Effect of Citrogypsum on Shrinkage in Slag Cements

Number of journal: 10-2023
Autors:

Kozhukhova N.I.,
Glazkov R.A.,
Kolomytceva A.I.,
Nikulin I.S.,
Cherevatova A.V.

DOI: https://doi.org/10.31659/0585-430X-2023-818-10-47-51
УДК: 666.914

 

AbstractAbout AuthorsReferences
Nowadays, numerous studies have proven that slag-alkaline systems: cements and concretes are promising materials that compete with ordinary cement concretes in the construction industry. This is justified by a wide list of their competitive properties that meet modern requirements for building materials and products. However, despite the positive aspects of this group of materials, they are characterized by significant drawbacks that limit their wider practical application, including shrinkage during hardening. Within the framework of the article, the influence of the gypsum-containing component – citrogypsum, on the character and kinetics of shrinkage deformations of slag cements of various component compositions during the hardening process was studied. It was found that, depending on the type of alkaline activator, the addition of citrogypsum had a different effect on the shrinkage values of the binding system. When the NaOH binding system is activated, the introduction of citrogypsum helps to reduce shrinkage deformations up to two times. When using Na2CO3 and Na2SiO3 salts as alkaline activators, the addition of citrogypsum contributes to a sharp increase in shrinkage from 5 to 10 times.
N.I. KOZHUKHOVA1, Candidate of Science (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
R.A. GLAZKOV1, Postgraduate Student (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.I. KOLOMYTCEVA1, Master Student (This email address is being protected from spambots. You need JavaScript enabled to view it.);
I.S. NIKULIN2,3, Candidate of Science (Physical and Mathematical) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.V. CHEREVATOVA1, Doctor of Science (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Belgorod State Technological University named after V.G. Shukhov (46, Kostyukova Street, Belgorod, 308012, Russian Federation)
2 Belgorod National Research University (85, Pobedy Street, Belgorod, 308015, Russian Federation)
3 Fund of Innovative Scientific Technologies (room 3.3, 1, Perspektivnaya Street (Novosadovy microdistrict), Novosadovy village, Belgorod region, 308518, Russian Federation)

