Determination of the Long-Term Strength of Geosynthetic Materials on the Basis of the Complex Durability Index Calculation

Number of journal: 9-2023
Autors:

Medvedev D.V.,
Kalgin Yu.I.,
Simchuk E.N.,
Mitrofanova S.A.

DOI: https://doi.org/10.31659/0585-430X-2023-817-9-38-47
УДК: 625.7/.8:691.175

 

AbstractAbout AuthorsReferences
An analysis of modern foreign methods for studying the durability of geosynthetic materials is presented. A mathematical model for calculating the complex durability index for geosynthetic materials used in road construction is proposed. The results of monitoring were analyzed to assess the durability, as well as laboratory and field tests of geosynthetic materials that perform various functions in road structures. A list of coefficients for calculating a complex durability index based on the function of geosynthetic materials in a road structure has been formed. The technical and economic advantages of using a complex durability index of geosynthetic materials in road construction are shown. A method for calculating a complex durability index is presented, taking into account each function of a geosynthetic material. It is presented how the durability coefficients characterize the influence of various factors on the strength characteristics of the material: mechanical damage, elevated temperature, ultraviolet radiation, chemical and biological effects, etc. The results of monitoring the application of the preliminary national standard, field and laboratory tests of geosynthetic materials that perform various functions are presented. The use of research results for the development of normative and technical documentation, currently used to determine the durability of geosynthetic materials in the Russian Federation, is presented.
D.V. MEDVEDEV1, Engineer, First Deputy General Director (This email address is being protected from spambots. You need JavaScript enabled to view it.);
Yu.I. KALGIN2, Doctor of Sciences (Engineering), Professor (This email address is being protected from spambots. You need JavaScript enabled to view it.);
E.N. SIMCHUK1, Candidate of Sciences (Economics) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
S.A. MITROFANOVA1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Autonomous Non-Profit Organization “Scientific Research Institute of Transport and Construction Complex” (73A, Building 16, Aviamotornaya Street, Moscow, 111024, Russian Federation)
2 Voronezh State Technical University (84, 20-letiya Oktyabrya Street, Voronezh, 394006, Russian Federation)

