Scientific Justification for Structural Modification of Foam Concrete Properties

Number of journal: 7-2023
Autors:

Morgun V.N.

DOI: https://doi.org/10.31659/0585-430X-2023-815-7-29-35
УДК: 666.973.6

 

AbstractAbout AuthorsReferences
The relevance of the development of the theory and practice of foam concrete, based on evolutionary changes in science and society, is reflected. A brief overview of the work confirming the possibility of improving their properties during dispersed reinforcement with fibers is given. The provision is made that the structural modification of foam concrete should be understood as technological and recipe techniques that ensure such use of the surface energy of dispersed raw materials, which is suitable for controlling the quality of mass transfer during the formation of its structure. The reasons that allow synthetic fibers to be effective initiators of mass transfer in non-autoclave foam concrete technology are listed. Scientific justification of these processes is given during homogenization of raw materials in turbulent mixers and during the period of predominance of viscous bonds between components of raw materials after placing of mixtures in formwork. A scientific analysis of the influence of mutually competing and mutually dependent mass transfer processes on the properties of foam concrete mixtures was performed, which makes it possible to predict the physical and mechanical properties of foam concrete depending on the formulation. The results of experimental evaluation of the effect of dispersed reinforcement of foam concrete mixtures by fibers on the rate of phase transition from viscous to solid and the physical and mechanical properties of foam concrete are given.
V.N. MORGUN, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Southern Federal University (105/42, Bolshaya Sadovaya Street, Rostov-on-Don, 344006, Russian Federation)

1. Bartenyeva E.A., Mashkin N.A. Research of properties of modified foam concrete. Stroitel’nye Materialy [Construction Materials]. 2017. No. 10, pp. 36–40. (In Russian)
2. Mikheev A.A., Shutikova E.A. Social problems of urbanization and city-mejment at the postmodern stage. Pravo i upravlenie. XXI vek. 2015. No. 2 (35), pp. 73–78. (In Russian).
3. Lobanov I.A. Fundamentals of the technology of dispersed reinforced concretes: fibrobetons. Doct. Diss. (Engineering). Leningrad. 1982. 384 p. (In Russian).
4. Pukharenko Yu.V. Principles of structure formation and prediction of fiber concrete strength. Vestnik grazhdanskikh inzhenerov. 2004. No. 1, pp. 98–103. (In Russian).
5. Magdeev W.H., Morozov V.I., Pukharenko Yu.V. Cracking of dispersed reinforced concrete from the standpoint of fracture mechanics. Izvestiya of the Kazan State University of Architecture and Civil Engineering. 2012. No. 1 (9), pp. 110–117. (In Russian).
6. Talantova K.V. Stalefibrobeton i konstruktsii na ego osnove [Steel fiber concrete and constructions based thereon]. Sankt-Peterburg: FGBOU VPO PGUPS. 2014. 276 p.
7. Morgun L.V. Penobeton: monografiya [Foam concrete: monograph]. Rostov-on-Don: RGSU. 2012. 154 p.
8. Roy S., Ghosh S., Bhowmick N. and Roychoudhury P.K. Study the effect of denier and fiber cutlength on zeta potential of nylon and polyester fibers for sustainable dyeing process. Journal of Environmental Research and Development. 2016. Vol. 11. Iss. 2, pp. 392–397.
9. Qin Xiaochun, Li Xiaoming, Cai Xiaopei. The applicability of alkaline-resistant glass fiber in cement mortar of road pavement: Corrosion mechanism and performance analysis. International Journal of Pavement Research and Technology. 2017. Vol. 10. Iss. 6, pp. 536–544. DOI: 10.1016/j.ijprt.2017.06.003
10. Shmitko E.I. Control of concrete structure formation hardening processes. Doct. Diss. (Engineering). Voronezh. 1994. 525 p. (In Russian).
11. Votrin D.A., Morgun L.V. Controlling the rate of phase transition in fibropene concrete mixtures using the length of reinforcing fiber. Nauka i biznes: puti razvitiya. 2018. No. 5 (83), pp. 47–52. (In Russian).
12. Bleshchik N.P. Strukturno-mekhanicheskie svoistva i reologiya betonnoi smesi i pressvakuumbetona [Structural-mechanical properties and rheology of concrete mixture and pressvacuum concrete]. Minsk: Nauka i tekhnika. 1977. 231 p.
13. Yurov V.M., Guchenko S.A., Laurinas V.C. Surface layer thickness, surface energy and atomic volume of the element. Physicochemical aspects of the study of clusters, nanostructures and nanomaterials: Intercollegiate collection of scientific papers. Tver. 2018. Iss. 10, pp. 691–699. (In Russian). DOI: 10.26456/pcascnn/2018.10.691
14. Terekhov S.V. Fraktaly i fizika podobiya [Fractals and physics of similarity]. Donetsk: Tsifrovaya tipografiya. 2011, 255 p.
15. Mandelbrot B. Les objects fractal. France: Flammanon. 1995. 200 p.
16. Pomazkov V.V. and etc. Upravlenie protsessami tekhnologii, strukturoi i svoistvami betonov: Metodologiya. Protsessy samoorganizatsii struktury. Mekhanika prochnosti i razrusheniya. Upravlenie protsessami strukturoobrazovaniya i svoistvami. Prikladnye voprosy tekhnologii. [Management of technology processes, structure and properties of concretes: Methodology. Processes of structure self-organization. Mechanics of strength and fracture. Manage structuring processes and properties. Applied issues of technology] Ed. by Chernyshov E.M., Shmit’ko E.I. Voronezh: VGASU. 2002. 343 p.
17. Blinov L.M. Zhidkie kristally: struktura i svoistva [Liquid crystals: structure and properties]. Moscow: Knizhnyi dom «Librokom». 2013. 480 p.
18. Rusanov A.I. Fazovye ravnovesiya i poverkhnostnye yavleniya [Phase equilibria and surface phenomena]. Leningrad: Khimiya. 1967. 388 p.
19. Mett’yuz F., Rolings R. Kompozitnye materialy. Mekhanika i tekhnologiya [Composite materials. Mechanics and technology]. Moscow: Tekhnosfera. 2004. 408 p.

For citation: Morgun V.N. Scientific justification for structural modification of foam concrete properties. Stroitel’nye Materialy [Construction Materials]. 2023. No. 7, pp. 29–35. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-815-7-29-35


Print   Email