addition of highly dispersed particles to the cement paste did not significantly change the phase composition of the hardened stone, while there was an increase in the intensity of peaks belonging to calcium hydro-silicates in modified samples compared with the control composition. It has been experimentally established that the use of highly dispersed additives leads to an increase in the compressive strength of cement samples; the maximum increase in strength is 39% and 40% with an additive content of 1 wt. % WC and 2 wt. % WO3 respectively. The results obtained are important for understanding the mechanisms of action of highly dispersed WC and WO3 particles on cement materials, which can subsequently be used to improve the properties of cement-based composite materials for various areas of applications.
T.V. CHAYKA1, Assistant (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.М. GAVRISH1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it..r);
N.I. CHERKASHINA2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
R.V. SIDELNIKOV2, Graduate Student (This email address is being protected from spambots. You need JavaScript enabled to view it.),
D.S. ROMANYUK2, Graduate Student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Sevastopol State University (33, Universitetskaya Street, Sevastopol, 299053, Russian Federation)
2 Belgorod State Technological University named after V.G. Shukhov (46, Kostyukova Street, Belgorod, 308012, Russian Federation)

1. Dabić P., Damir Barbir. Implementation of natural and artificial materials in Portland cement. Hemijska industrija. 2020. Vol. 74, pp. 14–14. DOI: 10.2298/HEMIND191216014D
2. Agzamov F.A., Grigoryev A.Y. Modification of Portland cement with nanoadditives. Nanotechnologies in Construction. 2022. Vol. 14. No. 4, pp. 319–327. https://doi.org/10.15828/2075-8545-2022-14-4-319-327
3. Bakhtin A., Lyubomirskiy N., Bakhtina T., Fic S. Influence of forced carbonisation on the binding properties of sludge with a high β-Belite content. Materials. 2021. Vol. 14. No. 24. 7899. https://doi.org/10.3390/ma14247899
4. Ястребинский Р.Н., Карнаухов А.А., Павленко В.И., Городов А.И., Акименко А.В., Фанина Е.А. Радиационно-защитные характеристики композита на основе термостойкой модифицированной дроби гидрида титана // Вестник Белгородского государственного технологического университета им. В.Г. Шухова. 2022. № 12. С. 86–93. DOI: 10.34031/2071-7318-2022-7-12-86-93
4. Yastrebinskiy R.N., Karnauhov A.A., Pavlenko V.I., Gorodov A.I., Akimenko A.V., Fanina E.A. Radiation-protective characteristics of a composite based on a heat-resistant modified fraction of titanium hydride. Vestnik of Belgorod State Technological University named after. V.G. Shukhov. 2022. No. 12, pp. 86–93. (In Russian). DOI: 10.34031/2071-7318-2022-7-12-86-93
5. Fediuk R., Mochalov A., Timokhin R. Review of methods for activation of binder and concrete mixes. AIMS Materials Science. 2018. Vol. 5, pp. 916–931. DOI: 10.3934/matersci.2018.5.916
6. Saidova Z., Yakovlev G., Smirnova O., Gordina A., Kuzmina N. Modification of cement matrix with complex additive based on chrysotyl nanofibers and carbon black. Applied Sciences. 2021. Vol. 11. No. 15. 6943. DOI: 10.3390/app11156943
7. Judina A. Non-reagent methods for the activation of concrete mix raw components in the construction industry. Architecture and Engineering. 2020. Vol. 5. Iss. 1, pp. 30–35. DOI: 10.23968/2500-0055-2020-5-1-30-35
8. Ibragimov R., Korolev E., Potapova L., Deberdeev T., Khasanov A. The influence of physical activation of Portland cement in the electromagnetic vortex layer on the structure formation of cement stone: the effect of extended storage period and carbon nanotubes modification. Buildings. 2022. Vol. 12. No. 6. 711. https://doi.org/10.3390/buildings12060711
9. Ramadan M., Amin M.S., Sayed Mostafa A. Superior physico-mechanical, fire resistivity, morphological characteristics and gamma radiation shielding of hardened OPC pastes incorporating ZnFe2O4 spinel nanoparticles. Construction and Building Materials. 2020. Vol. 234. 117807. https://doi.org/10.1016/j.conbuildmat.2019.117807
10. Franco-Luján V., Montejo-Alvaro F., Ramírez-Arellanes S., Martinez H., Medina D. Nanomaterial-reinforced Portland-cement-based materials: a review. Nanomaterials. 2023. Vol. 13. No. 8, 1383. https://doi.org/10.3390/nano13081383
11. Fediuk R.S. Research on water absorption fine-grained fiber-reinforced concrete on composite binders. Fundamental research. 2016. No. 2 (Part 2), pp. 303–307. DOI 10.17513/fr.39927
12. Soudabeh Dezhampanah, Iman M. Nikbin, Sadegh Mehdipour, Reza Mohebbi, Hamid Habibi Moghadam. Fiber-reinforced concrete containing nano – TiO2 as a new gamma-ray radiation shielding materials. Journal of Building Engineering. 2021. Vol. 44. 102542. doi.org/10.1016/j.jobe.2021.102542
13. Пшембаев М.К., Ковалев Я.Н., Яглов В.Н. Особенности процессов гидратациии твердения цемента в присутствии наночастиц // Вестник ВКГТУ. 2020. № 1. С. 175–183. DOI: 10.51885/15614212_2020_1_175
13. Pshembaev M.K., Kovalev Ya.N., Yaglov V.N. Features of hydration and cement hardening processes in the presence of nanoparticles. Vestnik VKGTU. 2020. No. 1, pp. 175–183. (In Russian). DOI: 10.51885/15614212_2020_1_175
14. El-Gamal S.M.A., Abo-El-Enein S.A., El-Hosiny F.I. et al. Thermal resistance, microstructure and mechanical properties of type I Portland cement pastes containing low-cost nanoparticles. Journal of Thermal Analysis and Calorimetry. 2018. 131, pp. 949–968. https://doi.org/10.1007/s10973-017-6629-1
15. Копаница Н.О., Демьяненко О.В., Куликова А.А., Самченко С.В., Козлова И.В., Лукьянова Н.А. Влияние способов активации на структурно-технологические характеристики наномодифицированных цементных композиций // Нанотехнологии в строительстве. 2022. Т. 14. № 6. С. 481–492. https://doi.org/10.15828/2075-8545-2022-14-6-481-492
15. Kopanitsa N.O., Demyanenko О.V., Kulikova А.А., Samchenko S.V., Kozlova I.V., Lukyanova N.A. Influence of activation methods on the structural and technological characteristics of nanomodified cement compositions. Nanotekhnologii v stroitel’stve. 2022. Vol. 14. No. 6, pp. 481–492. (In Russian). https://doi.org/10.15828/2075-8545-2022-14-6-481-492
16. Aref Sadeghi-Nik, Javad Berenjian, Ali Bahari, Abdul Sattar Safaei, Mehdi Dehestani. Modification of microstructure and mechanical properties of cement by nanoparticles through a sustainable development approach. Construction and Building Materials. 2017. Vol. 155, pp. 880–891. https://doi.org/10.1016/j.conbuildmat.2017.08.107
17. Muzenski Scott, Flores Vivian Ismael, Sobolev K. Ultra-high strength cement-based composites designed with aluminum oxide nano-fibers. Construction and Building Materials. 2019. Vol. 220, pp. 177–186. 10.1016/j.conbuildmat.2019.05.175
18. Abo-El-Enein S.A., El-Hosiny F.I., El-Gamal S.M.A., Amin M.S., Ramadan M. Gamma radiation shielding, fire resistance and physicochemical characteristics of Portland cement pastes modified with synthesized Fe2O3 and ZnO nanoparticles. Construction and Building Materials. 2018. Vol. 173, pp. 687–706. https://doi.org/10.1016/j.conbuildmat.2018.04.071
19. Madani Hesam, Boroujeni Amir, Pourjahanshahi Amin. Mechanical properties and photocatalytic reactions of zinc oxide nanoparticles in the cement environment. Amirkabir (Journal of Science and Technology). 2018. Vol. 50. 257. DOI:10.22060/ceej.2017.12333.519
20. Karthik Chintalapudi, Rama Mohan Rao Pannem. Strength properties of graphene oxide cement composites. Materials Today: Proceedings. 2021. Vol. 45. Part 4, pp. 3971–3975. https://doi.org/10.1016/j.matpr.2020.08.369
21. Liu Y., Shi T., Zhao Y. et al. Autogenous shrinkage and crack resistance of carbon nanotubes reinforced cement-based materials. International Journal of Concrete Structures and Materials. 2020. Vol. 14. 43. https://doi.org/10.1186/s40069-020-00421-0
22. Dong Lu, Xianming Shi, Jing Zhong. Interfacial bonding between graphene oxide coated carbon nanotube fiber and cement paste matrix. Cement and Concrete Composites. 2022. Vol. 134, 104802. https://doi.org/10.1016/j.cemconcomp.2022.104802
23. Nehal Hamed, M.S. El-Feky, Mohamed Kohail, El-Sayed A.R. Nasr. Effect of nano-clay de-agglomeration on mechanical properties of concrete. Construction and Building Materials. 2019. Vol. 205, pp. 245–256. https://doi.org/10.1016/j.conbuildmat.2019.02.018
24. Zemei Wu, Caijun Shi, K.H. Khayat, Shu Wan. Effects of different nanomaterials on hardening and performance of ultra-high strength concrete (UHSC). Cement and Concrete Composites. 2016. Vol. 70, pp. 24–34. https://doi.org/10.1016/j.cemconcomp.2016.03.003
25. Khuzin A., Ibragimov R. Processes of structure formation and paste matrix hydration with multilayer carbon nanotubes additives. Journal of Building Engineering. 2020. Vol. 35. 102030. DOI: 10.1016/j.jobe.2020.102030
26. Chen Wei, Xu Longfei, Hua, Wang, Huang Heng Li, Zhou. Mechanical properties and shrinkage behavior of concrete-containing graphene-oxide nanosheets. Materials (Basel). 2020. Vol. 13. 590. DOI: 10.3390/ma13030590
27. Karthik Chintalapudi, Rama Mohan Rao Pannem. Enhanced chemical resistance to sulphuric acid attack by reinforcing graphene oxide in ordinary and Portland pozzolana cement mortars. Case Studies in Construction Materials. 2022. Vol. 17. e01452. https://doi.org/10.1016/j.cscm.2022.e01452
28. Liu Changjiang, He Xin, Deng Xiaowei, Wu Yuyou, Zheng Zhoulian, Liu Jian, Hui David. Application of nanomaterials in ultra-high performance concrete: a review. Nanotechnology Reviews. 2020. Vol. 9. No. 1, pp. 1427–1444. https://doi.org/10.1515/ntrev-2020-0107
29. Jamal A. Abdalla, Blessen Skariah Thomas, Rami A. Hawileh, Jian Yang, Bharat Bhushan Jindal, Erandi Ariyachandra. Influence of nano-TiO2, nano-Fe2O3, nanoclay and nano-CaCO3 on the properties of cement/geopolymer concrete. Cleaner Materials. 2022. Vol. 4, 100061. https://doi.org/10.1016/j.clema.2022.100061
30. Yakovlev G., Drochytka R., Skripkiūnas G., Urkhanova L., Polyanskikh I., Pudov I., Karpova E., Saidova Z., Elrefai A.E.M.M. Effect of ultrafine additives on the morphology of cement hydration products. Crystals. 2021. Vol. 11, 1002. https://doi.org/10.3390/cryst11081002
31. Patent ЕР 3 138 932 А1 Verfahren und vorrichtung zur gewinnung eines pulvers aus partikeln von wolfram oder wolframverbindungen mit einer partikelgrцsse im nano-,mikron- oder submikronbereich. Galuga A., Baranov G., Gavrish V., Smirnov S., Losenkov A., Vostrognutov S. Declared 01.09.2015. Published 08.03.2017.
32. Gavrish V., Chayka T., Baranov G., Oleynik A.Y., Shagova Y.O. Investigation of the influence of tungsten carbide nanopowder WC and the mixture of tungsten carbides and titanium carbides (WC, TiC) on the change of concrete performance properties. Journal of Physics: Conference Series. 2021. Vol. 1866. No. 1. 012008. DOI: 10.1088/1742-6596/1866/1/012008
33. Чайка Т.В., Гавриш В.М., Павленко В.И., Черкашина Н.И. Влияние высокодисперсного порошка смеси WC и TiC на свойства композиционных материалов // Нанотехнологии в строительстве. 2023. Т. 15. № 1. С. 14–26. https://doi. org/10.15828/2075-8545-2023-15-1-14-26.
33. Chayka T.V., Gavrish V.M., Pavlenko V.I., Cherkashina N.I. Influence of high-dispersive powder mixture of WC and TiC on the composite materials properties. Nanotekhnologii v stroitel’stve. 2023. Vol. 15. No. 1, pp. 14–26. (In Russian).https://doi. org/10.15828/2075-8545-2023-15-1-14-26
34. Tan Z., Bernal S.A. Provis J.L. Reproducible mini-slump test procedure for measuring the yield stress of cementitious pastes. Materials and Structures. 2017. Vol. 50. 235. DOI:10.1617/s11527-017-1103-x
35. Xiang Chen, Haiming Chen, Qian Chen, Abubakar. S. Lawi, Jie Chen. Effect of partial substitution of cement with dolomite powder on glass-fiber-reinforced mortar. Construction and Building Materials. 2022. Vol. 344. 128201. DOI: 10.1016/j.conbuildmat.2022.128201
36. Ahmad Alzaza, Katja Ohenoja, Rawia Dabbebi, Mirja Illikainen. Enhancing the hardened properties of blended cement paste cured at 0оC by using alkali-treated ground granulated blast furnace slag. Cement and Concrete Composites. 2022. Vol. 134. 104757. https://doi.org/10.1016/j.cemconcomp.2022.104757
37. Elijah Adesanya, Amarachi Ezu, Hoang Nguyen, Christine Rößler, Harisankar Sreenivasan, Katja Ohenoja, Paivo Kinnunen, Mirja Illikainen. Hydration of blended ladle slag and calcium aluminate cement. Journal of Building Engineering. 2023. Vol. 66. 105855. https://doi.org/10.1016/j.jobe.2023.105855
38. Klemczak B., Batog M. Heat of hydration of low-clinker cements. Journal of Thermal Analysis and Calorimetry. 2016. Vol. 123, pp. 1351–1360. https://doi.org/10.1007/s10973-015-4782-y
39. Maria C.G. Juenger, Rafat Siddique. Recent advances in understanding the role of supplementary cementitious materials in concrete. Cement and Concrete Research. 2015. Vol. 78. Part A, pp. 71–80. https://doi.org/10.1016/j.cemconres.2015.03.018
40. Ouyang X., Koleva D.A., Ye G. et al. Insights into the mechanisms of nucleation and growth of C–S–H on fillers. Materials and Structures. 2017. Vol. 50. 213. https://doi.org/10.1617/s11527-017-1082-y

