Use of Dust Entrainment from the Gas-Cleaning System of a Cladder of Mineral Wood Production for Clinker-Free Binderм

Number of journal: 10-2023
Autors:

Fedorov P.A.,
Sinitsin D.A.,
Shagigalin G.Yu.

DOI: https://doi.org/10.31659/0585-430X-2023-818-10-78-84
УДК: 691:666

 

AbstractAbout AuthorsReferences
The development of binders based on man-made industrial waste is one of the most popular areas of development of building materials science. One of the promising wastes is dust removal from the gas cleaning system of the mineral wool production cupola. The article presents the results of studies of the structure of dust entrainment, as well as the physical and mechanical properties of a clinker-free binder in comparison with Portland cement. The technological preparation of dust removal by sifting it through a 0.16 mm sieve and subsequent mechanical activation is proposed. The best values were shown by the composition of the binder with a specific-to-specific surface area of 733 m2/kg sealed with an aqueous solution of caustic soda with a concentration of 8.3 M. For this composition, during 28 days of normal hardening, the compressive strength was 54.3 MPa, bending strength was 6.6 MPa. The influence of the composition of the alkaline activator, the hardening conditions on the strength of the samples during bending and compression is considered. An assessment of the structure of the forming cement matrix, as well as its mineralogical composition, was carried out. The study of the products of the structure formation of the cement matrix from dust-entrainment is represented by cyolite group minerals.
P.A. FEDOROV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
D.A. SINITSIN, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
G.Yu. SHAGIGALIN, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Ufa State Petroleum Technological University (1, Kosmonavtov Street, Ufa, 450064, Russian Federation)

