Investigation of the Bearing Capacity and Deformability of Promising Joints of Wooden Structures Using Composite Materials

Number of journal: 10-2023
Autors:

Tusnin A.R.,
Linkov N.V.,
Klyukin A.A.

DOI: https://doi.org/10.31659/0585-430X-2023-818-10-99-108
УДК: 624.011.17

 

AbstractAbout AuthorsReferences
One of the actual directions in the study of wooden structures is the determination of the strength characteristics of the nodes and joints of wooden elements using composite materials. These materials allow us to solve the problems of designing wooden structures without the use of rallying, building and reinforcing individual elements. Composite materials do not lead to a significant increase in the dimensions of the nodes and do not damage the appearance of the structures. The use of new high-strength materials significantly increases the service life of the structure and increases reliability. the object of the study is the connection of elements of wooden structures with composite materials based on fiberglass. The type of joints of wooden elements with a composite material based on fiberglass is proposed. The conducted research is aimed at obtaining experimental data to determine the characteristics of CM-joints of composite wooden elements. As part of the study, several series of symmetrical, two-cut samples with different thickness of composite material were considered. The composite material connection was performed by layer-by-layer formation on a wooden structure. The article presents the results of studies of the strength and deformability of the developed compound. Strength characteristics are established, in the form of resistance to the cut of the composite material along the seam of bonding in the joint, resistance to the separation of the composite material from the base, chipping of the composite material. The characteristics of deformability of KM-joints during short-term machine tests with linearly increasing load in samples are established. Conclusions. The conducted research has shown that the strength characteristics of the tested compounds correspond to the calculated load-bearing capacity.
A.R. TUSNIN, Doctor of Sciences (Engineering), Professor, Head of the Department of Metal and Wooden Structures (This email address is being protected from spambots. You need JavaScript enabled to view it.),
N.V. LINKOV, Candidate of Sciences (Engineering), Associate Professor of the Department of Metal and Wooden Structures (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.A. KLYUKIN, Engineer, Senior Lecturer at the Department of Metal and Wooden Structures (This email address is being protected from spambots. You need JavaScript enabled to view it.)

National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Rutman U.L., Meleshko V.A. The generalization of the flexibility method for elastoplastic computation of rod systems. Materials Physics and Mechanics. 2017. Vol. 31, pp. 67–70.
2. Kozinetc K.G., Kärki T., Barabanshchikov Yu.G., Lahtela V., Zotov D.K. Mechanical properties of sustainable wooden structures reinforced with basalt fiber reinforced polymer. Magazine of Civil Engineering. 2020. Vol. 100 (8). DOI: 10.18720/MCE.100.12
3. Togay A., Döngel N., Söğütlü C., Ergin E., Uzel M., and Güneş, S. «Determination of the modulus of elasticity of wooden construction elements reinforced with fiberglass wire mesh and aluminum wire mesh. BioResources. 2017. Vol. 12. Iss. 2, pp. 2466–2478. DOI: 10.15376/biores.12.2.2466-2478
4. Trummer A., Luggin W.F. Holz+ hochfeste Fasern. Leistungssteigerung durch Bewehrung // Holz + proHolz Austria. 2005. No. 11. P. 24.
5. Blaß H.J., Romani M. Biegezugverstärkung von BS-Holz mit CFK- und AFK-Lamellen. Bautechnik. 2002. Vol. 79, No. 4, pp. 216–224.
6. Blaß H.J., Romani M. Tragfähigkeitsuntersuchungen an Verbundträgern aus BS-Holz und Faserverbund-kunststoff-Lamellen. Holz als Roh- und Werkstoff. (2001). 2001. Vol. 59. No. 5, pp. 364–373. https://doi.org/10.1007/s001070100225
7. Lisyatnikov M.S., Glebova T.O., Ageev S.P., Ivaniuk A.M. Strength of wood reinforced with a polymer composite for crumpling across the fibers. URL: libgen.ggfwzs.net/book/84486144/7c11d1. International Conference on Materials Physics, Building Structures and Technologies in Construction, Industrial and Production Engineering (MPCPE 2020). 27–28 April 2020. Vladimir State University named after Alexander and Nikolay Stoletovs. IOP Conference Series Materials Science and Engineering. 2020. Vol. 896. DOI 10.1088/1757-899X/896/1/012062
8. Zachary Christian, Kavan Shebli. Feasibility of strengthening glulam beams with prestressed basalt fibre reinforced polymers. Department of Civil and Environmental Engineering Division of Structural Engineering Steel and Timber Structures Chalmers University of Technology SE-412 96 Göteborg Sweden. https://publications.lib.chalmers.se/records/fulltext/162909.pdf
9. Стоянов В.О. Прочность и деформативность изгибаемых деревянных элементов, усиленных полимерными композитами: Дис. … канд. техн. наук. М., 2018. 186 с.
9. Stoyanov V.O. Strength and deformability of bent wooden elements reinforced with polymer composites. Diss... Candidate of Science (Engineering). Moscow. 2018. 186 p.
10. Schober Kay-Uwe. Hochleistungskunststoffe für die tragwerksverstärkung von holzkonstruktionen im bestand. Bausubstanz. 2010. Vol. 4, pp. 38–43. DOI: 10.51202/2190-4278-2010-4-38
11. Geshanov I., Kachlakev D. Composite reinforce concrete-timber floor system externally strengthened with CFRP composites. 13th International Conference SFR. Edinburg, Scotland. 2010, pp. 151–153.
12. Ascione L., Bonamini G., Benedetti A., Borri A. Guidelines for the design and construction of externally bonded FRP systems for strengthening existing structures: timber structures. Italy. 2005. 58 p. DOI: 10.13140/RG.2.2.24325.58089
13. Franke S., Franke B., Harte A.M. Failure modes and reinforcement techniques for timber beams – State of the art. Construction and Building Materials. 2015. Vol. 97, pp. 2–13. https://doi.org/10.1016/j.conbuildmat.2015.06.021
14. Ao Zhou, Lik-ho Tam, Zechuan Yu, Denvid Lau. Effect of moisture on the mechanical properties of CFRP–wood composite: An experimental and atomistic investigation. Composites Part B: Engineering. 2015. Vol. 71, pp. 63–73. https://doi.org/10.1016/j.compositesb.2014.10.051
15. Lik-ho Tam, Ao Zhou, Zechuan Yu, Qiwen Qiu, Denvid Lau. Understanding the effect of tempe-rature on the interfacial behavior of CFRP-wood composite via molecular dynamics simulations. Composites Part B: Engineering. 2017. Vol. 109, pp. 227–237. https://doi.org/10.1016/j.compositesb.2016.10.030
16. Иванов Ю.М. Рекомендации по испытанию соединений деревянных конструкций / ЦНИИСК им. В.А. Кучеренко. М.: Стройиздат, 1981. 40 c.
16. Ivanov Yu.M. Rekomendatsii po ispytaniyu soedinenii derevyannykh konstruktsii [Recommendations for testing connections of wooden structures / TsNIISK named after V.A. Kucherenko]. Moscow: Stroyizdat. 1981. 40 p.

For citation: Tusnin A.R., Linkov N.V., Klyukin A.A. Investigation of the bearing capacity and deformability of promising joints of wooden structures using composite materials. Stroitel’nye Materialy [Construction Materials]. 2023. No. 10, pp. 99–108. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-818-10-99-108


Print   Email