For citation: Chayka T.V., Gavrish V.M., Cherkashina N.I., Sidelnikov R.V., Romanyuk D.S. Modification of composite materials with highly dispersed WC and WO3 powders. Stroitel’nye Materialy [Construction Materials]. 2023. No. 10, pp. 121–128. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-818-10-121-128

Proposal for the Installation of the Overlap During the Construction of Buildings Using Additive Technologies

Number of journal: 10-2023
Autors:

Razov I.O.,
Sokolov V.G.,
Dmitriev A.V.,
Erenchinov S.A.

DOI: https://doi.org/10.31659/0585-430X-2023-818-10-116-120
УДК: 624.05

 

AbstractAbout AuthorsReferences
A solution is proposed for the installation of overlap of a low-rise building by the method of element-by-element segment printing on a 3D construction printer with subsequent rotation of the structure to the design position. The object of the study is a rotating section of the overlap, consisting of upper and lower belts connected by a wave-like element (“connecting grid”). For the object of the study, it was found that when calculating by the finite element method, the method of modeling with “plates” (type 42/44) + AJT in the appropriate places reduces the complexity of creating a computational model compared to modeling with volumetric bodies (type 36) while maintaining identical calculation results. When determining the optimal configuration of the “connecting grid”, it was found that the wave-shaped connecting element has advantages over the cross-wave element and the perpendicular connecting element. Also in this paper, a conclusion is made about the optimal angle of inclination of the “connecting grid” in relation to the belts, which is 26–27о.
I.O. RAZOV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it. ),
V.G. SOKOLOV, Doctor of Sciences (Engineering),
A.V. DMITRIEV, Candidate of Sciences (Engineering),
S.A. ERENCHINOV, Candidate of Sciences (Engineering)

Tyumen Industrial University (38, Volodarskogo Street, Tyumen, 625000, Russian Federation)

1. Zas’ko V.V.,Ratushnaya E.V. Application of 3D printers in construction. Resursosberegayushchie tekhnologii proizvodstva i obrabotki davleniem materialov v mashinostroenii. 2021. No. 4 (37), pp. 106–116. (In Russian).
2. Neustroev D.V., Ovchinnikov I.G. Additive technologies and their application in industrial and transport construction. Vestnik evraziiskoi nauki. 2021. Vol. 13. No. 2, p. 23. (In Russian).
3. Monastyrev P.V., Yezersky V.A., Ivanov I.A., Azzawi Dubla B. Additive technologies for the construction of walls of low-rise buildings and their classification. Moscow: ASV, 2019. Vol. 2, pp. 368–379. (In Russian). DOI 10.22337/9785432303134-368-379
4. Denisova Yu.V. Additive technologies in construction. Stroitel’nye materialy i izdeliya. 2018. Vol. 1. No. 3, pp. 33–42. (In Russian).
5. Slavcheva G.S. Analysis of the Russian regulatory documentation regulating the use and development of construction additive technologies. Stroitel’nye Materialy [Construction Materials]. 2023. No. 8, pp. 10–17. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-816-8-10-17
6. Mukhametrakhimov R.H., Vakhitov I.M. Additive technology of construction of buildings and structures using a construction 3D printer. Izvestiya Kazanskogo gosudarstvennogo arkhitekturno-stroitel’nogo universiteta. 2017. No. 4 (42), pp. 350–359. (In Russian).
7. Slavcheva G.S. 3D-build printing today: potential, challenges and prospects for implementation. Stroitel’nye Materialy [Construction Materials]. 2021. No. 5, pp. 28–36. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-791-5-28-36
8. De Schutter G., Lesage K., Mechtcherine V., Nerella V.N., Habert G., Agusti-Juan I. Vision of 3D printing with concrete-technical, economic and environmental potentials. Cement and Concrete Research. 2018. Vol. 112, pp. 25–36.
9. Fayzollin M.M., Chernavin V.Yu. Additive technologies for manufacturing floor slabs of large-panel buildings in civil engineering. Nauchnye gorizonty. 2022. No. 5 (57), pp. 80–86. (In Russian).
10. Maitenaz S., Mesnil R., Onfroy P., Metge N., Caron JF. Sustainable reinforced concrete beams: mechanical optimisation and 3D-printed formwork. RILEM International Conference on Concrete and Digital Fabrication. DC 2020: Second RILEM International Conference on Concrete and Digital Fabrication. 2020, Vol. 28, pp. 1164–1173. https://doi.org/10.1007/978-3-030-49916-7_110
11. Anton A., Jipa A., Reiter L., Dillenburger B. Fast complexity: additive manufacturing for prefabricated concrete slabs. RILEM International Conference on Concrete and Digital Fabrication. DC 2020: Second RILEM International Conference on Concrete and Digital Fabrication. 2020. Vol. 28, pp. 1067–1077. https://doi.org/10.1007/978-3-030-49916-7_102
12. Slavcheva G.S., Akulova I.I., Vernigora I.V. Concept and effectiveness of 3D printing for urban environment design. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2020. No. 3, pp. 49–55. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2020-3-49-55

For citation: Razov I.O., Sokolov V.G., Dmitriev A.V., Erenchinov S.A. Proposal for the installation of the overlap during the construction of buildings using additive technologies. Stroitel’nye Materialy [Construction Materials]. 2023. No. 10, pp. 116–120. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-818-10-116-120

Laydown Diagrams of Silicate Products on the Trolley, Taking into Account the Packaging and Energy Efficiency of Autoclave Heat Treatment

Number of journal: 10-2023
Autors:

Kuznetsova G.V.,
Morozova N.N.,
Ishmuhametov D.A.,
Muharlyamova A.R.

