Increasing the Strength of Fine-Grained Concrete with the Use of Carbon Nanotubes and Mechanical Activation of the Mixture

Number of journal: 12-2023
Autors:

Lyashenko D.A.,
Perfilov V.A.,
Nikolaev M.E.,
Lukianitsa S.V.,
Burkhanova R.A.

DOI: https://doi.org/10.31659/0585-430X-2023-820-12-49-54
УДК: 691.3:539.2

 

AbstractAbout AuthorsReferences
The results of studies to determine the effect of introducing a complex additive of carbon nanotubes and plasticizer into the composition of fine-grained concrete are presented. Two series of tests of beam samples were performed, and the strength characteristics of the studied compositions were determined. Two methods of introducing nano-additives into concretes were compared: using an ultrasonic dispersant and a linear induction wave action apparatus (LIA) by analyzing two series of tests of different compositions. It was established that the introduction of nanotubes using LIA provides a minimally greater increase in the compressive strength due to the activation of the cement binder by means of regrinding. However, the maximum increase in strength is achieved equally for each of the injection methods.
D.A. LYASHENKO, Graduate Student (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.A. PERFILOV, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
M.E. NIKOLAEV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
S.V. LUKIANITSA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
R.A. BURKHANOVA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Volgograd State Technical University, Institute of Architecture and Construction (1, Akademicheskaya Street, Volgograd, 400074, Russian Federation)

