Influence of Structure and Composition on the Properties of the Concrete Сanvas

Number of journal: 6-2023
Autors:

Bessonov I.V.,
Zhukov A.D.,
Poudel R.S.,
Matorin A.A.

DOI: https://doi.org/10.31659/0585-430X-2023-814-6-27-32
УДК: 666.972

 

AbstractAbout AuthorsReferences
A concrete canvas is a flexible fabric impregnated with a modified hydraulic binder mixture that hardens upon hydration to form a thin, strong, waterproof and refractory concrete layer. Used for erosion control, slope protection, embankment reinforcement and weed control. A textile architecture is considered three-dimensional when it includes volume, no matter how many yarn systems and fabric architectures are used. The purpose of the research presented in the article is to study the influence of the composition of the mineral composition and the structure of the three-dimensional fibrous matrix on the properties of the concrete sheet. The studies were carried out on three-dimensional fibrous matrices with various geometric patterns. The article provides a broad explanation of how the geometry of the arrangement was created, along with information on the kinds of fibers used to create the concrete canvas’ surface layers and its volumetric frameworks. The issues of producing the qualities of a concrete canvas are taken into account in accordance with the features of reinforcing elements and the properties of fine-grained modified concrete, which acts as the foundation of a concrete canvas. The results have been optimized and a nomogram is created to solve the prognosis problem and the primary components of fine-grained concrete was chosen.
I.V. BESSONOV1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.D. ZHUKOV2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
R.S. POUDEL2, PhD Student, Master (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.A. MATORIN2, Master Student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Research Institute of Building Physics Russian Academy Architecture and Construction sciences (21, Lokomotivniy Driveway, Moscow, 127238, Russian Federation)
2 National Research Moscow State University of Civil Engineering (26, Yaroslavskoye Highway, Moscow, 129337, Russian Federation)

1. Gries T., Roye A., Offermann P., Peled A. Textile reinforced concrete-state-of-theart report of RILEM TC 201-TRC. Bagneux: RILEM Publications SARL. 2006, pp. 11–27.
2. Isley F. The Use of high performance textiles in construction projects. Journal of industrial textiles. 2002. Vol. 31 (3), pp. 205–217. doi:10.1106/152808302026619
3. Tsesarsky M., Peled A., Katz A., Anteby I. Strengthening concrete elements by confinement within textile reinforced concrete (TRC) shells – static and impact properties. Construction and Building Materials. 2013. Vol. 44, pp. 514–523 DOI: https://doi.org/10.1016/j.conbuildmat.2013.03.031
4. Büsgen W.-A. Neue Verfahren zur Herstellung von dreidimensionalen Textilien für den Einsatz in Faserverbundwerkstoffen. Aachen: RWTH Publications. 1993. 157 p. (In German)
5. Поудел Р.С., Бессонов И.В., Жуков А.Д., Гудков П.К., Горбунова Э.А., Михайлик Е.Д. Цифровые методы оптимизации составов бетонного полотна // Строительные материалы. 2022. № 6. С. 20–24. DOI: https://doi.org/10.31659/0585-430X-2022-803-6-20-24
5. Poudel R.S., Bessonov I.V., Zhukov A.D., Gudkov P.K., Gorbunova E.A., Mihaylik E.D. Digital methods for optimizing textile concrete technology. Stroitel’nye Materialy [Construction Materials]. 2022. No. 6, pp. 20–24. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-803-6-20-24
6. Hegger J, Voss S. Investigations on the bearing behaviour and application potential of textile reinforced concrete. Engineering Structures. 2008. Vol. 30 (7), pp. 2050–2056. DOI: https://doi.org/10.1016/j.engstruct.2008.01.006
7. Koeckritz U, Cherif Ch, Weiland S, Curbach M. In-situ polymer coating of open grid warp knitted fabrics for textile reinforced concrete application. Journal of Industrial Textiles. 2010. Vol. 40 (2), pp. 157–169. doi:10.1177/1528083709102938
8. Бессонов И.В., Жуков А.Д., Жук П.М., Демиссе Б.А., Говряков И.С., Минаева А.М. Вулканический туф как активная минеральная добавка для портландцемента // Строительные материалы. 2022. № 6. С. 25–29. DOI: https://doi.org/10.31659/0585-430X-2022-803-6-25-29
8. Bessonov I.V., Zhukov A.D., Zhuk P.M., Demisse B.A., Govryakov I.S., Minaeva A.M. Volcanic tuff as an active mineral additive for Portland cement. Stroitel’nye Materialy [Construction Materials]. 2022. No. 6, pp. 25–29. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-803-6-25-29
9. Демиссе Б.А., Жуков А.Д., Поудел Р.С. Мелкозернистый бетон на модифицированном вяжущем // Промышленное и гражданское строительство. 2022. № 3. C. 31–36. DOI: 10.33622/0869-7019.2022.03.31-36.
9. Demisse B.A., Zhukov A.D., Poudel R.S. Fine-grained concrete on a modified binder. Promyshlennoe i grazhdanskoe stroitel’stvo. 2022. No. 3, pp. 31–36. (In Russian). DOI: https://doi.org/10.33622/0869-7019.2022.03.31-36
10. Colombo I.G., Magri A., Zani G., Colombo M., Prisco M. Textile Reinforced Concrete: Experimental investigation on design parameters. Materials and Structures. 2013. Vol. 46 (11), pp. 1933–1951. DOI: https://doi.org/10.1617/s11527-013-0017-5
11. Peled A., Cohen Z., Pasder Y., Roye A., Gries T. Influences of textile characteristics on the tensile properties of warp knitted cement based composites. Cement and Concrete Composites. 2008. Vol. 30 (3), pp. 174–83. DOI: https://doi.org/10.1016/j.cemconcomp.2007.09.001
12. Alireza A., Seyed M.H.S., Farshad R. Quantifying the effects of crack width, tortuosity, and roughness on water permeability of cracked mortars. Cement and Concrete Research. 2012. Vol. 42 (2), pp. 313–320. https://doi.org/10.1016/j.cemconres.2011.10.002
13. Zhukov А.D., Bobrova Е.U., Bessonov I.V., Medvedev А.А., Demissie B.A. Application of statistical methods for solving problems of construction materials science. Nanotechnologies in construction. 2020. Vol. 12 (6), pp. 313–319. DOI: https://doi.org/10.15828/2075-8545-2020-12-6-313-319
14. Zhukov A.D., Bessonov I.V., Demissi B.A., Zinoveva E.A. Analytical optimization of the dispersion-reinforced fine-grained concrete composition. IOP Conference Series: Materials Science and Engineering. 2021. Vol. 1083. 012037. DOI: https://doi.org/10.1088/1757-899X/1083/1/012037
15. Жуков A.Д., Бобровa E.Ю., Попов И.И., Демиссе Б.А. Системный анализ технологических процессов. International Journal for Computational Civil and Structural Engineering. 2021. Т. 17 (4). С. 73–82. https://doi.org/10.22337/2587-9618-2021-17-4-73-82
15. Zhukov A.D., Bobrova E.Yu., Popov I.I., Demisse B.A. System analysis of technological processes. International Journal for Computational Civil and Structural Engineering. 2021. Vol. 17 (4), pp. 73–82. DOI: https://doi.org/10.22337/2587-9618-2021-17-4-73-82

For citation: Bessonov I.V., Zhukov A.D., Poudel R.S., Matorin A.A. Influence of structure and composition on the properties of the concrete canvas. Stroitel’nye Materialy [Construction Materials]. 2023. No. 6, pp. 27–32. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-814-6-27-32


Print   Email