DOI: https://doi.org/10.31659/0585-430X-2023-818-10-109-115
УДК: 691.316

 

AbstractAbout AuthorsReferences
Currently, there are great opportunities to re-equip the technology of enterprises. Modern market conditions dictate their requirements not only to the quality of products, but also to the quality of packaging. When updating the press equipment to modern hydraulic presses, an updated approach to the organization of packaging of products is also required and, as a result, a change in the scheme of laying products on a steam trolley. An increase in the mass of products – the transition to the production of blocks and partitions, an increase in the quality of the appearance of products raises the question of abandoning manual labor at the press when rearranging products and when packing. The compactness of the packaging makes it possible to ensure the safety of the goods during storage and transportation. A comparative analysis of the operation of hydraulic presses of various companies by the time of forming the steam trolley is given. The existing schemes of laying products on a steaming trolley with manual rearrangement of products at the press and during packaging, as well as new proposed schemes excluding manual labor, are considered. The results of calculations on the energy efficiency of autoclave treatment of the developed schemes for laying products with existing ones are presented. It is established that the specific steam consumption per one thousand pieces of products with schemes for laying products on steam trolleys excluding manual labor increases by 2–4% for all products, and the total heat consumption for the steam cycle is reduced for schemes for laying products on steam trolleys excluding manual labor for single bricks by 9.3%, for thickened bricks from 14 up to 24%, for hollow stone by 17% and for blocks by 29%.
G.V. KUZNETSOVA, Senior Lecturer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
N.N. MOROZOVA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
D.A. ISHMUHAMETOV, Student
A.R. MUHARLYAMOVA, Student

Kazan State University of Architecture and Engineering (1, Zelenaya Street, Kazan, 420043, Republic of Tatarstan, Russian Federation)

1. PROry’nok. Kirpich. avgust 2021 [PROmarket. Brick. August 2021]. http://www.stroymat.ru/articles/tb-6-2021/pro_market_kirpich_2021_08.pdf
2. Semenov A.A. Results of the development of the Russian wall materials market in 2021. Stroitel’nye Materialy [Construction Materials]. 2022. No. 3, pp. 44–45. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-800-3-44-45
3. Shmit`ko E.I., Verlina N.A. Press-molding processes and their influence on adobe brick quality. Stroitel’nye Materialy [Construction Materials]. 2015. No. 10, pp. 5–7.
4. Professional equipment for manufacturing and packing of silicate brick. Stroitel’nye Materialy [Construction Materials]. 2015. No. 10, pp. 25–26.
5. Automation of silicate brick packing process with polymeric tapes. Alternative to packages packing with heat-shrink tape. Stroitel’nye Materialy [Construction Materials]. 2015. No. 10, pp. 27.
6. Khavkin L.M. Texnologiya silikatnogo kirpicha [Sand-lime brick technology]. Moscow: Stroyizdat. 2011. 231 p.
7. Mukhina T.G. Proizvodstvo silikatnogo kirpicha [Production of sand-lime bricks]. Moscow: Vy’sshaya shkola. 1967.125 p.
8. Kuzneczova G.V., Morozova N.N. Texnologiya silikatny’x stenovy’x yacheisty’x materialov avtoklavnogo tverdeniya: uchebnoe posobie [Technology of silicate cellular wall materials of autoclave hardening]. Kazan’: Izdatel’stvo KGASU. 2016. 120 p.
9. Zolotonosov Ya.D., Gorskaya T.Yu., Martynov P.O. Mathematical model of a heat exchanger with a spring-screw channel made of elements of the OVOID type. Izvestiya KSUACE. 2018. No. 1 (43), pp. 171–178.

For citation: Kuznetsova G.V., Morozova N.N., Ishmuhametov D.A, Muharlyamova A.R. Laydown diagrams of silicate products on the trolley, taking into account the packaging and energy efficiency of autoclave heat treatment. Stroitel’nye Materialy [Construction Materials]. 2023. No. 10, pp. 109–115. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-818-10-109-115

Investigation of the Bearing Capacity and Deformability of Promising Joints of Wooden Structures Using Composite Materials

Number of journal: 10-2023
Autors:

Tusnin A.R.,
Linkov N.V.,
Klyukin A.A.

DOI: https://doi.org/10.31659/0585-430X-2023-818-10-99-108
УДК: 624.011.17

 

AbstractAbout AuthorsReferences
One of the actual directions in the study of wooden structures is the determination of the strength characteristics of the nodes and joints of wooden elements using composite materials. These materials allow us to solve the problems of designing wooden structures without the use of rallying, building and reinforcing individual elements. Composite materials do not lead to a significant increase in the dimensions of the nodes and do not damage the appearance of the structures. The use of new high-strength materials significantly increases the service life of the structure and increases reliability. the object of the study is the connection of elements of wooden structures with composite materials based on fiberglass. The type of joints of wooden elements with a composite material based on fiberglass is proposed. The conducted research is aimed at obtaining experimental data to determine the characteristics of CM-joints of composite wooden elements. As part of the study, several series of symmetrical, two-cut samples with different thickness of composite material were considered. The composite material connection was performed by layer-by-layer formation on a wooden structure. The article presents the results of studies of the strength and deformability of the developed compound. Strength characteristics are established, in the form of resistance to the cut of the composite material along the seam of bonding in the joint, resistance to the separation of the composite material from the base, chipping of the composite material. The characteristics of deformability of KM-joints during short-term machine tests with linearly increasing load in samples are established. Conclusions. The conducted research has shown that the strength characteristics of the tested compounds correspond to the calculated load-bearing capacity.
A.R. TUSNIN, Doctor of Sciences (Engineering), Professor, Head of the Department of Metal and Wooden Structures (This email address is being protected from spambots. You need JavaScript enabled to view it.),
N.V. LINKOV, Candidate of Sciences (Engineering), Associate Professor of the Department of Metal and Wooden Structures (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.A. KLYUKIN, Engineer, Senior Lecturer at the Department of Metal and Wooden Structures (This email address is being protected from spambots. You need JavaScript enabled to view it.)

National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Rutman U.L., Meleshko V.A. The generalization of the flexibility method for elastoplastic computation of rod systems. Materials Physics and Mechanics. 2017. Vol. 31, pp. 67–70.
2. Kozinetc K.G., Kärki T., Barabanshchikov Yu.G., Lahtela V., Zotov D.K. Mechanical properties of sustainable wooden structures reinforced with basalt fiber reinforced polymer. Magazine of Civil Engineering. 2020. Vol. 100 (8). DOI: 10.18720/MCE.100.12
3. Togay A., Döngel N., Söğütlü C., Ergin E., Uzel M., and Güneş, S. «Determination of the modulus of elasticity of wooden construction elements reinforced with fiberglass wire mesh and aluminum wire mesh. BioResources. 2017. Vol. 12. Iss. 2, pp. 2466–2478. DOI: 10.15376/biores.12.2.2466-2478
4. Trummer A., Luggin W.F. Holz+ hochfeste Fasern. Leistungssteigerung durch Bewehrung // Holz + proHolz Austria. 2005. No. 11. P. 24.
5. Blaß H.J., Romani M. Biegezugverstärkung von BS-Holz mit CFK- und AFK-Lamellen. Bautechnik. 2002. Vol. 79, No. 4, pp. 216–224.
6. Blaß H.J., Romani M. Tragfähigkeitsuntersuchungen an Verbundträgern aus BS-Holz und Faserverbund-kunststoff-Lamellen. Holz als Roh- und Werkstoff. (2001). 2001. Vol. 59. No. 5, pp. 364–373. https://doi.org/10.1007/s001070100225
7. Lisyatnikov M.S., Glebova T.O., Ageev S.P., Ivaniuk A.M. Strength of wood reinforced with a polymer composite for crumpling across the fibers. URL: libgen.ggfwzs.net/book/84486144/7c11d1. International Conference on Materials Physics, Building Structures and Technologies in Construction, Industrial and Production Engineering (MPCPE 2020). 27–28 April 2020. Vladimir State University named after Alexander and Nikolay Stoletovs. IOP Conference Series Materials Science and Engineering. 2020. Vol. 896. DOI 10.1088/1757-899X/896/1/012062
8. Zachary Christian, Kavan Shebli. Feasibility of strengthening glulam beams with prestressed basalt fibre reinforced polymers. Department of Civil and Environmental Engineering Division of Structural Engineering Steel and Timber Structures Chalmers University of Technology SE-412 96 Göteborg Sweden. https://publications.lib.chalmers.se/records/fulltext/162909.pdf
9. Стоянов В.О. Прочность и деформативность изгибаемых деревянных элементов, усиленных полимерными композитами: Дис. … канд. техн. наук. М., 2018. 186 с.
9. Stoyanov V.O. Strength and deformability of bent wooden elements reinforced with polymer composites. Diss... Candidate of Science (Engineering). Moscow. 2018. 186 p.
10. Schober Kay-Uwe. Hochleistungskunststoffe für die tragwerksverstärkung von holzkonstruktionen im bestand. Bausubstanz. 2010. Vol. 4, pp. 38–43. DOI: 10.51202/2190-4278-2010-4-38
11. Geshanov I., Kachlakev D. Composite reinforce concrete-timber floor system externally strengthened with CFRP composites. 13th International Conference SFR. Edinburg, Scotland. 2010, pp. 151–153.
12. Ascione L., Bonamini G., Benedetti A., Borri A. Guidelines for the design and construction of externally bonded FRP systems for strengthening existing structures: timber structures. Italy. 2005. 58 p. DOI: 10.13140/RG.2.2.24325.58089
13. Franke S., Franke B., Harte A.M. Failure modes and reinforcement techniques for timber beams – State of the art. Construction and Building Materials. 2015. Vol. 97, pp. 2–13. https://doi.org/10.1016/j.conbuildmat.2015.06.021
14. Ao Zhou, Lik-ho Tam, Zechuan Yu, Denvid Lau. Effect of moisture on the mechanical properties of CFRP–wood composite: An experimental and atomistic investigation. Composites Part B: Engineering. 2015. Vol. 71, pp. 63–73. https://doi.org/10.1016/j.compositesb.2014.10.051
15. Lik-ho Tam, Ao Zhou, Zechuan Yu, Qiwen Qiu, Denvid Lau. Understanding the effect of tempe-rature on the interfacial behavior of CFRP-wood composite via molecular dynamics simulations. Composites Part B: Engineering. 2017. Vol. 109, pp. 227–237. https://doi.org/10.1016/j.compositesb.2016.10.030
16. Иванов Ю.М. Рекомендации по испытанию соединений деревянных конструкций / ЦНИИСК им. В.А. Кучеренко. М.: Стройиздат, 1981. 40 c.
16. Ivanov Yu.M. Rekomendatsii po ispytaniyu soedinenii derevyannykh konstruktsii [Recommendations for testing connections of wooden structures / TsNIISK named after V.A. Kucherenko]. Moscow: Stroyizdat. 1981. 40 p.