1. Potapov V.V., Tumanov A.V., Zakurazhnov M.S., Serdan A.A., Kashutin A.N., Shalaev K.S. Increasing the strength of concrete by introducing SIO2 nanoparticles. Fizika i khimiya stekla. 2013. Vol. 39. No. 4, pp. 611–617. (In Russian).
2. Potapov V.V., Gorev D.S. Increasing the frost resistance of concrete modified with hydrothermal nanoparticles SIO2. Gornyy informatsionno-analiticheskiy byulleten’ (nauchno-tekhnicheskiy zhurnal). 2021. No. S19, pp. 278–287. (In Russian).
3. Zhdanok S.A., Leonovich S.N., Polonina E.N. Synergistic influence of SiO2 nanoparticles and carbon nanotubes on the properties of concrete. Reports of the National Academy of Sciences of Belarus. 2022. Vol. 66. No. 1, pp. 109–112. (In Russian).
4. Tolmachev S.N., Belichenko E.A. Features of the influence of carbon nanoparticles on the rheological properties of cement paste and technological properties of fine-grained concrete. Nanotekhnologii v stroitel’stve: scientific online journal. 2014. Vol. 6. No. 5, pp. 13–29. (In Russian).
5. Bazhenov Yu.M., Korolev E.V., Lukutsova N.P., Zavalishin S.I., Chudakova O.A. High-quality decorative fine-grained concrete modified with titanium dioxide nanoparticles. Vestnik of MSUCE. 2012. No. 6, pp. 73–78. (In Russian).
6. Potapov V.V., Tumanov A.V., Gorbach V.A., Kashutin A.N., Shalaev K.S. Preparation of a complex additive based on nanodispersed silicon dioxide to increase the strength of concrete. Khimicheskaya tekhnologiya. 2013. Vol. 14. No. 7, pp. 394–401. (In Russian).
7. Abdrakhmanova L.A. Nanomodifiers for building materials based on linear and network polymers. Stroitel’nye Materialy [Construction Materials]. 2011. No. 7, pp. 61–63. (In Russian).
8. Li Z., Ding S., Yu X., B. Han, J. Ou. Multifunctional cementitious composites modified with nano titanium dioxide: a review. Composites Part A: Applied Science and Manufacturing. 2018. Vol. 111, pp. 115–137. DOI: 10.1016/j.compositesa.2018.05.019
9. Ramezani M., Dehghani A., Sherif M.-M. Carbon nanotube reinforced cementitious composites: A comprehensive review. Construction and Building Materials. 2022. Vol. 315. 125100. DOI: 10.1016/j.conbuildmat.2021.125100
10. Tokarev Yu.V., Volkov M.A., Ageev A.V., Kuzmina N.V., Grakhov V.P., Yakovlev G.I., Khazeev D.R. Estimation of efficiency of applying aqueous dispersion of carbon particles in anhydrite binder. Stroitel’nye Materialy [Construction Materials]. 2020. No. 1–2, pp. 24–35. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-778-1-2-24-35
11. Yakovlev G.I., Grakhov V.P., Gordina A.F., Shaibadullina A.V., Saidova Z.S., Nikitina S.V., Begunova E.V., Elrefai A.E.M.M. Effect of dispersions of technical carbon on properties of fine concrete. Stroitel’nye Materialy [Construction Materials]. 2018. No. 8, pp. 89–92. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2018-762-8-89-92
12. Assed N. Haddad, Jorge F. de Morais, Ana Catarina J. Evangelista. Variation of concrete strength with the insertion of carbon nanotubes. Advanced Materials Research. 2013. Vol. 818, pp. 124–131. DOI: 10.4028/www.scientific.net/AMR.818.124
13. Yakovlev G.I., Drochytka R., Pervushin G.N., Grakhov V.P., Saidova Z.S., Gordina А.F., Shaybadullina A.V., Pudov I.A., Elrefai A.E.M.M. Fine-grained concrete modified with a suspension of chrysotile nanofibers. Stroitel’nye Materialy [Construction Materials]. 2019. No. 1–2, pp. 4–10. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-4-10
14. Ibragimov R.A., Korolev E.V., Deberdeev T.R. Mechanical activation in the production of lime-sand vixtures. Magazine of civil engineering. 2020. No. 6 (98), pp. 9804. DOI: 10.18720/MCE.98.4
15. Ibragimov R.A., Korolev E.V. Strength of composites based on modified Portland cement activated in a vortex layer apparatus. Promyshlennoye i grazhdanskoye stroitel’stvo. 2021. No. 1, pp. 35–41. (In Russian).
16. Seliverstov G.V., Motevich S.A., Voblikova Yu.O. Features of vortex layer devices. Izvestiya of Tula State University. Technical science. 2022. No. 9, pp. 614–618. (In Russian).
17. Radzyuk A.Yu., Istyagina E.B., Kulagina L.V., Zhuikov A.V. Current state of use of cavitation technologies (brief review). Izvestiya of Tomsk Polytechnic University. Georesources Engineering. 2022. Vol. 333. No. 9, pp. 209–218. (In Russian).
18. Radzyuk A.Yu., Istyagina E.B., Kulagina L.V., Zhuikov A.V., Grishaev D.A. Synthesis-analysis of the use of cavitation technologies. Journal of the Siberian Federal University. Series: Equipment and technology. 2022. Vol. 15. No. 7, pp. 774–801. (In Russian).
19. Hela R., Bodnarova L., Jarolim T., Labaj M. Carbon nanotubes dispersion, concentration, and amount of ultrasound energy required. Stroitel’nye Materialy [Construction materials]. 2017. No. 1–2, pp. 4–9. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2017-745-1-2-4-9.
20. Mainak Ghosal Ghosal, Arun Kumar Chakraborty. Application of nanomaterials on cement mortar and concrete: a study. International Journal of Structural Engineering. 2019. Vol. X. No. 1, pp. 7–15.
21. Ashwini R.M., Potharaju M., Srinivas V. Compressive and flexural strength of concrete with different nanomaterials: a critical review. Journal of Nanomaterials. 2023. No. 9, pp. 1–15 DOI: 10.1155/2023/1004597

For citation: Lyashenko D.A., Perfilov V.A., Nikolaev M.E., Lukianitsa S.V., Burkhanova R.A. Increasing the strength of fine-grained concrete with the use of carbon nanotubes and mechanical activation of the mixture. Stroitel’nye Materialy [Construction Materials]. 2023. No. 12, pp. 49–54. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-820-12-49-54


Print   Email