Microbiological Aspects of the Preparations Development for Surface Materials Treatment Based on Copper Colloidal Solutions

Number of journal: No.1-2-2023
Autors:

Revenok T.V.,
Sleptsov V.V.

DOI: https://doi.org/10.31659/0585-430X-2023-810-1-2-100-105
УДК: 648.61:630*381.2

 

AbstractAbout AuthorsReferences
In recent years, taking into account the biopathogens resistance to the effects of antibiotics and antiseptics, the search for new biocidal materials has become relevant. A study of the biocidal properties of copper colloidal solutions obtained by the pulse-arc dispersion method in was carried out. It has been shown that copper colloidal solutions with a concentration of 75 mg/l have a pronounced biocidal effect on the Staphylococcus aureus and Escherichia coli test cultures. The dependence of biocidal properties on the copper colloidal solution concentration has been demonstrated. It has been noted that the metal nanoparticles size affects the solutions bactericidal properties. It has been shown that the treatment of steel, ceramic and plastic surfaces with a copper colloidal solution at a concentration of 75 mg/l has a disinfecting effect. Tests to impart biocidal properties to textile materials by the impregnation method demonstrated that materials treated with a colloidal copper solution obtained by the electric spark method have a pronounced bactericidal activity. The obtained colloidal solutions can be used for biocidal treatment of textile and fibrous materials used in the production of finishing, heat-insulating and composite materials for the construction, textile and agricultural industries.
T.V. REVENOK1, Candidate of Sciences (Chemistry), assistant professor, (This email address is being protected from spambots. You need JavaScript enabled to view it.);
V.V. SLEPTSOV2, Doctor of Sciences (Engineering), professor, (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 National Research Moscow State University Of Civil Engineering (26, Yaroslavskoye Highway, Moscow, 129337, Russian Federation)
2 Moscow Aviation Institute (National Research University) (4, Volokolamskoe Highway, Moscow, 125993, Russian Federation)