For citation: Tusnin A.R., Linkov N.V., Klyukin A.A. Investigation of the bearing capacity and deformability of promising joints of wooden structures using composite materials. Stroitel’nye Materialy [Construction Materials]. 2023. No. 10, pp. 99–108. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-818-10-99-108

Influence of Temperature on the Degree of Modification of Wood with Organosilicon Compounds

Number of journal: 10-2023
Autors:

Stepina I.V.,
Zheglova Yu.G.

DOI: https://doi.org/10.31659/0585-430X-2023-818-10-91-98
УДК: 630*842.3

 

AbstractAbout AuthorsReferences
The search for optimal parameters for modifying wood materials with organosilicon compounds is a very urgent task. In the work, the authors investigated the effect of temperature on the efficiency of this process by determining the percentage of silicon in the substrate after modifying native and phosphorylated wood with various classes of organosilicon compounds and establishing the corresponding dependencies. 10% solutions of organosilicon compounds (CBS) were studied as modifiers: polyethylhydridsiloxane (PEGS), tetraethoxysilane (TES), sodium polymethylsilicate (PMSN). Sawdust of sapwood pine and phosphorylated sawdust of sapwood pine were used as a substrate. As a result of the conducted one-factor analysis of variance, the influence of the CBS treatment temperature on the silicon content in wood in wt. was established. % at a fixed modification time. Of the three studied organosilicon surface modifiers, only PEGS shows a stable relationship between the temperature of modification of native and phosphorylated wood and the degree of modification of the substrate, expressed as the percentage of silicon in the wood composite after long-term extraction. TES apparently does not enter into a chemical interaction with either native or phosphorylated wood due to the absence of functional groups in its composition (temperature in this case has no effect). When using native and phosphorylated PMSN wood as a modifier, it was not possible to establish a relationship between the modification temperature and the silicon content in the modified substrate.
I.V. STEPINA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
Yu.G. ZHEGLOVA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Машкин Н.А., Ершова С.Г., Крутасов Б.В., Маньшин А.Г. Защитная обработка строительных материалов кремнийорганическими гидрофобизаторами: Монография. Новосибирск: НГАСУ, 2013. 204 с.
1. Mashkin N.A., Ershova S.G., Krutasov B.V., Man’shin A.G. Zashchitnaya obrabotka stroitel’nykh materialov kremniiorganicheskimi gidrofobizatorami. Monografiya [Protective treatment of building materials with organosilicon hydrophobisers]. Novosibirsk: NGASU. 2013. 204 p.
2. Васильев В.В., Быстрова В.В., Розенкова И.В. Исследование свойств кремнийорганических гидрофобизаторов для древесных плит // Известия высших учебных заведений. Лесной журнал. 2012. № 6. С. 119–126.
2. Vasilyev V.V., Bystrova V.V., Rozenkova I.V. Investigation of the properties of organosilicon hydrophobisers for wood boards. Izvestiya vysshih uchebnyh zavedenij. Lesnoj zhurnal. 2009. No. 6, pp. 119–126. (In Russian).
3. Zarah Walsh-Korb, Luc Avérous, Recent developments in the conservation of materials properties of historical wood. Progress in Materials Science. 2019. Vol. 102, pp. 167–221. DOI: https://doi.org/10.1016/j.pmatsci.2018.12.001
4. Broda M., Plaza N.Z. Durability of model degraded wood treated with organosilicon compounds against fungal decay. International Biodeterioration & Biodegradation. 2023. Vol. 178. 105562. DOI: https://doi.org/10.1016/j.ibiod.2022.105562
5. Perdoch W. et al. The impact of vinylotrimethoxysilane-modified linseed oil on selected properties of impregnated wood. Forests. 2022. Vol. 13. No. 8. 1265. DOI: https://doi.org/10.3390/f13081265
6. Zhou K. et al. Mechanism and effect of alkoxysilanes on the restoration of decayed wood used in historic buildings. Journal of Cultural Heritage. 2020. Vol. 43, pp. 64–72. DOI: https://doi.org/10.1016/j.culher.2019.11.012
7. Odalanowska M. et al. Propolis and organosilanes as innovative hybrid modifiers in wood-based polymer composites. Materials. 2021. Vol. 14. No. 2, p. 464. DOI: https://doi.org/10.3390/ma14020464
8. Pokrovskaya E. Research of bioproof materials at superficial modification of wood. IOP Conference Series: Materials Science and Engineering. 2019. Vol. 471. No. 3. 032047. DOI: 10.1088/1757-899X/471/3/032047
9. Кобелев А.А. Разработка комплексного огнебиовлагозащитного состава на основе соединений, обеспечивающих поверхностную модификацию древесины. М.: Академия ГПС МЧС России, 2012. 128 c.
9. Kobelev A.A. Razrabotka kompleksnogo ognebiovlagozashchitnogo sostava na osnove soyedineniy, obespechivayushchikh poverkhnostnuyu modifikatsiyu drevesiny [Development of a complex fire and moisture protective composition based on compounds that provide surface modification of wood]. Moscow: Academy of State Fire Service of the Ministry of Emergency Situations of Russia. 2012. 128 p.
10. Kamperidou V. et al. Impact of thermal modification combined with silicon compounds treatment on wood structure. Wood Res. 2022. Vol. 67, pp. 773–784. DOI: doi.org/10.37763/wr.1336-4561/67.5.773784
11. Kamperidou V. The biological durability of thermally-and chemically-modified black pine and poplar wood against basidiomycetes and mold action. Forests. 2019. Vol. 10. No. 12. 1111. DOI: https://doi.org/10.3390/f10121111
12. Корниенко В.С. Математическая статистика. Решение задач по теме «Однофакторный дисперсионный анализ». Волгоград: Волгогр. гос. с.-х. акад., 2010. 20 c.
12. Kornienko V.S. Matematicheskaya statistika. Resheniye zadach po teme «Odnofaktornyy dispersionnyy analiz» [Math statistics. Solving problems on the topic “One-factor analysis of variance”]. Volgograd: Volgograd state agricultural academy. 2010. 20 p.
13. Левин Д.М., Стефан Д.К., Тимоти С., Беренсон М.Л. Статистика для менеджеров с использованием Microsoft Excel. М.: Вильямс, 2004.
13. Levin D.M., Stephan D.C., Timothy S., Berenson M.L. Statistika dlya menedzherov s ispol’zovaniyem Microsoft Excel [Statistics for managers using Microsoft Excel]. Moscow: Williams. 2004.
14. Котенева И.В. Боразотные модификаторы поверхности для защиты древесины строительных конструкций: Монография. М.: МГСУ, 2011. 191 c.
14. Koteneva I.V. Borazotnyye modifikatory poverkhnosti dlya zashchity drevesiny stroitel’nykh konstruktsiy: monografiya [Borozote surface modifiers for protecting wood of building structures: monograph]. Moscow: MUCE. 2011. 191 p.
15. Khodaei M., Shadmani S. Superhydrophobicity on aluminum through reactive-etching and TEOS/GPTMS/nano-Al2O3 silane-based nanocomposite coating. Surface and Coatings Technology. 2019. Vol. 374, pp. 1078–1090. DOI: https://doi.org/10.1016/j.surfcoat.2019.06.074
16. Jin L. et al. Structural engineering in the self-assembly of amphiphilic block copolymers with reactive additives: micelles, vesicles, and beyond. Langmuir. 2021. Vol. 37. No. 32, pp. 9865–9872. DOI: https://doi.org/10.1021/acs.langmuir.1c01554

For citation: Stepina I.V., Zheglova Yu.G. Influence of temperature on the degree of modification of wood with organosilicon compounds. Stroitel’nye Materialy [Construction Materials]. 2023. No. 10, pp. 91–98. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-818-10-91-98

Research of the Effectiveness and Durability of Sol-Silicate Facade Paints

Number of journal: 10-2023
Autors:

Pustovgar A.P.,
Abramova A.Yu.,
Andreeva N.P.

DOI: https://doi.org/10.31659/0585-430X-2023-818-10-85-90
УДК: 666.29

 

AbstractAbout AuthorsReferences
The article provides a comparison of the properties of facade paint and varnish coatings currently used in construction and repair works. Particular attention is paid to silicate paints and varnishes, which are the most promising today according to the fact that their coatings have high vapor permeability and the ability to remove excess moisture from the mineral substrate, thereby determining such performance properties of facade paints and varnishes as reduced contamination, moisture and water resistance , chemical resistance, biostability, etc. The use of a mixture of liquid glass and diatomaceous earth as a binder gives sol-silicate paints additionally high functional properties associated with elasticity and crack resistance. The article presents the results of a study of the resistance of sol-silicate paint and varnish materials coatings to the effects of climatic factors in laboratory conditions using a method developed on the basis of long-term observations of the paint and varnish coatings aging processes in various climatic zones under natural conditions and development of laboratory test regimes taking into account the processes of destruction of paint and varnish coatings during complex impact of climatic factors. The retention of protective, decorative and adhesive properties of sol-silicate paint coatings of various colors was assessed during testing. The expected service life of the studied coatings in the considered climatic conditions was determined.
A.P. PUSTOVGAR1,2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.Yu. ABRAMOVA1, Master, Head of laboratory (This email address is being protected from spambots. You need JavaScript enabled to view it.),
N.P. ANDREEVA1, Сandidate of Sciences (Chemistry) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)
2 Mechanical Engineering Research Institute of the Russian Academy of Sciences (IMASH RAN) (4, Maly Kharitonyevskiy Lane, 101990, Moscow, Russian Federation)

