Influence of the Amount of Conductive Component on the Electrical Resistivity of Fine-Grained Electrically Conductive Concrete

Number of journal: 11-2023
Autors:

Bahrah A.M.,
Larsen O.A.,
Samchenko S.V.

DOI: https://doi.org/10.31659/0585-430X-2023-819-11-46-51
УДК: 666.974

 

AbstractAbout AuthorsReferences
Approaches to the production of electrically conductive concrete and the possibility of its application through the use of electrical properties in various industries are considered. The results of testing the compositions of fine-grained self-compacting concrete based on Portland cement CEM I 52.5 N, sand with a size modulus Mk=2.43 and polycarboxylate plasticizer for changes in electrical resistivity during hardening are presented. The increase in specific electrical conductivity was provided by the introduction of conductive components in various quantities, such as construction soot, carbon black K-354, graphite EUT-2. The positive effect of increasing the amount of the conductive component on the electrical resistivity for 28 days of normal hardening of the samples and on the ability to resistive heating by changing the surface temperature of the samples when passing a direct current with a voltage of 30 V. is shown.
A.M. BAHRAH, Engineer, Graduate Student (This email address is being protected from spambots. You need JavaScript enabled to view it.),
O.A. LARSEN, Candidate of Sciences (Engineering), Associate Professor (This email address is being protected from spambots. You need JavaScript enabled to view it.),
S.V. SAMCHENKO, Doctor of Sciences (Engineering), Professor