1. Batin M.A., Pichugin A.P., Khritankov V.F., Kudryashov A.Y. To improve the biological resistance floors made of modified wood the introduction of nanoscale additives. Stroitel’nye Materialy [Construction materials]. 2018. No. 1–2, pp. 52–57. (In Russian). DOI: http://10.31659/0585-430X-2018-756-1-2-52-57
2. Strokova V.V., Nelubova V.V., Sivalneva M.N., Rykunova M.D., Shapovalov N.A. Resistance of binding systems of various compositions to the action of molds. Stroitel’nye Materialy [Construction Materials]. 2020. No. 11, pp. 41–46. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-786-11-41-46
3. Pogorelsky I.P., Frolov G.A., Gurin K.I., Chernyadiev A.V., Durnev E.A., Lundovskikh E.A., Yasnov S.N., Kungurov A.V. Microbiological aspects of the selection of metal nanoparticles to create antimicrobial disinfectant compositions. Dezinfektsionnoye delo. 2012. No. 4, pp. 37–40. (In Russian).
4. Dzhanpaizova V.M., Tashmenov R.S., Toksanbaeva Zh.S., Ashirbekova G.Sh. Torebaev B.P. Influence on the regeneration of experimental wounds of dressings impregnated with metal nanoparticles. Nauka i Mir. 2019. No. 6–1 (70), pp. 26–28. (In Russian).
5. Burakov V.S., Sevastenko N.A., Tarasenko N.V., Nevar E.A. Synthesis of nanoparticles using a pulsed electrical discharge in a liquid. Zhurnal prikladnoy spektroskopii. 2008. Vol. 75. No. 1, pp. 111–120. (In Russian).
6. Ivanov L.F., Xu L.D., Bokova E.S., Ishkov A.D., Borisova O.N. Inventions in the area of nanomaterials and nanotechnologies. Part I. Nanotechnologies in Сonstruction. 2022. No. 14 (1), pp. 18–26. DOI: https://doi.org/10.15828/2075-8545-2022-14-1-18-26
7. Lukin A.A., Golubtsova Yu.V., Sukhikh S.A. Studying the antimicrobial activity of a colloidal copper solution. Yestestvennyye i tekhnicheskiye nauki. 2019. No. 1 (127), pp. 24–27. (In Russian).
8. Krasochko P.A., Korochkin R.B., Ponaskov M.A., Kashko L.S., Kugelev I.M. The use of atomic force microscopy in the study of the antibacterial effect of colloidal particles of silver and copper. International Scientific conference “Tendencies to Increase Competitiveness and Export Potential of Agricultural Products”: theses of reports. Smolensk. 2021, pp. 114–120. (In Russian).
9. Zakharova O.V., Gusev A.A., Altabaeva Yu.V., Perova S.Yu. Biological effects of freshly prepared and 24-h aqueous dispersions of copper and copper oxide nanoparticles on E.COLI bacteria. Rossiyskiye nanotekhnologii. 2018. Vol. 13. No. 3–4, pp. 69–75. (In Russian).
10. Biryukova M.I., Yurkov G.Yu., Mirgorod Yu.A. Synthesis of copper nanoparticles and their use in modifying natural tissues. Fizika voloknistykh materialov: Struktura, svoystva, naukoyemkiye tekhnologii i materialy (SMARTEX). 2012. No. 1, pp. 49–55. (In Russian).
11. Grishina A.N., Korolev E.V. Nanosized diocidal modifiers based on silicate of metals for binders. Stroitel’nye materialy, oborudovaniye, tekhnologii XXI veka. 2019. No. 5–6 (244–245), pp. 21–23. (In Russian).
12. Rakhimova S.M., Vig A., Tausarova B.R., Kutzhanova A.Zh. The use of nanosized particles of metal oxides for antimicrobial finishing of cotton fabrics. Izvestiya vuzov. Tekhnologiya tekstil’noy promyshlennosti. 2015. No. 3 (357), pp. 202–205. (In Russian).
13. Timoshina Yu. A., Sergeeva E.A. Review of modern methods for obtaining textile materials with antibacterial properties. Vestnik Kazanskogo tekhnologicheskogo universiteta. 2014. Vol. 17. No. 2, pp. 94–96. (In Russian).
14. Shahidi S., Jamali A., Ghomi H., Dalal Sharifi S. In-situ synthesis of CuO nanoparticles on cotton fabrics using spark discharge method to fabricate antibacterial textile. Journal of Natural Fibers. 2018. Vol. 15. No. 6, pp. 870–881. DOI: 10.1080/15440478.2017.1376302
15. Tausarova B.R., Rakhimova S.M. Cellulosic textile materials with antibacterial properties modified with copper nanoparticles. Khimiya rastitel’nogo syr’ya. 2018. No. 1, pp. 163–169. DOI: 10.14258/jcprm.2018012190. (In Russian).
16. Mirgorod Yu.A., Borshch N.A., Borodina V.G., Yurkov G.Yu. Obtaining and characterization of cotton fabric modified with copper nanoparticles. Khimicheskaya promyshlennost’. Primeneniye khimicheskoy produktsii. 2012. Vol. 89. No. 6, pp. 310–316. (In Russian).
17. Ostroukhov N.N., Tyanginskii A.Yu., Sleptsov V.V., Tserulev M.V. Electric discharge technology of production and diagnosis of metallic hydrosols with nanosized particles. Inorganic Materials: Applied Research. 2014. Vol. 5 (3), pp. 284–288. DOI: 10.1134/S2075113314030113
18. Kristavchuk O.V., Sohatsky A.S., Skoi V.V., Kuklin A.I., Trofimov V.V., Nechaev A.N., Apel’ P.Y., Kozlovskiy V.I., Sleptsov V.V. Structural characteristics and ionic composition of a colloidal solution of silver nanoparticles obtained by electrical-spark discharge in water. Colloid Journal. 2021. Vol. 83. No. 4, pp. 448–460. DOI: 10.1134/S1061933X21040049
19. Kudriavtseva E.V., Burinskaya A.A. Investigation of the effect of stabilizers on the stability of colloidal solutions of bimetallic copper-silver nanoparticles. Vestnik of St. Petersburg State University of Technology and Design. Ser. 1: Natural and technical sciences. 2021. No. 2, pp. 101–106. (In Russian).
20. Tyurnina A.E., Shur V.Y., Kozin R.V., Kuznetsov D.K., Pryakhina V.I., Burban G.V. Synthesis and investigation of stable copper nanoparticle colloids. Physics of the Solid State. 2014. Vol. 56. No. 7, pp. 1431–1437. DOI: 10.1134/S1063783414070324
21. Eivazihollagh A., Bäckström J., Dahlström C., Carlsson F., Ibrahem I., Lindman B. , Edlund H., Norgren M. One-pot synthesis of cellulose-templated copper nanoparticles with antibacterial properties. Materials Letters. 2017. Vol. 187, pp. 170–172. DOI: 10.1016/j.matlet.2016.10.026

For citation: Revenok T.V., Sleptsov V.V. Microbiological aspects of the preparations development for surface materials treatment based on copper colloidal solutions. Stroitel’nye Materialy [Construction Materials]. 2023. No. 1–2, pp. 100–105. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-810-1-2-100-105


Print   Email