Influence of Temperature on the Degree of Modification of Wood with Organosilicon Compounds

Number of journal: 10-2023
Autors:

Stepina I.V.,
Zheglova Yu.G.

DOI: https://doi.org/10.31659/0585-430X-2023-818-10-91-98
УДК: 630*842.3

 

AbstractAbout AuthorsReferences
The search for optimal parameters for modifying wood materials with organosilicon compounds is a very urgent task. In the work, the authors investigated the effect of temperature on the efficiency of this process by determining the percentage of silicon in the substrate after modifying native and phosphorylated wood with various classes of organosilicon compounds and establishing the corresponding dependencies. 10% solutions of organosilicon compounds (CBS) were studied as modifiers: polyethylhydridsiloxane (PEGS), tetraethoxysilane (TES), sodium polymethylsilicate (PMSN). Sawdust of sapwood pine and phosphorylated sawdust of sapwood pine were used as a substrate. As a result of the conducted one-factor analysis of variance, the influence of the CBS treatment temperature on the silicon content in wood in wt. was established. % at a fixed modification time. Of the three studied organosilicon surface modifiers, only PEGS shows a stable relationship between the temperature of modification of native and phosphorylated wood and the degree of modification of the substrate, expressed as the percentage of silicon in the wood composite after long-term extraction. TES apparently does not enter into a chemical interaction with either native or phosphorylated wood due to the absence of functional groups in its composition (temperature in this case has no effect). When using native and phosphorylated PMSN wood as a modifier, it was not possible to establish a relationship between the modification temperature and the silicon content in the modified substrate.
I.V. STEPINA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
Yu.G. ZHEGLOVA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Машкин Н.А., Ершова С.Г., Крутасов Б.В., Маньшин А.Г. Защитная обработка строительных материалов кремнийорганическими гидрофобизаторами: Монография. Новосибирск: НГАСУ, 2013. 204 с.
1. Mashkin N.A., Ershova S.G., Krutasov B.V., Man’shin A.G. Zashchitnaya obrabotka stroitel’nykh materialov kremniiorganicheskimi gidrofobizatorami. Monografiya [Protective treatment of building materials with organosilicon hydrophobisers]. Novosibirsk: NGASU. 2013. 204 p.
2. Васильев В.В., Быстрова В.В., Розенкова И.В. Исследование свойств кремнийорганических гидрофобизаторов для древесных плит // Известия высших учебных заведений. Лесной журнал. 2012. № 6. С. 119–126.
2. Vasilyev V.V., Bystrova V.V., Rozenkova I.V. Investigation of the properties of organosilicon hydrophobisers for wood boards. Izvestiya vysshih uchebnyh zavedenij. Lesnoj zhurnal. 2009. No. 6, pp. 119–126. (In Russian).
3. Zarah Walsh-Korb, Luc Avérous, Recent developments in the conservation of materials properties of historical wood. Progress in Materials Science. 2019. Vol. 102, pp. 167–221. DOI: https://doi.org/10.1016/j.pmatsci.2018.12.001
4. Broda M., Plaza N.Z. Durability of model degraded wood treated with organosilicon compounds against fungal decay. International Biodeterioration & Biodegradation. 2023. Vol. 178. 105562. DOI: https://doi.org/10.1016/j.ibiod.2022.105562
5. Perdoch W. et al. The impact of vinylotrimethoxysilane-modified linseed oil on selected properties of impregnated wood. Forests. 2022. Vol. 13. No. 8. 1265. DOI: https://doi.org/10.3390/f13081265
6. Zhou K. et al. Mechanism and effect of alkoxysilanes on the restoration of decayed wood used in historic buildings. Journal of Cultural Heritage. 2020. Vol. 43, pp. 64–72. DOI: https://doi.org/10.1016/j.culher.2019.11.012
7. Odalanowska M. et al. Propolis and organosilanes as innovative hybrid modifiers in wood-based polymer composites. Materials. 2021. Vol. 14. No. 2, p. 464. DOI: https://doi.org/10.3390/ma14020464
8. Pokrovskaya E. Research of bioproof materials at superficial modification of wood. IOP Conference Series: Materials Science and Engineering. 2019. Vol. 471. No. 3. 032047. DOI: 10.1088/1757-899X/471/3/032047
9. Кобелев А.А. Разработка комплексного огнебиовлагозащитного состава на основе соединений, обеспечивающих поверхностную модификацию древесины. М.: Академия ГПС МЧС России, 2012. 128 c.
9. Kobelev A.A. Razrabotka kompleksnogo ognebiovlagozashchitnogo sostava na osnove soyedineniy, obespechivayushchikh poverkhnostnuyu modifikatsiyu drevesiny [Development of a complex fire and moisture protective composition based on compounds that provide surface modification of wood]. Moscow: Academy of State Fire Service of the Ministry of Emergency Situations of Russia. 2012. 128 p.
10. Kamperidou V. et al. Impact of thermal modification combined with silicon compounds treatment on wood structure. Wood Res. 2022. Vol. 67, pp. 773–784. DOI: doi.org/10.37763/wr.1336-4561/67.5.773784
11. Kamperidou V. The biological durability of thermally-and chemically-modified black pine and poplar wood against basidiomycetes and mold action. Forests. 2019. Vol. 10. No. 12. 1111. DOI: https://doi.org/10.3390/f10121111
12. Корниенко В.С. Математическая статистика. Решение задач по теме «Однофакторный дисперсионный анализ». Волгоград: Волгогр. гос. с.-х. акад., 2010. 20 c.
12. Kornienko V.S. Matematicheskaya statistika. Resheniye zadach po teme «Odnofaktornyy dispersionnyy analiz» [Math statistics. Solving problems on the topic “One-factor analysis of variance”]. Volgograd: Volgograd state agricultural academy. 2010. 20 p.
13. Левин Д.М., Стефан Д.К., Тимоти С., Беренсон М.Л. Статистика для менеджеров с использованием Microsoft Excel. М.: Вильямс, 2004.
13. Levin D.M., Stephan D.C., Timothy S., Berenson M.L. Statistika dlya menedzherov s ispol’zovaniyem Microsoft Excel [Statistics for managers using Microsoft Excel]. Moscow: Williams. 2004.
14. Котенева И.В. Боразотные модификаторы поверхности для защиты древесины строительных конструкций: Монография. М.: МГСУ, 2011. 191 c.
14. Koteneva I.V. Borazotnyye modifikatory poverkhnosti dlya zashchity drevesiny stroitel’nykh konstruktsiy: monografiya [Borozote surface modifiers for protecting wood of building structures: monograph]. Moscow: MUCE. 2011. 191 p.
15. Khodaei M., Shadmani S. Superhydrophobicity on aluminum through reactive-etching and TEOS/GPTMS/nano-Al2O3 silane-based nanocomposite coating. Surface and Coatings Technology. 2019. Vol. 374, pp. 1078–1090. DOI: https://doi.org/10.1016/j.surfcoat.2019.06.074
16. Jin L. et al. Structural engineering in the self-assembly of amphiphilic block copolymers with reactive additives: micelles, vesicles, and beyond. Langmuir. 2021. Vol. 37. No. 32, pp. 9865–9872. DOI: https://doi.org/10.1021/acs.langmuir.1c01554

For citation: Stepina I.V., Zheglova Yu.G. Influence of temperature on the degree of modification of wood with organosilicon compounds. Stroitel’nye Materialy [Construction Materials]. 2023. No. 10, pp. 91–98. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-818-10-91-98


Print   Email