High-Strength Fiber-Reinforced Concrete in Structures for General Construction and Special Purposes

Number of journal: No.1-2-2023
Autors:

Аgamov R.E.,
Goncharova M.A.,
Pachin A.R.

DOI: https://doi.org/10.31659/0585-430X-2023-810-1-2-39-43
УДК: 666.983

 

AbstractAbout AuthorsReferences
It is shown that increasing the durability of particularly strong structures of buildings and protective structures of civil defense is the main task for today. It is proved that the use of high-strength composites with dispersed reinforcement based on combined binders requires solving a number of problems. Man-made raw materials, including slags of metallurgical production, are involved in the composition of fiber-reinforced concrete. The problem of the quality of fiber-reinforced concrete is considered, taking into account the initial composition, conditions for the preparation of a concrete mixture, molding and hardening of products. As components of high-strength dispersed reinforced concrete, finely dispersed filler – additives with high activity based on man-made waste in combination with hyperplasticizers and reinforcing fibers are proposed. A solution is proposed to improve the quality of the front surface to classes A1–A2. It was established that due to the optimization of the compositions, the consumption of the clinker component of the binder was reduced by 20% without loss of physical and mechanical properties and increased strength indicators by more than 20 MPa. Due to the use of dispersed reinforcement, the tensile strength of concrete in bending was increased by 15%. At the same time, basalt fibers as a reinforcing component showed better joint work with cement stone.
R.E. AGAMOV, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
M.A. GONCHAROVA, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.R. PACHIN, Master (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Lipetsk State Technical University (30, Moskovskaya Street, Lipetsk, 398055, Russian Federation)