1. Overview silicate coatings market. Growth, trends, impact of COVID-19 and forecast (2023–2028). https://www.mordorintelligence.com/ru/industry-reports/silicate-coatings-market (Date of access: 23.07.2023). (In Russian).
2. Valetova V.V. The relevance of the use of traditional artistic materials in monumental painting. Actual problems of monumental art: collection of scientific papers. St. Petersburg. 2020, pp. 218–223. (In Russian).
3. Askadskii A.A., Afanasyev E.S., Petunova M.D., Matseevich T.A., Safonova E.S., Pustovgar A.P., Bruyako M.G. Organomineral composite materials based on Na-liquid glass, 2,4-toluene diisocyanate, epoxy oligomer and polyisocyanate. Doklady of the Academy of Sciences. 2018. Vol. 481. No. 1, pp. 47–52. DOI: 10.31857/S086956520000050-8 (In Russian).
4. Pustovgar A.P., Bruyako M.G., Petunova M.D., Afanasyev E.S., Ezernitskaya M.G., Starozhitsky M.V., Piminova K.S., Matseevich T.A., Askadskii A.A. Hybrid materials based on Na-liquid glass, 2,4-toluene diisocyanate, epoxy oligomer and polyisocyanate. Vysokomolekulyarnye soedineniya. Seriya A. 2018. Vol. 60. No. 6, pp. 495–512. (In Russian). DOI: 10.1134/S230811201806007X
5. Bruyako M.G., Pustovgar A.P., Safonova E.S., Petuno-va M.D., Afanasyev E.S., Kovriga O.V., Askadskii A.A. Organomineral composite materials based on liquid glass, polyisocyanurate and epoxy oligomer. Plasticheskie massy. 2017. No. 9–10, pp. 3–7. (In Russian).
6. Pislegina A.V., Yakovlev G.I., Pustovgar A.P., Mostafa K. Modified facade coating based on liquid glass. Proceedings of the II International Conference “Nanotechnology for environmentally friendly and durable construction”. Cairo, Egypt. 2010, pp. 39–45. (In Russian).
7. Loganina V.I., Mazhitov E.B., Lashina I.V. Evaluation of operational properties of coatings based on sol silicate paint. Vestnik of the Belgorod State Technological University named after V.G. Shukhov. 2018. No. 12, pp. 6–11. (In Russian). DOI: 10.12737/article_5c1c994bc1ecd0.55450446
8. Loganina V.I., Mazhitov E.B. Assessment of the durability of coatings based on sol-silicate paint. Regional’naya arkhitektura i stroitel’stvo. 2020. No. 2, pp. 33–40. (In Russian).
9. Loganina V.I., Kislitsyna S.N., Mazhitov E.B. Long-term strength of coatings based on sol-silicate paint. Vestnik of MUCE. 2018. Vol. 13. Iss. 7 (118), pp. 877–884. DOI: 10.22227/1997-0935.2018.7.877-884 (In Russian).
10. Alonso-Villar E.M., Rivas T., Pozo-Antonio J.S. Sol-silicate versus organic paints: durability after outdoor and ultraviolet radiation exposures. Progress in Organic Coatings. 2022. Vol. 168. 106843. DOI: https://doi.org/10.1016/j.porgcoat.2022.106843
11. Cover N.S. Ecological assessment and improvement of reliability of paint and varnish coatings of facades in urban conditions (on the example of Moscow). Cand. Diss. (Engineering). Moscow. 2004. 192 p. (In Russian).

For citation: Pustovgar A.P., Abramova A.Yu., Andreeva N.P. Research of the effectiveness and durability of sol-silicate facade paints. Stroitel’nye Materialy [Construction Materials]. 2023. No. 10, pp. 85–90. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-818-10-85-90

Use of Dust Entrainment from the Gas-Cleaning System of a Cladder of Mineral Wood Production for Clinker-Free Binderм

Number of journal: 10-2023
Autors:

Fedorov P.A.,
Sinitsin D.A.,
Shagigalin G.Yu.

DOI: https://doi.org/10.31659/0585-430X-2023-818-10-78-84
УДК: 691:666

 

AbstractAbout AuthorsReferences
The development of binders based on man-made industrial waste is one of the most popular areas of development of building materials science. One of the promising wastes is dust removal from the gas cleaning system of the mineral wool production cupola. The article presents the results of studies of the structure of dust entrainment, as well as the physical and mechanical properties of a clinker-free binder in comparison with Portland cement. The technological preparation of dust removal by sifting it through a 0.16 mm sieve and subsequent mechanical activation is proposed. The best values were shown by the composition of the binder with a specific-to-specific surface area of 733 m2/kg sealed with an aqueous solution of caustic soda with a concentration of 8.3 M. For this composition, during 28 days of normal hardening, the compressive strength was 54.3 MPa, bending strength was 6.6 MPa. The influence of the composition of the alkaline activator, the hardening conditions on the strength of the samples during bending and compression is considered. An assessment of the structure of the forming cement matrix, as well as its mineralogical composition, was carried out. The study of the products of the structure formation of the cement matrix from dust-entrainment is represented by cyolite group minerals.
P.A. FEDOROV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
D.A. SINITSIN, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
G.Yu. SHAGIGALIN, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Ufa State Petroleum Technological University (1, Kosmonavtov Street, Ufa, 450064, Russian Federation)

1. Клаус-Дитер Х. Утилизация минеральной ваты – продуманное средство, сочетающее увеличение прибыли и охрану окружающей среды // Базальтовые технологии. 2014. № 1. C. 65–72.
1. Klaus-Diter Kh. Recycling of mineral wool – a well-thought-out tool that combines increased profits and environmental protection. Bazal’tovye tekhnologii. 2014. No. 1, pp. 65–72. (In Russian).
2. Grass K., Bartashov V., Sucker J. Recycling of mineral wool waste. https://www.ibe.at/wp-content/uploads/2021/03/Recycling-of-mineral-wool-waste-1.htm (дата обращения 03.08.2022).
3. Зайцева Л.Р., Луцык Е.В., Латыпова Т.В., Латыпов В.М., Федоров П.А., Попов В.П. Влияние вида заполнителя из отходов производств на коррозионную стойкость бетона // Строительные материалы. 2021. № 11. С. 23–29. DOI: https://doi.org/10.31659/0585-430X-2021-797-11-23-29
3. Zaitseva L.R., Lutsyk E.V., Latypova T.V., Latypov V.M., Fedorov P.A., Popov V.P. Influence of the type of filler from production waste on the corrosion resistance of concrete. Stroitel’nye Materialy [Construction Materials]. 2021. No. 11, pp. 23–29. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-797-11-23-29
4. Kubiliute R., Kaminskas R., Kazlauskaite A. Mineral wool production waste as an additive for Portland cement. Cement and Concrete Composites. 2018. Vol. 88. pp. 130–138. DOI: https://doi.org/10.1016/j.cemconcomp.2018.02.003
5. Nagrockiene D. The effect of waste from mineral wool manufacturing on the properties of concrete. Ceramics – Silikaty. 2021, pp. 1–8. DOI: https://doi.org/10.13168/cs.2021.0013
6. Stonys R., Kuznetsov D., Krasnikovs A., Skamat J., Baltakys K., Antonovic V., Cernasejus O. Reuse of ultrafine mineral wool production waste in the manufacture of refractory concrete. Journal of Environmental Management. 2016. Vol. 176, pp. 149–156. DOI: https://doi.org/10.1016/j.jenvman.2016.03.045
7. Абдрахимов В.З. Использование отходов минеральной ваты в производстве керамических стеновых материалов // Вестник ПНИПУ. Строительство и архитектура. 2019. Т. 10. № 3. C. 53–60. DOI: https://doi.org/10.15593/2224-9826/2019.3.06
7. Abdrakhimov V.Z. The use of waste mineral wool in the production of ceramic wall materials. Vestnik of PNRPU. Construction and Architecture. 2019. Vol. 10. No. 3, pp. 53–60. DOI: 10.15593/2224-9826/2019.3.06
8. Саламанова М.Ш., Муртазаев С.-А.Ю. Цементы щелочной активации: возможность снижения энергоемкости получения строительных композитов // Строительные материалы. 2019. № 7. С. 32–40. DOI: https://doi.org/10.31659/0585-430X-2019-772-7-32-40
8. Salamanova M.Sh., Murtazaev S.-A.Yu. Cements of alkaline activation the possibility of reducing the energy intensity of building composites. Stroitel’nye Materialy [Construction Materials]. 2019. No. 7, pp. 32–40. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-772-7-32-40
9. Fedorov P, Sinitsin D. Alkali-activated binder based on cupola dust of mineral wool production with mechanical activation. Buildings. 2022. No. 12 (10). 1565. https://doi.org/10.3390/buildings12101565
10. Ерофеев В.Т., Родин А.И., Якунин В.В., Богатов А.Д., Бочкин В.С., Чегодайкин А.М. Шлакощелочные вяжущие из отходов производства минеральной ваты // Инженерно-строительный журнал. 2018. № 6 (82). C. 219–227. DOI: https://doi.org/10.18720/MCE.82.20
10. Erofeev V.T., Rodin A.I., Yakunin V.V., Bogatov A.D., Bochkin V.S., Chegodajkin A.M. Alkali-activated slag binders from rock-wool production wastes. Magazine of Civil Engineering. 2018. No. 6 (82), pp. 219–227. DOI: 10.18720/MCE.82.20
11. Kinnunen P., Yliniemi J., Talling B., Illikainen M. Rockwool waste in fly ash geopolymer composites. Journal of Material Cycles and Waste Management. 2017. Vol. 19. No. 3, pp. 1220–1227. DOI: https://doi.org/10.1007/s10163-016-0514-z
12. Liu G., Florea M.V.A., Brouwers H.J.H. Waste glass as binder in alkali activated slag–fly ash mortars. Materials and Structures. 2019. Vol. 52. No. 5. 101. DOI: https://doi.org/10.1617/s11527-019-1404-3
13. Dong M., Elchalakani M., Karrech A., Pham T.M., Yang B. Glass fibre-reinforced polymer circular alkali-activated fly ash/slag concrete members under combined loading. Engineering Structures. 2019. Vol. 199. 109598. DOI: https://doi.org/10.1016/j.engstruct.2019.109598
14. Глуховский В.Д., Пахомов В.А. Шлакощелочные цементы и бетоны. Киев: Будiвельник, 1978. 184 с.
14. Glukhovsky V.D., Pakhomov V.A. Shlakoshchelochnyye tsementy i betony [Slag-alkaline cements and concretes]. Kyiv: Budivelnik. 1978. 184 p.
15. Chen X., Zhang Y., Hui D., Chen M., Wu Z. Study of melting properties of basalt based on their mineral components. Composites Part B: Engineering. 2017. Vol. 116, pp. 53–60. DOI: https://doi.org/10.1016/j.compositesb.2017.02.014
16. Петровская А.А., Каптюшина А.Г. Исследование свойств шлакощелочных вяжущих и бетонов на их основе // Строительные материалы. 2021. № 10. С. 21–24. DOI: https://doi.org/10.31659/0585-430X-2021-796-10-21-24
16. Petrovskaya A.A., Kaptyushina A.G. Research in the properties of slag-alkaline binders and concretes based on them. Stroitel’nye Materialy [Construction Materials]. 2021. No. 10, pp. 21–24. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-796-10-21-24
17. Davidovits J. Geopolymer chemistry and applications1. Saint-Quentin, France: Institute Geopolymer. 2011. 614 p.