1. Алоян Р.М., Петрухин А.Б., Грузинцева Н.А. Тенденции и перспективы применения геотекс-тильных материалов в дорожном строительстве // Известия высших учебных заведений. Технология текстильной промышленности. 2017. Т. 368. № 2. № 318–321.
1. Aloyan R.M., Petrukhin A.B., Gruzintseva N.A. Trends and prospects of use of geotextiles in road construction. Izvestiya Vysshikh Uchebnykh Zavedenii, Seriya Teknologiya Tekstil’noi Promyshlennosti. 2017. Vol. 368. No. 2, pp. 318–321. (In Russian).
2. Лысова М.А. и др. Установление взаимосвязи выполняемых функций геотекстильного материала в строительном объекте с технологическими воздействиями на него // Известия высших учебных заведений. Технология текстильной промышленности. 2021. Т. 391. № 1. С. 32–37.
2. Lysova M.A. et al. Establishing the relationship between the functions performed geotextile material in a construction object with technological influences on it. Izvestiya Vysshikh Uchebnykh Zavedenii. Seriya Teknologiya Tekstil’noi Promyshlennosti. 2021. Vol. 391. No. 1, pp. 32–37. (In Russian).
3. Баранов А.Ю. Определение долговечности геосинтетических материалов // Известия высших учебных заведений. Технология легкой промышленности. 2018. Т. 41. № 3. № 66–68.
3. Baranov A.Yu. Determination of the durability of geosynthetic materials. Izvestiya Vysshikh Uchebnykh Zavedenii. Seriya Teknologiya Tekstil’noi Promyshlennosti. 2018. Vol. 41. No. 3, pp. 66–68. (In Russian).
4. Koffler A. et al. Geosynthetics in protection against erosion for river and coastal banks and marine and hydraulic construction. Journal of Coastal Conservation. 2008. Vol. 12. No. 1, pp. 11–17. https://doi.org/10.1007/s11852-008-0023-x
5. German geotechnical society recommendations for design and analysis of earth structures using geosynthetic reinforcements. EBGEO. 2011. 338 p.
6. Watanabe K. et al. Accelerated test for evaluating the durability of geosynthetics on coasts. Coastal Engineering Proceedings. 2014. Vol. 1. No. 34. https://doi.org/10.9753/icce.v34.structures.49
7. Almeida M.S.S. et al. Brazilian contributions to geosynthetics engineering. Proceedings of the GeoAmericas 2020 – 4th Pan-American Regional Conference on Geosynthetics. 26–29 April 2020. Rio de Janeiro. Brazil. 122 p.
8. Dias Filho J.L.E., Maia P.C.A. A Non-conventional durability test for simulating creep of geosynthetics under accelerated degradation. International Journal of Geosynthetics and Ground Engineering. 2021. Vol. 7. No. 65. 13 p. https://doi.org/10.1007/s40891-021-00310-w
9. Greenwood J.H., Schroeder H.F., Voskamp W. Durability of geosynthetics. CRC Press. 2016. 352 p.
10. Carlos D.M., Carneiro J.R., Lopes M.D.L. Effect of different aggregates on the mechanical damage suffered by geotextiles. Materials. 2019. Vol. 12. No. 24. 4229. https://doi.org/10.3390/ma12244229
11. Hufenus R. et al. Strength reduction factors due to installation damage of reinforcing geosynthetics. Geotextiles and Geomembranes. 2005. Vol. 23. No. 5, pp. 401–424. https://doi.org/10.1016/j.geotexmem.2005.02.003
12. Lim S.Y., Mccartney J.S. Evaluation of effect of backfill particle size on installation damage reduction factors for geogrids. Geosynthetics International. 2013. Vol. 20. No. 2, pp. 62–72. https://doi.org/10.1680/gein.13.00002
13. Huang C.-C., Wang Z.-H. Installation damage of geogrids: Influence of load intensity. Geosynthetics International. 2007. Vol. 14. No. 2, pp. 65–75. https://doi.org/10.1680/gein.2007.14.2.65
14. Pinho-Lopes M. Experimental analysis of the combined effect of installation damage and creep of geosynthetics. Geosynthetics. 2002. Vol. 4, pp. 1539–1544.
15. Greenwood J.H. The effect of installation damage on the long-term design strength of a reinforcing geosynthetic. Geosynthetics International. 2002. Vol. 9. No. 3, pp. 247–258. https://doi.org/10.1680/gein.9.0217
16. Almeida F., Carlos D.M., Carneiro J.R., Lopes M.D.L. Resistance of geosynthetics against the isolated and combined effect of mechanical damage under repeated loading and abrasion. Materials. 2019. Vol. 21. No. 12. 3558. https://doi.org/10.3390/ma12213558
17. Kongkitkul W., Tatsuoka F., Hirakawa D. Creep rupture curve for simultaneous creep deformation and degradation of geosynthetic reinforcement. Geosynthetics International. 2007. Vol. 14. No. 4, pp. 189–200. https://doi.org/10.1680/gein.2007.14.4.189
18. Dias Filho J.L.E., Maia P.C.A., Xavier G.D.C. Spectrophotometry as a tool for characterizing durability of woven geotextiles. Geotext Geomembr. 2019. Vol. 47. No. 4, pp. 577–585. https://doi.org/10.1016/j.geotexmem.2019.02.002
19. Koerner R.M., Hsuan Y.G., Koerner G.R. Lifetime predictions of exposed geotextiles and geomembranes. Geosynthetics International. 2017. Vol. 24. No. 2, pp.198–212. https://doi.org/10.1680/jgein.16.00026
20. Carneiro J.R., Almeida P.J., Lopes M.L. Some synergisms in the laboratory degradation of a polypropylene geotextile. Construction and Building Materials. 2014. Vol. 73, pp. 586–591. https://doi.org/10.1016/j.conbuildmat.2014.10.0012
21. Carneiro J.R., Morais M., Lopes M.L. Degradation of polypropylene geotextiles with different chemical stabilisations in marine environments. Construction and Building Materials. 2018. Vol. 165, pp. 877–886. https://doi.org/10.1016/jconbuildmat.2018.01.067

For citation: Medvedev D.V., Kalgin Yu.I., Simchuk E.N., Mitrofanova S.A. Determination of the long-term strength of geosynthetic materials on the basis of the complex durability index calculation. Stroitel’nye Materialy [Construction Materials]. 2023. No. 9, pp. 38–47. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-817-9-38-47


Print   Email