1. Goncharova M.A., Simbaev V.V., Karaseva O.V. Optimization of the composition of fine-grained concrete in order to improve the quality of the front surface of blocks. Solid state phenomena. 2018. Vol. 284, pp. 1052–1057. DOI: 10.4028/www.scientific.net/SSP.284.1052
2. Goncharova M.A., Krohotin V.V., Ivashkin A.N. The influence of fibrous reinforcement on the properties of self-compacting concrete mixture and reinforced concrete. Solid state phenomena. 2020. Vol. 299, pp. 112–117. DOI: 10.4028/www.scientific.net/SSP.299.112
3. Гончарова М.А., Черноусов Н.Н., Стурова В.А., Ливенцева А.А. Способ подбора оптимального состава мелкозернистого сталефиброшлакопемзобетона // Известия высших учебных заведений. Строительство. 2021. № 11 (755). С. 64–72. DOI: 10.32683/0536-1052-2021-755-11-64-72
3. Goncharova M.A., Chernousov N.N., Sturova V.A., Liventseva A.A. Method for selecting the optimal composition of fine-grained steel-fiber-slash pum-concrete.
Izvestiya Vysshikh Uchebnykh Zavedeniy. Stroitel’stvo. 2021. No. 11 (755), pp. 64–72. (In Russian). DOI: 10.32683/0536-1052-2021-755-11-64-72
4. Гончарова М.А., Мраев А.В., Пачин А.Р., Акчурин Т.К. Прогнозирование долговечности шлакобетонов в условиях агрессивной сульфатной среды // Вестник Волгоградского государственного архитектурно-строительного университета. Сер.: Строительство и архитектура. 2022. № 3 (88). С. 70–75.
4. Goncharova M.A., Mraev A.V., Pachin A.R., Akchurin T.K. Forecasting the durability of cinder blocks in an aggressive sulfate environment. Vestnik Volgogradskogo gosudarstvennogo arhitekturno-stroite’nogo universiteta. Seriya: Stroite’stvo i arhitektura. 202. No. 3, pp. 70–75. (In Russian).
5. Черноусов Н.Н., Бондарев Б.А., Стурова В.А, Бондарев А.Б., Ливенцева А.А. Аналитические зависимости влияния плотности материала на прочность и деформативность конструкционного бетона при осевом сжатии // Строительные материалы. 2022. № 5. С. 58–67. DOI: https://doi.org/10.31659/0585-430X-2022-802-5-58-67
5. Chernousov N.N., Bondarev B.A., Sturova V.A., Bondarev A.B., Liventseva A.A. Analytical dependences of the effect of material density on the strength and deformability of structural concrete under axial compression. Stroitel’nye Materialy [Construction Materials]. 2022. No. 5. С. 58–67. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-802-5-58-67
6. Bondarev B.A., Komarov P.V., Erofeev A.V., Bayazov V.A. Influence of the self-heating temperatureon the cyclic durability of composite materials. Russian Journal of Building Construction and Architecture. 2022. № 1 (53), pp. 39–45. DOI: 10.36622/VSTU.2022.53.1.004
7. Goncharova M., Agamov R., Pachin A. Optimization of compositions of refractory composites using mathematical experiment planning. 4th International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency (SUMMA). 2022, pp. 01–05. DOI: 10.1109/SUMMA57301.2022.9974045
8. Моргун Л.В. Теоретическое обоснование и экспериментальная разработка технологии высокопрочных фибропенобетонов // Строительные материалы. 2005. № 6. C. 59–63.
8. Morgun L.V. Theoretical substantiation and experimental development of high-strength fibropen concrete technology. Stroitel’nye Materialy [Construction Materials]. 2005. No. 6, pp. 59–63. (In Russian).
9. Маилян Л.Р., Налимова А.В., Маилян А.Л., Айвазян Э.С. Челночная технология изготовления фибробетона с агрегированным распределением фибр и его конструктивные свойства // Инженерный вестник Дона. 2011. № 4.
9. Mailyan L.R., Nalimova A.V., Mailyan A.L., Ayvazyan E.S. Shuttle manufacturing technology of fiber concrete with aggregated fiber distribution and its structural properties. Inzhenernyj vestnik Dona. 2011. No. 4. (In Russian).
10. Баранов А.С. Прочность и долговечность мелкоштучных изделий из гиперпрессованного фиб-робетона // Градостроительство и архитектура. 2017. Т. 7. № 3 (28). С. 46–49. DOI: 10.17673/Vestnik.2017.03.8
10. Baranov A.S. Strength and durability of small piece products made from fibre reinforced concrete. Gradostroitelstvo i arhitektura. 2017. Vol. 7. No. 3 (28), pp. 46–49. DOI: 10.17673/Vestnik.2017.03.8
11. Пустовгар А.П., Лавданский П.А., Журавлев А.В., Есенов А.В., Медведев В.В., Веденин А.Д. Тепловыделение при гидратации цемента серпентинитового бетона // Научно-технический вестник Поволжья. 2014. № 5. С. 285–287.
11. Pustovgar A.P., Lavdansky P.A., Zhuravlev A.V., Esenov A.V., Medvedev V.V., Vedenin A.D. Hydration Heat Release Of Cement In Serpentine Concrete. Nauchno-tekhnicheskiy vestnik Povolzhya. 2014. No. 5, pp. 285–287. (In Russian).
12. Прошин А.П., Демьянова В.С., Калашников Д.В. Особо тяжелый высокопрочный бетон для защиты от радиации с использованием вторичных ресурсов. Пенза: ПГУАС, 2004. 140 с.
12. Proshin A.P., Demyanova V.S., Kalashnikova D.V. Osobo yazhelyy vysokoprochnyy beton dlya zashchity ot radiatsii s ispolzovaniem vtorichnykh resursov [Extra heavy high-strength concrete for radiation protection using secondary resources]. Penza: PGUAS. 204. 140 p.
13. Бондарев Б.А., Черноусов Н.Н., Черноусов Р.Н., Стурова В.А. Исследование прочностных свойств сталефиброшлакобетона при осевом растяжении и сжатии с учетом его возраста // Строительные материалы. 2017. № 5. С. 20–24.
13. Bondarev B.A., Chernousov N.N., Chernousov R.N., Sturova V.A. Research in strength properties of steel-fiber-slag concrete in the course of axial tension and compression with due regard for its age. Stroitel’nye Materialy [Construction Materials]. 2017. No. 5, pp. 20–24. (In Russian).
14. Бондарев Б.А., Черноусов Н.Н., Черноусов Р.Н., Стурова В.А. Исследование деформативных свойств сталефиброшлакобетона при осевом растяжении и сжатии с учетом его возраста // Вестник Пермского национального исследовательского политехнического университета. Строительство и архитектура. 2017. Т. 8. № 1. С. 18–31. DOI: 10.15593/2224-9826/2017.1.02
14. Bondarev B.A., Chernousov N.N., Chernousov R.N., Sturova V.A. Studying deformation properties of steel fiber slag reinforced concrete under axial tension and compression in view of its age. Vestnik Permskogo Nationalnogo Issledovatelskogo Polytechnicheskogo Universiteta. Stroitelstvo i Architectura. 2017. Vol. 8. No. 1, pp. 18–31. (In Russian). DOI: 10.15593/2224-9826/2017.1.02
15. Rodríguez de Sensale G., Viacava I. R. A study on blended Portland cements containing residual rice husk ash and limestone filler. Construction and Building Materials. 2018. Vol. 166, pp. 873–888. https://doi.org/10.1016/j.conbuildmat.2018.01.113
16. Alsubari B., Shafigh P., Jumaat M.Z. Utilization of high-volume treated palm oil fuel ash to produce sustainable self-compacting concrete. Journal of Cleaner Production. 2016. Vol. 137, pp. 982–996. https://doi.org/10.1016/j.jclepro.2016.07.133
17. Ozturk O., Ozyurt N. Sustainability and cost-effectiveness of steel and polypropylene fiber reinforced concrete pavement mixtures. Journal of Cleaner Production. 2022. Vol. 363. 132582. https://doi.org/10.1016/j.jclepro.2022.132582
18. Fattouh M.S., Tayeh B.A., Agwa I.S., Elsayed E.K. Improvement in the flexural behaviour of road pavement slab concrete containing steel fibre and silica fume. Case Studies in Construction Materials. 2023. Vol. 18. e01720. https://doi.org/10.1016/j.cscm.2022.e01720

For citation: Аgamov R.E., Goncharova M.A., Pachin A.R. High-strength fiber-reinforced concrete in structures for general construction and special purposes. Stroitel’nye Materialy [Construction Materials]. 2023. No. 1–2, pp. 39–43. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-810-1-2-39-43


Print   Email