For citation: Fedorov P.A., Sinitsin D.A., Shagigalin G.Yu. Use of dust entrainment from the gas-cleaning system of a cladder of mineral wood production for clinker-free binder. Stroitel’nye Materialy [Construction Materials]. 2023. No. 10, pp. 78–84. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-818-10-78-84

Ensuring Mechanical Strength of Protective Paint Coatings of Steel Metal Structures

Number of journal: 10-2023
Autors:

Pchelnikov A.V.,
Pichugin A.P.

DOI: https://doi.org/10.31659/0585-430X-2023-818-10-73-77
УДК: 691.57:539.2

 

AbstractAbout AuthorsReferences
This article discusses the issues of ensuring the mechanical strength of protective paint coatings of steel structures through the use of nano-sized additives. The results of a study of the physical and mechanical properties of nanomodified paint coatings (adhesion, abrasion resistance, hardness, deformation stability) and the results of a study of the linear dimensions of the elements of structures of the micro- and nanorelief of the surface of the coatings are presented. It has been determined that with the introduction of a composition with carbon nanotubes and bismuth oxide, in the amount of 0.1% and 1%, respectively, into the paintwork material, it is possible to achieve high mechanical strength of coatings that can reliably protect steel structures under operating environments and impacts. At the same time, the adhesion strength increases by 2–3 times, the abrasion resistance by 1.5–2.5 times, the number and size of microcracks on the coating are significantly reduced, and the surface of the coating becomes smoother, the coating is strengthened (the average roughness Ra decreases from 60–70 nm to 20–30 nm).
A.V. PCHELNIKOV, Candidate of Sciences (Engineering), associate professor, doctoral student (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.P. PICHUGIN, Doctor of Sciences (Engineering), Professor (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Novosibirsk State Agrarian University (160, Dobrolyubova Street, Novosibirsk, 630039, Russian Federation)

1. Belenya E.I., Baldin V.A., Vedenikov G.S. Metallicheskie konstruktsii. Obshchii kurs. [Metal constructions. General course]. Moscow: Stroyizdat. 1986. 560 p.
2. Eremin K.I. Osobennosti ekspluatatsii metallicheskikh konstruktsii promyshlennykh zdanii [Peculiarities of operation of metal structures of industrial buildings]. Moscow: Publishing house MISS–MGSU. 2012. 248 p.
3. Pchelnikov A.V. The concept of improving the quality of protective coatings of metal structures of the agro-industrial complex. Izvestiya vysshikh uchebnykh zavedenii. Stroitel’stvo. 2022. No. 11 (767), pp. 38–52. (In Russian).
4. Loganina V.I. Svetalkina M.A., Ariskin M.V. Assessment of the stress state of paint and varnish coatings depending on the roughness of their surface Izvestiya vysshikh uchebnykh zavedenii. Stroitel’stvo. 2023. No. 2 (770), pp. 36–43. (In Russian).
5. Pichugin A.P., Pchelnikov A.V., Khritankov V.F., Tulyaganov A.K. Evaluation of the effectiveness of the use of nano-additives in protective coatings. Stroitel’nye Materialy [Construction Materials]. 2023. No. 3, pp. 20–26. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-811-3-20-26
6. Pchelnikov A.V., Pichugin A.P., Khritankov V.F., Smirnova O.E. The role of nano-additives in the formation of a strong contact layer of protective coatings. Stroitel’nye Materialy [Construction Materials]. 2022. No. 7, pp. 45–50. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-804-7-45-50
7. Khozin V.G., Abdrakhmanova L.A., Nizamov R.K. General concentration pattern of effects of nanomodification of building materials. Stroitel’nye Materialy [Construction Materials]. 2015. No. 2, pp. 25–33. (In Russian).
8. Nelubova V.V., Kuzmin E.O., Strokova V.V. Structure and properties of nanodispersed silica synthesized by the sol-gel method. Stroitel’nye Materialy [Construction Materials]. 2022. No. 12, pp. 38–44. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-809-12-38-44
9. Lesovik V.S., Fediuk R.S., Gridchin A.M., Murali G. Improving the operational characteristics of protective composites. Stroitel’nye Materialy [Construction Materials]. 2021. No. 9, pp. 32–40. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-795-9-32-40
10. Ilyina V.N., Ilyin S.V., Khalikova G.R. Study of the influence of nanocarbon fillers on the morphology of an epoxy binder. Nanotekhnologii v stroitel’stve. 2023. Vol. 15. No. 4, pp. 328–336. (In Russian).
11. Ilyina V.N., Ilyin S.V., Gafarova V.A., Kuzeev I.R. The influence of nanocarbon fillers on the properties of composite materials. Nanotekhnologii v stroitel’stve. 2023. Vol. 15. No. 3, pp. 228–237. (In Russian).
12. Massalimov I.A., Chuikin A.E., Massalimov B.I., Mustafin A.G. New protective coatings based on sulfur nanoparticles obtained from potassium polysulfide. Nanotekhnologii v stroitel’stve. 2023. Vol. 15. No. 1, pp. 27–36. (In Russian).
13. Terukov E.I., Babaev A.A., Tkachev A.G., Zhilina D.V. Radio-absorbing properties of polymer composites based on shungite and carbon nanomaterial “Taunit-M”. Zhurnal tekhnicheskoi fiziki. 2018. Vol. 88. No. 7, pp. 1075–1079. (In Russian).
14. Shashok Zh.S., Prokopchuk N.R. Primenenie uglerodnykh nanomaterialov v polimernykh kompozitsiyakh [Application of carbon nanomaterials in polymer compositions]. Minsk: BSTU, 2014. 232 p.
15. Zimon A.D. Adgeziya plenok i pokrytii [Adhesion of membrane and coatings]. Moscow: Khimiya. 1977. 352 p.

For citation: Pchelnikov A.V., Pichugin A.P., Ensuring mechanical strength of protective paint coatings of steel metal structures. Stroitel’nye Materialy [Construction Materials]. 2023. No. 10, pp. 73–77. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-818-10-73-77

Investigation of Chemical Resistance of PVC Membranes for Engineering Waterproofing

Number of journal: 10-2023
Autors:

Shalimov V.N.,
Cybenko A.V.,
Goglev I.N.,
Loginova S.A.

DOI: https://doi.org/10.31659/0585-430X-2023-818-10-63-69
УДК: 627.8.034.94:677.494.743.22

 

AbstractAbout AuthorsReferences
The scope of application of polymer waterproofing PVC membranes in the construction of various buildings and structures (in particular, structures of the CS-3 class) are considered. The main advantages of PVC-based polymer waterproofing membranes, such as: high uniaxial and multiaxial tensile strength, high degree of relative elongation, chemical/biological resistance, durability, etc. are briefly considered. These advantages allow the use of PVC-membranes as waterproofing and secondary protection of various reinforced concrete and concrete structures, regardless of their purpose. Chemical resistance researches of waterproofing polymer PVC-membranes have been conducted in three parts. In the first part of the research, the chemical resistance of the LOGICBASE™ membrane of the V-SL brand was evaluated on the basis of the Testing Laboratory of JSC TSNII Promzdaniy, in accordance with the requirements of GOST R 56910–2016, as well as in accordance with the requirements for the protection of concrete and reinforced concrete structures from corrosion in SP 28.13330.2017 and GOST 31384–2017. The influence of solutions of aggressive chemicals (such as bicarbonate and sodium chloride, sodium hydroxide, calcium hydroxide, sulfurous and sulfuric acids) on the physical and mechanical properties of polymer waterproofing membranes (for example, on tensile strength and elongation) are considered. Test samples from polymer membranes were immersed in solutions of aggressive chemicals for a period of 30 to 120 days. Changes in physical and mechanical characteristics (tensile strength, elongation, mass loss, etc.) were monitored further. According to the results of the study, for example, when exposed to 3% sodium bicarbonate solution (NaHCO3, for 120 days), the longitudinal tensile strength of the membrane increased by 6.44%, and the relative elongation increased by 2.74%. A calculation in accordance with PNST 630-2011 to determine the potential service life of the LOGICBASE™ V-SL polymer membrane under the aggressive effects of groundwater, which was at least 100–150 years, were made in the future. A report according to the results of the research was obtained.
V.N. SHALIMOV1, Candidate of Sciences (Engineering), head of technical support (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.V. CYBENKO1, head of the technical service of the direction “Engineering waterproofing” (This email address is being protected from spambots. You need JavaScript enabled to view it.),
I.N. GOGLEV1, technical specialist of the direction “Engineering waterproofing” (This email address is being protected from spambots. You need JavaScript enabled to view it.);
S.A. LOGINOVA2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 LLC TECHNONICOL-Construction Systems (47, str. 5, Gilyarovskogo Street, Moscow, 129110, Russian Federation)
2 Yaroslavl State Technical University (88, Moskovsky Avenue, Yaroslavl, 150001, Russian Federation)