National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Гриневич С.В., Лысенко В.Е. Технология устройства антигололедного слоя покрытия на мостовых сооружениях с применением некоррозионно-активного антигололедного реагента // Дороги и мосты. 2009. № 2 (22). С. 151–159.
1. Grinevich S.V., Lysenko V.E. Technology for installing an anti-icing layer on bridge structures using a non-corrosive anti-icing reagent. Dorogi i mosty. 2009. No. 2 (22), pp. 151–159. (In Russian).
2. Кондаков Д.Ф., Фролова Е.А., Кудряшова О.С., Данилов В.П. Противогололедные реагенты на основе хлоридов натрия и кальция и формиата натрия // Химическая технология. 2020. Т. 21. № 7. С. 297–300.
2. Kondakov D.F., Frolova E.A., Kudryashova O.S., Danilov V.P. Anti-icing reagents based on sodium and calcium chlorides and sodium formate. Khimicheskaya tekhnologiya. 2020. Vol. 21. No. 7, pp. 297–300. (In Russian).
3. Ачкеева М.В., Романюк Н.В., Авдюшкина Л.И., Фролова Е.А., Кондаков Д.Ф., Данилов В.П., Хомяков Д.М., Быков А.В. Противогололедные реагенты на основе ацетатов и хлоридов магния и натрия // Химическая технология. 2013. Т. 14. № 4. С. 193–198.
3. Achkeeva M.V., Romanyuk N.V., Avdyushkina L.I., Frolova E.A., Kondakov D.F., Danilov V.P., Khomyakov D.M., Bykov A.V. Anti-icing reagents based on magnesium and sodium acetates and chlorides. Khimicheskaya tekhnologiya. 2013. Vol. 14. No. 4, pp. 193–198. (In Russian).
4. Титова Т.С., Сацук Т.П., Терехин И.А., Тарабин  И.В. Оценка условий электробезопасности при применении опор контактной сети в качестве естественных заземлителей // Электротехника. 2021. № 2. С. 7–11.
4. Titova T.S., Satsuk T.P., Terekhin I.A., Tarabin I.V. Assessment of electrical safety conditions when using contact network supports as natural grounding conductors. Elektrotekhnika. 2021. No. 2, pp. 7–11. (In Russian).
5. Самченко С.В. Формирование и генезис структуры цементного камня. М.: Национальный исследовательский Московский государственный строительный университет, 2020. 288 с.
5. Samchenko S.V. Formirovaniye i genezis struktury tsementnogo kamnya [Formation and genesis of the structure of cement stone]. Moscow: National Research Moscow State University of Civil Engineering. 2020. 288 p.
6. Урханова Л.А., Буянтуев С.Л., Урханова А.А., Лхасаранов С.А., Ардашова Г.Р., Федюк Р.С., Свинцов А.П., Иванов И.А. Механические и электрические свойства бетона, модифицированного углеродными наночастицами // Инженерно-строительный журнал. 2019. № 8 (92). С. 163–172. DOI: 10.18720/MCE. 92.1
6. Urkhanova L.A., Buyantuev S.L., Urkhanova A.A., Lkhasaranov S.A., Ardashova G.R., Fedyuk R.S., Svintsov A.P., Ivanov I.A. Mechanical and electrical properties of concrete modified with carbon nanoparticles. Magazine of Civil Engineering. 2019. No. 8 (92), pp. 163–172. DOI: 10.18720/MCE. 92.1
7. Яковлев Г.И., Черни В., Пудов И.А., Полянских И.С., Саидова З.С., Бегунова Е.В., Семёнова С.Н. Свойства цементных матриц с повышенной электропроводностью // Строительные материалы. 2022. № 1–2. С. 11–20. DOI: 10.31659/0585-430X-2022-799-1-2-11-20
7. Yakovlev G.I., Cherni V., Pudov I.A., Polyanskikh I.S., Saidova Z.S., Begunova E.V., Semyonova S.N. Properties of cement matrices with increased electrical conductivity. Stroitel’nye Materialy [Construction Materials]. 2022. No. 1–2, pp. 11–20. DOI: 10.31659/0585-430X-2022-799-1-2-11-20
8. Лопанов А.Н., Семейкин А.Ю., Фанина Е.А. Реология электропроводящих цементных паст и дисперсий графита // Цемент и его применение. 2009. № 5. С. 110–112.
8. Lopanov A.N., Semeikin A.Yu., Fanina E.A. Rheology of electrically conductive cement pastes and graphite dispersions. Tsement i yego primeneniye. 2009. No. 5, pp. 110–112. (In Russian).
9. Ларсен О.А., Бахрах А.М. Изменение удельного электрического сопротивления токопроводящего бетона в процессе твердения // Строительные материалы. 2022. № 11. С. 10–14. DOI: https://doi.org/10.31659/0585-430X-2022-808-11-10-14
9. Larsen O.A., Bahrah A.M. Change in the specific electrical resistance of conductive concrete during the hardening process. Stroitel’nye Materialy [Construction Materials]. 2022. No. 11, pp. 10–14. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-808-11-10-14
10. Gao D., Sturm M., Mo Y.L., Electrical resistance of carbon-nanofiber concrete. Smart material construction. 2011. No. 20, pp. 101–112. DOI: 10.1088/0964-1726/18/9/095039
11. Wu J., Liu J., Yang F., Three-phase composite conductive concrete for pavement deicing. Construction and Building Materials. 2015. Vol. 75, pp. 129–135 https://doi.org/10.1016/j.conbuildmat.2014.11.004
12. Ilhwan Y., Doo-Yeol Y., Soonho K., Electrical and self-sensing properties of ultra-high-performance fiber-reinforced concrete with carbon nanotubes. Sensors. 2017. Vol. 17 (11). 2481. https://doi.org/10.3390/s17112481
13. Galao O., Banon L., Carmona J., Highly conductive carbon fiber reinforced concrete for icing prevention and curing. Materials. 2016. Vol. 9 (4). 281. https://doi.org/10.3390/ma9040281
14. Gomis J., Galao O., Gomis V., Zornoza P., Self-heating and deicing conductive cement. Experimental study and modeling. Construction and Building Materials. 2015. Vol. 75, pp. 442-449. https://doi.org/10.1016/j.conbuildmat.2014.11.042
15. Sircar A.K., Lamond T.G. Effect of carbon-black particle-size distribution on electrical-conductivity. Rubber Chemistry and Technology. 1978. Vol. 51 (1), pp. 126–132. https://doi.org/10.5254/1.3535720
16. Voet A., Cook F.R. Investigation of carbon chains in rubber vulcanizates by means of dynamic elecrical conductivity. Rubber Chemistry and Technology. 1968. Vol. 41 (5), pp. 1207–1214. https://doi.org/10.5254/1.3539186
17. Boonstra B.B., Dannenberg E.M. Performance of carbon blacks. Influence of surface roughness and porosity. Rubber Chemistry and Technology. 1955. Vol. 28 (3), pp. 878–890. https://doi.org/10.5254/1.3542849
18. Medalia A.I. Electrical conduction in carbon black composites. Rubber Chemistry and Technology. 1986. Vol. 59 (3), pp. 432–454. https://doi.org/10.5254/1.3538209
19. Verhelst W.F. et al. The role of morphology and structure of carbon blacks in the electrical conductance of vulcanizates. Rubber Chemistry and Technology. 1977. Vol. 50 (4), pp. 735–746. https://doi.org/10.5254/1.3535171

For citation: Bahrah A.M., Larsen O.A., Samchenko S.V. Influence of the amount of conductive component on the electrical resistivity of fine-grained electrically conductive concrete. Stroitel’nye Materialy [Construction Materials]. 2023. No. 11, pp. 46–51. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-819-11-46-51


Print   Email