K.B. STROKIN2, Doctor of Sciences (Economics) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
V.V. MALYUK2,3, Junior Researcher, Senior Lecturer (This email address is being protected from spambots. You need JavaScript enabled to view it.)
1 Belarusian National Technical University (65, Prospekt Nezavisimosti, Minsk, 220013, Belarus)
2 Sakhalin State University (33, Kommunistichesky Avenue, Yuzhno-Sakhalinsk, 693000, Russian Federation)
3 Branch of FGBU “TSNIIP of Russian Minstroy”, DalNIIS (Ministry of Construction, Housing and Utilities of the Russian Federation Far-Eastern Research,Design and Technological Institute of Construction) (14, Borodinskaya Street, Vladivostok, 690033, Russian Federation)
1. Stepanova V.F., Falikman V.R. Advanced topics in assurance of reinforced concrete structural durability. Concrete and reinforced concrete – a look into the future: Scientific papers of the III All-Russian (II International) Conference on Concrete and Reinforced Concrete in 7 vols. Moscow. 2014. Vol. 3, pp. 430–444. (In Russian).
2. Malyuk V.V., Malyuk V.D. Freezing mechanisms of the concrete in an area of variable water level of port facilities. IOP Conference Series: Earth and Environmental Science. 2022. Vol. 988. Chapter 4. 052020. DOI: http://dx.doi.org/10.1088/1755-1315/988/5/052020
3. Малюк В.В., Малюк В.Д., Леонович С.Н. Анализ результатов обследования железобетонных конструкций портовых сооружений (о. Сахалин, 1927–2018 гг.) // Бетон и железобетон. 2022. № 1 (609). С. 3–9. DOI: https://doi.org/10.31659/0005-9889-2022-609-1-3-9
3. Malyuk V.V., Malyuk V.D., Leonovich S.N. Analysis of the results of the survey of reinforced concrete structures of port facilities (Sakhalin Island 1927–2018). Beton i zhelezobeton. 2022. No. 1 (609), pp. 3–9. (In Russian). DOI: https://doi.org/10.31659/0005-9889-2022-609-1-3-9
4. Malyuk V.V., Malyuk V.D., Lobodyuk A.V. Operating conditions and damage to the concrete of port facilities on the southern coast of Sakhalin. IOP Conference Series: Earth and Environmental Science. 2022. Chapter 4. 052035. DOI: http://dx.doi.org/10.1088/1755-1315/988/5/052035
5. Malyuk V.V. Climatic conditions and experience of operation of port facilities on Sakhalin Island. Civil Engineering Research Journal. 2020. Vol. 10. Iss. 5. 555797. DOI: http://dx.doi.org/10.19080/CERJ.2020.10.555797
6. Чернышов Е.М. Морозная деструкция бетонов. Ч. 1. Механизм, критериальные условия управления // Строительные материалы. 2017. № 9. С. 40–46.
6. Chernyshov E.M. Frost destruction of concretes. Part 1. Mechanism, criterial conditions of control. Stroitel’nye Materialy [Construction Materials]. 2017. No. 9, pp. 40–46. (In Russian).
7. Шестоперов С.В. Долговечность бетона транспортных сооружений. М.: Транспорт, 1966. 500 с.
7. Shestoperov S.V. Dolgovechnost’ betona transportnykh sooruzheniy. [Durability of concrete for transport structures]. Moscow: Transport. 1966. 500 p.
8. Malyuk V.V. Degradation and sudden failure of concrete structures of marine hydraulic structures in severe hydrometeorological conditions. IOP Conference Series: Materials Science and Engineering. 2018. Vol. 463. Iss. 2. 022071. DOI: https://doi.org/10.1088/1757-899X/463/2/022071
9. Вавренюк С.В., Ефименко Ю.В., Вавренюк В.Г., Фарафонов А.Э. Результаты исследования причин разрушения бетонного покрытия морского пирса на побережье Японского моря // Строительные материалы. 2019. № 11. С. 37–41. DOI: https://doi.org/10.31659/0585-430X-2019-776-11-37-41
9. Vavreniuk S.V., Efimenko Yu.V., Vavreniuk V.G., Farafonov A.E. Results of the study of the causes of destruction of concrete pavement of a sea pier on the coast of the Sea of Japan. Stroitel’nye Materialy [Construction Materials]. 2019. No. 11, pp. 37–41. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-776-11-37-41
10. Малюк В.В. Прогнозирование долговечности конструкций морских гидротехнических сооружений из бетона по опыту строительства и эксплуатации в суровых климатических условиях. Проблемы и перспективы развития строительства, теплогазоснабжения и энергообеспечения: Материалы VIII Национальной конференции с международным участием. Саратов, 2018. С. 223–231.
10. Malyuk V.V. Forecasting the durability of structures of marine hydraulic structures made of concrete based on the experience of construction and operation in harsh climatic conditions. Problems and prospects of development of construction, heat and gas supply and energy supply: Materials of the VIII National Conference with international participation. Saratov. 2018, pp. 223–231. (In Russian).
11. Малюк В.В., Малюк В.Д., Леонович С.Н. Совершенствование методов проектирования и технологии бетонных работ (на примере о. Сахалин) // Бетон и железобетон. 2022. № 2 (610). С. 30–34. DOI: https://doi.org/10.31659/0005-9889-2022-610-2-30-34
11. Malyuk V.V., Malyuk V.D., Leonovich S.N. Improvement of design methods and technology of concrete works (on the example of Sakhalin island). Beton i zhelezobeton. 2022. No. 2 (610), pp. 30–34. (In Russian). DOI: https://doi.org/10.31659/0005-9889-2022-610-2-30-34
12. Малюк В.В. Концепция долговечности бетона для прогноза срока службы конструкций в условиях морозного воздействия // Вестник инженерной школы ДВФУ. 2020. № 4 (45). С. 105–115. DOI: http://dx.doi.org/10.24866/2227-6858/2020-4-11
12. Malyuk V.V. Concrete durability concept for predicting the service life of structures under frost conditions influences. Vestnik of the FEFU Engineering School. 2020. No. 4 (45), pp. 105–115. (In Russian). DOI: http://dx.doi.org/10.24866/2227-6858/2020-4-11
For citation: Leonovich S.N., Strokin K.B., Malyuk V.V. Durability of concrete in aggressive environments of XF4 class. Design and forecasting. Stroitel’nye Materialy [Construction Materials]. 2023. No. 10, pp. 4–8. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-818-10-4-8