1. Клаус-Дитер Х. Утилизация минеральной ваты – продуманное средство, сочетающее увеличение прибыли и охрану окружающей среды // Базальтовые технологии. 2014. № 1. C. 65–72.
1. Klaus-Diter Kh. Recycling of mineral wool – a well-thought-out tool that combines increased profits and environmental protection. Bazal’tovye tekhnologii. 2014. No. 1, pp. 65–72. (In Russian).
2. Grass K., Bartashov V., Sucker J. Recycling of mineral wool waste. https://www.ibe.at/wp-content/uploads/2021/03/Recycling-of-mineral-wool-waste-1.htm (дата обращения 03.08.2022).
3. Зайцева Л.Р., Луцык Е.В., Латыпова Т.В., Латыпов В.М., Федоров П.А., Попов В.П. Влияние вида заполнителя из отходов производств на коррозионную стойкость бетона // Строительные материалы. 2021. № 11. С. 23–29. DOI: https://doi.org/10.31659/0585-430X-2021-797-11-23-29
3. Zaitseva L.R., Lutsyk E.V., Latypova T.V., Latypov V.M., Fedorov P.A., Popov V.P. Influence of the type of filler from production waste on the corrosion resistance of concrete. Stroitel’nye Materialy [Construction Materials]. 2021. No. 11, pp. 23–29. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-797-11-23-29
4. Kubiliute R., Kaminskas R., Kazlauskaite A. Mineral wool production waste as an additive for Portland cement. Cement and Concrete Composites. 2018. Vol. 88. pp. 130–138. DOI: https://doi.org/10.1016/j.cemconcomp.2018.02.003
5. Nagrockiene D. The effect of waste from mineral wool manufacturing on the properties of concrete. Ceramics – Silikaty. 2021, pp. 1–8. DOI: https://doi.org/10.13168/cs.2021.0013
6. Stonys R., Kuznetsov D., Krasnikovs A., Skamat J., Baltakys K., Antonovic V., Cernasejus O. Reuse of ultrafine mineral wool production waste in the manufacture of refractory concrete. Journal of Environmental Management. 2016. Vol. 176, pp. 149–156. DOI: https://doi.org/10.1016/j.jenvman.2016.03.045
7. Абдрахимов В.З. Использование отходов минеральной ваты в производстве керамических стеновых материалов // Вестник ПНИПУ. Строительство и архитектура. 2019. Т. 10. № 3. C. 53–60. DOI: https://doi.org/10.15593/2224-9826/2019.3.06
7. Abdrakhimov V.Z. The use of waste mineral wool in the production of ceramic wall materials. Vestnik of PNRPU. Construction and Architecture. 2019. Vol. 10. No. 3, pp. 53–60. DOI: 10.15593/2224-9826/2019.3.06
8. Саламанова М.Ш., Муртазаев С.-А.Ю. Цементы щелочной активации: возможность снижения энергоемкости получения строительных композитов // Строительные материалы. 2019. № 7. С. 32–40. DOI: https://doi.org/10.31659/0585-430X-2019-772-7-32-40
8. Salamanova M.Sh., Murtazaev S.-A.Yu. Cements of alkaline activation the possibility of reducing the energy intensity of building composites. Stroitel’nye Materialy [Construction Materials]. 2019. No. 7, pp. 32–40. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-772-7-32-40
9. Fedorov P, Sinitsin D. Alkali-activated binder based on cupola dust of mineral wool production with mechanical activation. Buildings. 2022. No. 12 (10). 1565. https://doi.org/10.3390/buildings12101565
10. Ерофеев В.Т., Родин А.И., Якунин В.В., Богатов А.Д., Бочкин В.С., Чегодайкин А.М. Шлакощелочные вяжущие из отходов производства минеральной ваты // Инженерно-строительный журнал. 2018. № 6 (82). C. 219–227. DOI: https://doi.org/10.18720/MCE.82.20
10. Erofeev V.T., Rodin A.I., Yakunin V.V., Bogatov A.D., Bochkin V.S., Chegodajkin A.M. Alkali-activated slag binders from rock-wool production wastes. Magazine of Civil Engineering. 2018. No. 6 (82), pp. 219–227. DOI: 10.18720/MCE.82.20
11. Kinnunen P., Yliniemi J., Talling B., Illikainen M. Rockwool waste in fly ash geopolymer composites. Journal of Material Cycles and Waste Management. 2017. Vol. 19. No. 3, pp. 1220–1227. DOI: https://doi.org/10.1007/s10163-016-0514-z
12. Liu G., Florea M.V.A., Brouwers H.J.H. Waste glass as binder in alkali activated slag–fly ash mortars. Materials and Structures. 2019. Vol. 52. No. 5. 101. DOI: https://doi.org/10.1617/s11527-019-1404-3
13. Dong M., Elchalakani M., Karrech A., Pham T.M., Yang B. Glass fibre-reinforced polymer circular alkali-activated fly ash/slag concrete members under combined loading. Engineering Structures. 2019. Vol. 199. 109598. DOI: https://doi.org/10.1016/j.engstruct.2019.109598
14. Глуховский В.Д., Пахомов В.А. Шлакощелочные цементы и бетоны. Киев: Будiвельник, 1978. 184 с.
14. Glukhovsky V.D., Pakhomov V.A. Shlakoshchelochnyye tsementy i betony [Slag-alkaline cements and concretes]. Kyiv: Budivelnik. 1978. 184 p.
15. Chen X., Zhang Y., Hui D., Chen M., Wu Z. Study of melting properties of basalt based on their mineral components. Composites Part B: Engineering. 2017. Vol. 116, pp. 53–60. DOI: https://doi.org/10.1016/j.compositesb.2017.02.014
16. Петровская А.А., Каптюшина А.Г. Исследование свойств шлакощелочных вяжущих и бетонов на их основе // Строительные материалы. 2021. № 10. С. 21–24. DOI: https://doi.org/10.31659/0585-430X-2021-796-10-21-24
16. Petrovskaya A.A., Kaptyushina A.G. Research in the properties of slag-alkaline binders and concretes based on them. Stroitel’nye Materialy [Construction Materials]. 2021. No. 10, pp. 21–24. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-796-10-21-24
17. Davidovits J. Geopolymer chemistry and applications1. Saint-Quentin, France: Institute Geopolymer. 2011. 614 p.

For citation: Fedorov P.A., Sinitsin D.A., Shagigalin G.Yu. Use of dust entrainment from the gas-cleaning system of a cladder of mineral wood production for clinker-free binder. Stroitel’nye Materialy [Construction Materials]. 2023. No. 10, pp. 78–84. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-818-10-78-84


Print   Email