1. Vedyakov I.I., Eremeev P.G., Solovyev D.V. Scientific and technical support and standard requirements when realizing projects of buildings and structuress with increased level of responsibility. Promyshlennoe i grazhdanskoe stroitel’stvo. 2018. No. 12, pp. 14–19. (In Russian).
2. Belostotsky A.M., Kryuchkov S.A., Rytov S.A., Rytova T.G., Chauskin A.Yu. Specific features of scientific and technical support of engineering survey and design for buildings of a high level of responsibility in the city of Samara. Vestnik NIC “Stroitel’stvo”. 2017. No. 2 (29), pp. 28–37. (In Russian). DOI: 10.37538/2224-9494-2021-2(29)-28-37
3. Klovsky A.V., Mareeva O.V. Features of objects designing of the increased level of responsibility under boundary values of seismicity of the construction site. Prirodoobustrojstvo. 2018. No. 3, pp. 63–69. (In Russian).
4. Stepanova V.F., Sokolova S.E., Polushkin A.L. Effective means of secondary protection to improve the durability of buildings and structures. Vestnik NIC “Stroitel’stvo”. 2017. No. 1 (12), pp. 126–133. (In Russian).
5. Shalimov, V.N., Cybenko. A.V. & Goglev, I.N. Investigation of the consumption of injection formulations in maintainable waterproofing systems of foundations. Umnye kompozity v stroitel’stve. 2022. No. 3 (2), pp. 29–44. (In Russian). DOI: https://doi.org/10.52957/27821919_2022_2_29
6. Karimov T.H., Kanaev M.D., Orozahunova S.K., Bekbolot K.A. Purification of groundwater from salts. International Scientific and Practical Conference World science. 2018. No. 6 (34), pp. 17–20. (In Russian). DOI: 10.31435/rsglobal_ws/12062018/5814
7. Ushakova I.G., Gorelkina G.A., Korchevskaya Ju.V. The analysis of water supply sources of Omsk Region settlements along the Om river. Vestnik Omskogo gosudarstvennogo agrarnogo universiteta. 2017. No. 4 (28), pp. 258–262. (In Russian).
8. Chernousenko G.I., Pankova E.I., Kalinina N.V., Rukhovich D.I., Ubugunova V.I., Ubugunov V.L., Tsyrempilov E.G. Salt-affected soils of the Barguzin depression. Eurasian Soil Science. 2017. No. 6 (50), pp. 646–663. (In Russian). DOI: 10.7868/Б0032180XГ706003X
9. Rumyantseva V.E., Goglev I.N., Loginova S.A. Application of field and laboratory methods for the determination of carbonation, chloride and sulfate corrosion in the examination of building structures of buildings and structures. Stroitel`stvo i texnogennaya bezopasnost`. 2019. No. 15, pp. 51–58. (In Russian).
10. Loginova S.A., Goglev I.N. Improving the biostability of concrete and reinforced concrete bridge supports. Vestnik NIC “Stroitel’stvo”. 2022. No. 1 (32), pp. 115–127. (In Russian). DOI: 10.37538/2224-9494-2022-1(32)-115-127
11. Stepanova V.F., Rosental N.K., Chehniy G.V. Development of the manual to the code of Rules 28.13330.2017 “Protection of building structures from corrosion”. Vestnik NIC “Stroitel’stvo”. 2018. No. 4 (19), pp. 93–103. (In Russian).
12. Stepanova V.F., Rosental N.K., Chehniy G.V. Change No. 1 to SP 72.13330.2016 “SNIP 3.04.03–­85 Protection of building structures and structures from corrosion”. BST. 2019. No. 7 (1019), pp. 12–13. (In Russian).
13. Begalieva D.U., Ploshandskaya O.S. Acid rains. Vestnik of the Kazakh Academy of Transport and Communications named after. M. Tynyshpayeva. 2008. No. 3 (52), pp. 216–219. (In Russian).
14. Cybenko A.V., Shalimov V.N., Goglev I.N., Loginova S.A. Operation of Logicbase™ polymer roll waterproofing material for multiaxial stretching. Promyshlennoe i grazhdanskoe stroitel’stvo. 2023. No. 3, pp. 74–79. (In Russian).
15. Chubinishvili A.T. Application of special polymeric waterproofing membrane for underground works. Metro i tonneli. 2015. No. 6, pp. 31–33. (In Russian).

For citation: Shalimov V.N., Cybenko A.V., Goglev I.N., Loginova S.A. Study of the chemical resistance of PVC membranes for engineering waterproofing. Stroitel’nye Materialy [Construction Materials]. 2023. No. 10, pp. 63–69. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-818-10-63-69

Study of the Effect of Recipe and Technological Parameters for Water Absorption of Pressed Citrogypsum-Based Materials

Number of journal: 10-2023
Autors:

Alfimova N.I.,
Pirieva S.Yu.

DOI: https://doi.org/10.31659/0585-430X-2023-818-10-58-62
УДК: 666.914

 

AbstractAbout AuthorsReferences
The use of gypsum-containing by-products as a raw material for the production of gypsum binders and products corresponds to the concept of rational environmental management. However, obtaining a high-quality gypsum product, in the case of replacing natural gypsum with gypsum-containing by-products, using standard technological methods and equipment is extremely difficult. This contributed to the development of additional techniques and new approaches to the manufacture of gypsum products, the most promising of which is the pressing method. Based on the fact that the manufacture of products using the pressing method is an energy-intensive process, it is extremely important to optimize it by selecting rational formulation and technological parameters that will ensure the production of a product with specified physical and mechanical characteristics with minimal material and energy consumption. For this purpose, the influence of the amount of filler, pressing pressure and water-solid ratio on the water absorption of products obtained by pressing a semi-dry raw mixture consisting of citrogypsum binder and citrogypsum (filler) was studied.
N.I. ALFIMOVA1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
S.Yu. PIRIEVA1,2, Assistant (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Belgorod State Technological University named after V.G. Shukhov (46, Kostukova Street, Belgorod, 308012, Russian Federation)
2 Belgorod National Research University (85, Pobedy Street, Belgorod, 308015, Russian Federation)

1. Jawaid M., Singh B., Kian L.K., Zaki S.A., Radzi A.M. Processing techniques on plastic waste materials for construction and building applications. Current Opinion in Green and Sustainable Chemistry. 2023. Vol. 40. 100761. DOI: 10.1016/j.cogsc.2023.100761.
2. Oluleye B.I., Chan D.W.M., Saka A.B., Olawumi T.O., Circular economy research on building construction and demolition waste: A review of current trends and future research directions. Journal of Cleaner Production. 2022. Vol. 357. 131927. DOI: 10.1016/j.jclepro.2022.131927.
3. Ву Ким З., Танг В.Л., Баженова С.И., Нгуен Дуен П. Возможность использования доменных шлаков в производстве бетонов и растворов во Вьетнаме // Вестник БГТУ им. В.Г. Шухова. 2019. № 11. С. 17–24. DOI: 10.34031/2071-7318-2019-4-11-17-24.
3. Vu Kim Z., Tang V.L., Bazhenova S.I., Nguyen Duyen P. Possibility of using blast-furnace slags in the production of concretes and mortars in Vietnam. Vestnik of BSTU named after V.G. Shukhov. 2019. No. 11, pp. 17–24. (In Russian) DOI: 10.34031/2071-7318-2019-4-11-17-24
4. Аль-Бу-Али У.С., Лесовик Р.В., Сопин Д.М., Ахмед А.А.А., Лесовик Г.А. Переработанный строительный отход как бетонный заполнитель для устойчивых строительных материалов // Вестник БГТУ им. В.Г. Шухова. 2020. № 11. С. 32–40. DOI: 10.34031/2071-7318-2020-5-11-32-40.
4. Al-Bu-Ali U.S., Lesovik R.V., Sopin D.M., Akhmed A.A.A., Lesovik G.A. Recycled building waste as concrete aggregate for sustainable building materials. Vestnik of BSTU named after V.G. Shukhov. 2020. No. 11, pp. 32–40. (In Russian) DOI: 10.34031/2071-7318-2020-5-11-32-40
5. Kozhukhova N., Kozhukhova M., Teslya A., Nikulin I. The effect of different modifying methods on physical, mechanical and thermal performance of cellular geopolymers as thermal insulation materials for building structures. Buildings. 2022. Vol. 12. 241. DOI: 10.3390/buildings12020241
6. Calderón-Morales B.R.S., García-Martínez A., Pineda P., García-Tenório R. Valorization of phosphogypsum in cement-based materials: Limits and potential in eco-efficient construction. Journal of Building Engineering. 2021. Vol. 44. 102506. DOI: 10.1016/j.jobe.2021.102506
7. Алфимова Н.И., Пириева С.Ю., Елистраткин М.Ю., Кожухова Н.И., Титенко А.А. Обзорный анализ способов получения вяжущих из гипсосодержащих отходов промышленных производств // Вестник БГТУ им. В.Г. Шухова. 2020. № 11. С. 8–23.
7. Alfimova N.I., Pirieva S.Yu., Elistratkin M.Yu., Kozhuhova N.I., Titenko A.A. Production methods of binders containing gypsum-bearing wastes: a review. Vestnik of BSTU named after V.G. Shukhov. 2020. No. 11, pp. 8–23. (In Russian) DOI: 10.34031/2071-7318-2020-5-11-8-23
8. Чернышева Н.В., Свергузова С.В., Тарасова Г.И. Получение гипсового вяжущего из фосфогипса Туниса // Строительные материалы. 2010. № 7. С. 28–30.
8. Chernysheva N.V., Sverguzova S.V., Tarasova G.I. Obtaining a gypsum binder from Tunisian phosphogypsum. Stroitel’nye Materialy [Construction Materials]. 2010. No. 7, pp. 28–30. (In Russian).
9. Guan B., Yang L., Wu Z., Shen Z., Ma X., Ye Q. Preparation of α-calcium sulfate hemihydrate from FGD gypsum in K, Mg-containing concentrated CaCl2 solution under mild conditions. Fuel. 2009. Vol. 88, pp. 1286–1293. DOI: 10.1016/j.fuel.2009.01.004
10. Ma B., Lu W., Su Y., Li Y., Gao C., He X. Synthesisof α-hemihydrate gypsum from cleaner phosphogypsum. Journal of Cleaner Production. 2018. Vol. 195, pp. 396–405. DOI: 10.1016/j.jclepro.2018.05.228
11. Мирсаев Р.Н., Бабков В.В., Недосеко И.В. и др. Структурообразование и твердение прессованных композиций на основе дигидрата сульфата кальция // Строительные материалы. 2009. № 6. С. 6–9.
11. Mirsaev R.N., Babkov V.V., Nedoseko I.V. et al. Structure formation and hardening of pressed compositions based on calcium sulfate dehydrate. Stroitel’nye Materialy [Construction Materials]. 2009. No. 6, pp. 6–9. (In Russian).
12. Petropavlovskii K., Novichenkova T., Petropavlovskaya V., Sulman M., Fediuk R., Amran M. Faience waste for the production of wall. Materials. 2021. Vol. 14(21). 6677. DOI: 10.3390/ma14216677
13. Алфимова Н.И., Пириева С.Ю., Левицкая К.М. Повышение качественных характеристик прессованных изделий из цитрогипса и вяжущего на его основе // Строительные материалы. 2023. № 5. С. 89–94. DOI: https://doi.org/10.31659/0585-430X-2023-813-5-89-94
13. Alfimova N.I., Pirieva S.Yu., Levickaya K.M. Improvement in qualitative characteristics of pressed products from citrogypsum and based binder. Stroitel’nye Materialy [Construction Materials]. 2023. No. 5, pp. 89–94. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-813-5-89-94
14. Петропавловская В.Б., Новиченкова Т.Б., Бурьянов А.Ф. Повышение технологических свойств безобжиговых гиперпрессованных гипсовых изделий // Вестник БГТУ им. В.Г. Шухова. 2013. № 6. С. 75–78.
14. Petropavlovskaya V.B., Novichenkova T.B., Buryanov A.F. Improving the technological properties of non-firing hyper-pressed gypsum products. Vestnik of BSTU named after V.G. Shukhov. 2013. No. 6, pp. 75–78. (In Russian).
15. Халиков Р.М., Синицина Е.А., Силантьева Е.И., Пудовкин А.Н., Недосеко И.В. Модифицирующее усиление твердения прессованных строительных гипсовых нанокомпозитов // Нанотехнологии в строительстве: научный интернет-журнал. 2019. Т. 11. № 5. С. 549–560. DOI: 10.15828/2075-8545-2019-11-5-549-560
15. Khalikov R.M., Sinitsina E.A., Silantyeva E.I., Pudovkin A.N., Nedoseko I.V. Modifying intensification of the hardening of extruded construction gypsum nanocomposites. Nanotehnologii v stroitel’stve. 2019. Vol. 11. No. 5, pp. 549–560. DOI: 10.15828/2075-8545-2019-11-5-549-560
16. Петропавловская В.Б., Бурьянов А.Ф., Петропавловский К.С., Новиченкова Т.Б. Высокопрочные гипсовые материалы // Химия, физика и механика материалов. 2019. № 1 (20). С. 3–13.
16. Petropavlovskaya V.B., Buryanov A.F., Petropavlovskii K.S., Novichenkova T.B. High strength gypsum materials. Khimiya, fizika i mexanika materialov. 2019. No. 1 (20), pp. 3–13. (In Russian).
17. Alfimova N., Pirieva S., Levickaya K., Elistratkin M. The production of gypsum materials with recycled citrogypsum using semi-dry pressing technology. Recycling. 2023. Vol. 8. 34. doi:10.3390/recycling8020034