1. Krivenko P. Why alkaline activation – 60 years of the theory and practice of alkali-activated materials. Journal of Ceramic Science and Technology. 2017. Vol. 8. No. 3, pp. 323–334. DOI:10.4416/JCST2017-00042
2. Банул А.В. Шлакощелочные составы, их свойства и технология производства сухих шлакощелочных растворных смесей. Сборник Международной научно-технической конференции «Эффективные рецептуры и технологии в строительном материаловедении». Новосибирск, 14–17 февраля. 2017. С. 196–200.
2. Banul A.V. Slag-alkali compositions, their properties and production technology of dry slag-alkali mortar mixtures. Collection of the International Scientific and Technical Conference «Effective Formulations and Technologies in Building Materials Science». Novosibirsk. February 14–17, 2017, pp. 196–200. (In Russian).
3. Kozhukhova N.I., Alfimova N.I., Kozhukhova M.I., Nikulin I.S., Glazkov R.A., Kolomytceva A.I. Supplementary mineral additive on physical and mechanical performance of granulated blast furnace slag-based alkali-activated binders. Recycling. 2023. Vol. 8(1). No. 22. DOI:10.3390/recycling8010022
4. Иванов К.С., Иванов Н.К. Комплексное использование отходов черной металлургии при изготовлении шлакощелочных мелкозернистых бетонов. Строительные материалы. 2005. № 11. С. 74–77.
4. Ivanov K.S., Ivanov N.K. Complex use of ferrous metallurgy waste in the production of slag-alkaline fine-grained concrete. Stroitel’nye Materials [Construction Materials]. 2005. No. 11, pp. 74–77. (In Russian).
5. Калмыкова Ю.С. Переработка отвальных доменных шлаков с получением шлакощелочных вяжущих. Экология и промышленность России. 2014. № 3. С. 21–25.
5. Kalmykova Yu.S. Processing of waste blast-furnace slags with the production of slag-alkaline binders. Ekologiya i promyshlennost’ Rossii. 2014. No. 3, pp. 21–25. (In Russian).
6. Kozhukhova N., Kadyshev N., Cherevatova A., Voitovich E. Reasonability of application of slags from metallurgy industry in road construction. Advances in Intelligent Systems and Computing. 2017. Vol. 692, 776–782. https://doi.org/10.1007/978-3-319-70987-1_82
7. Pudron A.O. The action of alkalis on blast furnace slag. Journal of Society of Chemical Industry. 1940. No. 59, pp. 191–202.
8. Feret R. Slag for the manufacture of cement. Revue des materiaux deconstruction et de travaux public. 1939, pp. 121–126.
9. Глуховский В.Д., Пашков Т.А., Яворский И.А. Новый строительный материал. Бюллетень технической информации Главкиевстроя. 1957. № 2. С. 43–47.
9. Gluhovsky V.D., Pashkov T.A., Yavorsky I.A. New building material. Bulletin of technical information of Glavkievstroy. 1957. No. 2, pp. 43–47. (In Russian).
10. Chang J.J., Yeih W., Hung C.C. Effects of gypsum and phosphoric acid on the properties of sodium silicate-based alkali-activated slag pastes. Cement and Concrete Composites. 2005. Vol. 27. No. 1, pp. 85–91DOI: 10.1016/j.cemconcomp.2003.12.001
11. Shi H., Guo, X. Effects of Flue Gas Desulfurization (FGD) gypsum on the performances of cement-based materials. Gypsum: Properties, Production and Applications. 2011, pp. 153–174.
12. Kozhukhova N.I., Shurakov I.M., Alfimova N.I., Zhernovskaya I.V., Kozhukhova M.I. Using of citrogypsum in alkali activated systems. Key Engineering Materials. 2022. Vol. 913, pp. 179–184. (In Russian).
13. Kozhukhova N.I., Shurakov I.M., Kozhukhova M.I., Elistratkin M.Yu., Alfimova N.I. Understanding the relationship between composition and rheology in alkali-activated binders. Journal of Physics: Conference Series. Advanced Trends in Civil Engineering 2021 (ATCE 2021). Vol. 2124. DOI 10.1088/1742-6596/2124/1/012004
14. Банул А.В. Влияние режимов обжига на прочность и огневую усадку жаростойких мелкозернистых шлакобетонов. Сборник Национальной научно-технической конференции с международным участием «Повышение качества и эффективности строительных и специальных материалов». Новосибирск, 18–22 февраля. 2019. С. 188–192.
14. Banul A.V. Influence of firing regimes on the strength and fire shrinkage of heat-resistant fine-grained slag concrete. Proceeding of the National Scientific and Technical Conference with international participation «Improving the quality and efficiency of building and special materials». Novosibirsk. 18–22 February 2019, pp. 188–192. (In Russian).
15. Алфимова Н.И., Пириева С.Ю., Елистраткин М.Ю., Кожухова Н.И., Титенко А.А. Обзорный анализ способов получения вяжущих из гипсосодержащих отходов промышленных производств // Вестник БГТУ им. В.Г. Шухова. 2021. № 11. С. 8–23. DOI: 10.34031/2071-7318-2020-5-11-8-23
15. Alfimova N.I., Pirieva S.Yu., Elistratkin M.Yu., Kozhuhova N.I., Titenko A.A. Production methods of binders containing gypsum-bearing wastes: a review. Vestnik of BSTU named after V.G. Shukhov. 2020. No. 11, pp. 8–23. (In Russian). DOI: 10.34031/2071-7318-2020-5-11-8-23
16. Omelchuk V., Ye G., Runova R., Rudenko I. Shrinkage behavior of alkali-activated slag cement pastes. Key Engineering Materials. 2018. Vol. 761, pp. 45–48. DOI:10.4028/www.scientific.net/KEM.761.45

For citation: Kozhukhova N.I., Glazkov R.A., Kolomytceva A.I., Nikulin I.S., Cherevatova A.V. Effect of citrogypsum onshrinkage in slag cements. Stroitel’nye Materialy [Construction Materials]. 2023. No. 10, pp. 47–51. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-818-10-47-51


Print   Email