For citation: Alfimova N.I., Pirieva S.Yu. Study of the effect of recipe and technological parameters for water absorption of pressed citrogypsum-based materials. Stroitel’nye Materialy [Construction Materials]. 2023. No. 10, pp. 58–62. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-818-10-58-62

Mechanochemical Synthesis of Composite Anhydrite Binders

Number of journal: 10-2023
Autors:

Garkavi M.S.,
Artamonov A.V.,
Kolodezhnaya E.V.
Dergunov S.A.,
Serikov S.V.

DOI: https://doi.org/10.31659/0585-430X-2023-818-10-52-57
УДК: 666.914

 

AbstractAbout AuthorsReferences
The process of mechanochemical synthesis of composite anhydrite binders using various metallurgical slags is considered. It has been established that during the joint grinding of the components of a composite binder in an energy-intensive centrifugal impact mill, mechanocomposites are formed in the mixture. Mechanocomposites are metastable structures with a high density of interfacial boundaries between the initial components, which provides a very high concentration of defects and active centers of various nature. When grinding a mixture of anhydrite and metallurgical slag, a mechanocomposite was obtained, which is a CaSO4–CaO–Al2O3 or CaSO4–CaO–SiO2 system and consists of calcium aluminates, silicates and aluminosilicates. This mechanocomposites are activators of the hardening process of the anhydrite component of the composite binder due to the formation of calcium and aluminum hydroxides and calcium hydroaluminates during their hydration. The effect of the chemical composition of metallurgical slag on the strength characteristics of a composite anhydrite binder has been established.
M.S. GARKAVI1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.V. ARTAMONOV1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
E.V. KOLODEZHNAYA2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
S.A. DERGUNOV3, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
S.V. SERIKOV3, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Ural-Omega, PJSC (89, Building 7, Lenina Avenue, Magnitogorsk, 455037, Russian Federation)
2 Institute of Comprehensive Exploitation of Mineral Resources Russian Academy of Sciences (4, Kryukovskiy Impasse, Moscow, 111020, Russian Federation)
3 Orenburg State University (13, Pobedy Avenue, Orenburg, 460018, Russian Federation)

1. Gordina А.F., Polyanskikh I.S., Gafipov A.T., Kuzmina N.V. Pudov I.А. Structure formation aspects for fluoranhydrate-based materials. Stroitel’nye Materialy [Construction Materials]. 2022. No. 11, pp. 50–57. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-808-11-50-57
2. Nurieva E.M., Bakhtin A.I., Denisov I.G., Galleev A.A., Altykis M.G., Khaliullin M.I., Rakhimov R.Z. On the mechanism of influence of mineral and chemical additives on the hydration process of gypsum binder based on anhydrite (CaSO4 II). Izvestiya vuzov. Stroitel’stvo. 1999. No. 1, pp. 56–62. (In Russian).
3. Altykis M.G., Rakhimov R.Z., Khaliullin M.I., Morozov V.P. Development of theoretical foundations and creation of a new generation of high-quality, economical and environmentally friendly gypsum binders and materials. Increasing the efficiency of production and use of gypsum materials and products. Moscow. 2002, pp. 138–142. (In Russian).
4. Gordina A.F., Polyanskikh I.S., Tokarev Yu.V., Buryanov A.F., Senkov S.A. Water-resistant gypsum materials modified with cement, microsilica and nano-structures. Stroitel’nye Materialy [Construction Materials]. 2014. No. 6, pp. 35-37. (In Russian).
5. Petropavlovskaya V.B., Belov V.V., Novichenkova T.B. Maloenergoyemkiye gipsovyye stroitel’nyye kompozity: monografiya [Low-energy gypsum building composites: monograph]. Tver: TVGTU. 2014. 136 p.
6. Klimenko V.G. Anhydrite hardening activators based on gypsum heat treatment products. Izvestiya vuzov. Stroitel’stvo. 2011. No. 4 (628), pp. 21–28. (In Russian).
7. Fisher H.-B., Vtorov B.B., Buryanov A.F. Study of the effect of multicomponent hardening activators on the properties of natural anhydrite. Stroitel’nye Materialy [Construction Materials]. 2023. No. 1–2, pp. 63–68. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-810-1-2-63-68
8. Buryanov A.F., Fisher H.-B., Gal’tseva N.A., Machortov D.N., Hasanshin R.R. Research in the influence of various activating additives on the properties of anhydrite binder. Stroitel’nye Materialy [Construction Materials]. 2020. No. 7, pp. 4–9. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-782-7-4-9
9. Batova M.D., Semenova Yu.A., Gordina A.F., Yakovlev G.I., Buryanov A.F., Stevens A.E., Begunova E.V. Structure and properties of gypsum compositions with mineral dispersed additives. Stroitel’nye Materialy [Construction Materials]. 2021. No. 10, pp. 49–53. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-796-10-49-53
10. Sulimenko L.M., Shalunenko N.I., Urkhanova L.A. Mechanochemical activation of binder compositions. Izvestiya vuzov. Stroitel’stvo. 1995. No. 11, pp. 63–68. (In Russian).
11. Avvakumov E.G., Gusev A.A. Mekhanicheskie metody aktivatsii v pererabotke prirodnogo i tekhnogennogo syr’ya [Mechanical methods of activation in the processing of natural and technogenic raw materials]. Novosibirsk: “Geo”. 2009. 155 p.
12. Prokofiev V.Yu., Gordina N.E. Processes of grinding and mechanochemical activation in the technology of oxide ceramics (review). Steklo i keramika. 2012. No. 2, pp. 29–34. (In Russian).
13. Ivashchenko Yu.G., Evstigneev S.A., Strakhov A.V. The role of fillers and modifiers in the formation of the structure and properties of composites based on gypsum binder. Reliability and durability of building materials, structures and foundations: Proceedings of the VI International Scientific and Technical Conference. Volgograd: VolGASU. 2011, pp. 159-162. (In Russian).
14. Ancharov A.I. Mekhanokompozity – prekursory dlya sozdaniya materialov s novymi svoistvami [Mechanocomposites as precursors for creating materials with new properties]. Novosibirsk: Publishing house of SO RAN. 2010. 424 p.
15. Smolyakov V.K., Lapshin O.V. Makroskopicheskaya kinetika mekhanokhimicheskogo sinteza: monografiya [Macroscopic kinetics of mechanochemical synthesis: monograph]. Tomsk: Publishing House of the Institute of Atmospheric Optics SB RAS, 2011. 192 p.
16. Budnikov P.P., Zorin S.P. Anhydrite cement [Anhydrite cement]. Moscow: Promstroyizdat. 1954. 93 p.
17. Garkavi M.S., Dergunov S.A., Serikov S.V. Formation of the structure of composite cement in the grinding process. Stroitel’nye Materialy [Construction Materials]. 2021. No. 10, pp. 65–68. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-796-10-65-68
18. Baidarashvili M.M., Sakharova A.S. Study of the sorption properties of materials using the physicochemical method of distribution of adsorption centers. Sorbtsionnyye i khromatograficheskiye protsessy. 2020. Vol. 20. No. 1, pp. 87–94. (In Russian).
19. Sychev M.M. [Hardening of binders]. Leningrad: Stroyizdat (Leningrad branch). 1974. 80 p.
20. Kuznetsova T.V., Sychev M.M., Osokin A.P. and others. Spetsial’nye tsementy: Uchebnoe posobie dlya vuzov [Special cements: Textbook for universities]. St. Petersburg: Stroyizdat. 1997. 314 p.

For citation: Garkavi M.S., Artamonov A.V., Kolodezhnaya E.V. Dergunov S.A., Serikov S.V. Mechanochemical synthesis of composite anhydrite binders. Stroitel’nye Materialy [Construction Materials]. 2023. No. 10, pp. 52–57. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-818-10-52-57

https://www.traditionrolex.com/10