The Effect of Mineral Additives on the Corrosion Resistance of Steel Reinforcement in Reinforced Concrete Structures

Number of journal: No.1-2-2023
Autors:

Aleksandrova O.V.,
Nguyen Duc Vinh Quang,
Bulgakov B.I.

DOI: https://doi.org/10.31659/0585-430X-2023-810-1-2-69-75
УДК: 666.97

 

AbstractAbout AuthorsReferences
One of the main reasons for the loss of operability of reinforced concrete structures during their operation is the corrosion of steel reinforcement. The process of reinforcement corrosion causes damage to building structures as a result of a decrease in the adhesion of concrete cement stone with reinforcement as a result of cracking and peeling of the protective concrete layer from the surface of reinforcement rods. The article examines the effect of the introduction of finely dispersed active mineral additives into the concrete mixture of heavy concrete, which have a high pozzolanic activity due to the high content of amorphous silicon dioxide in their composition, in the form of microsilicon and low-calcium acid fly ash, as well as nanodispersed silica together with a water-reducing polycarboxylate superplasticizer on the corrosion resistance of steel reinforcement in concrete with a structure, modified by the specified additives. An assessment was made of the corrosion resistance of steel reinforcement in a reinforced concrete structure exposed to aggressive environments containing high concentrations of chlorine ions. Partial replacement of sulfate-resistant Portland cement as part of the developed multicomponent binder with finely dispersed mineral additives increases the corrosion resistance of steel reinforcing bars and reduces the weight loss of reinforcing steel, as well as the length, width and depth of pitting cracks on the surface of the reinforcement caused by corrosion as a result of compaction of the structure of modified concrete with used chemical, as well as nano- and finely dispersed mineral additives.
O.V. ALEKSANDROVA1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
NGUYEN DUC VINH QUANG2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
B.I. BULGAKOV1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)
2 Hue Industrial College (70, Nguyen Hue Street, Hue, 530000, Vietnam)

1. Hans Böhni. Corrosion in reinforced concrete structures. A Volume in Woodhead Publishing Series in Civil and Structural Engineering. 2005. 264 p.
2. Carnot A. Corrosion mechanisms of steel concrete moulds in the presence of a demoulding agent. Journal of Applied Electrochemistry. 2002. Vol. 32, pp. 865–869.
3. Trần Đ.H., Nguyễn Q.H. Đánh giá chất lượng nước vùng cửa sông và biển ven bờ để định hướng giải pháp công nghệ xử lý phù hợp cho mục đích cấp nước sinh hoạt. Tạp chí khoa học công nghệ Xây dựng. 2019. Vol. 10, pp. 89–98.
4. Степанов С.Н. Прогнозирование долговечности железобетонных конструкций, работающих в агрессивных средах с учетом коррозионного износа рабочей арматуры: Дис. ... канд. техн. наук. Н. Новгород, 2005. 213 с.
4. Stepanov S.N. Forecasting the durability of reinforced concrete structures operating in aggressive environments, taking into account the corrosion wear of working fittings. Diss… Candidate of Sciences (Engineering). N. Novgorod. 2005. 213 p. (In Russian).
5. Li C., Chen Q., Wang R., Wu M., Jiang Z. Corrosion assessment of reinforced concrete structures exposed to chloride environments in underground tunnels: Theoretical insights and practical data interpretations. Cement and Concrete Composites. 2020. Vol. 112. 103652. DOI: 10.1016/j.cemconcomp.2020.10365
6. Федосов С.В., Румянцева В.Е., Коновалова С.В., Караваев И.В. Скорость проникновения хлорид-ионов к поверхности стальной арматуры в гидрофобизированных бетонах // Современные наукоемкие технологии. 2018. № 4 (56). С. 93–99.
6. Fedosov S.V., Rumyantseva V.E., Konovalova S.V., Karavaev I.V. The rate of penetration of chloride ions to the surface of steel reinforcement in hydrophobized concrete. Sovremennyye naukoyemkiye tekhnologii. 2018. No. 4 (56), pp. 93–99. (In Russian).
7. Amir Poursaee. Corrosion of steel in concrete structures. Elsevier Ltd. 2016. 294 p.
8. Булгаков Б.И., Танг Ван Лам. Исследование ускоренным методом коррозионной стойкости стальной арматуры в зависимости от структуры мелкозернистого бетона // Промышленное и гражданское строительство. 2016. № 5. C. 26–30.
8. Bulgakov B.I., Tang Van Lam. Investigation by accelerated method of corrosion resistance of steel reinforcement depending on the structure of fine-grained concrete. Promyshlennoye i grazhdanskoye stroitel’stvo. 2016. No. 5, pp. 26–30. (In Russian).
9. Said A.M., Zeidan M.S., Bassuoni M., Tian Y. Properties of concrete incorporating nano-silica. Construction and Building Materials. 2012. Vol. 36, pp. 838–844. https://doi.org/10.1016/j.conbuildmat.2012.06.044
10. Каюмов Р.А., Федосов С.В., Румянцева В.Е., Хрунов В.А., Манохина Ю.В., Красильников И.В. Математическое моделирование коррозионного массопереноса гетерогенной системы «жидкая агрессивная среда – цементный бетон». Частные случаи решения // Известия КГАСУ. 2013. № 4 (26). С. 343–348.
10. Kayumov R.A., Fedosov S.V., Rumyantseva V.E., Khrunov V.A., Manohina Yu.V., Krasilnikov I.V. Mathematical modeling of corrosion mass transfer of the heterogeneous system «corrosive liquids – cement concrete». Special cases of the solutions. Izvestiya KGASU. 2013. No. 4 (26), pp. 343–348. (In Russian).
11. Lei M., Peng L., Shi C., W S. Experimental study on the damage mechanism of tunnel structure suffering from sulfate attack. Tunnelling and Underground Space Technology. 2013. Vol. 36, pp. 5–13. https://doi.org/10.1016/j.tust.2013.01.007
12. Синицин Д.А., Халиков Р.М., Булатов Б.Г., Галицков К.С., Недосеко И.В. Технологичные подходы направленного структурообразования нанокомпозитов строительного назначения с повышенной коррозионной устойчивостью // Нанотехнологии в строительстве: научный интернет-журнал. 2019. Т. 11. № 2. С. 153–164.
12. Sinitsin D.A., Khalikov R.M., Bulatov B.G., Galitskov K.S., Nedoseko I.V. Technological approaches to directed structure formation of building nanocomposites with increased corrosion resistance // Nanotekhnologii v stroitel’stve: nauchnyy internet-zhurnal. 2019. Vol. 11. No. 2, pp. 153–164. (In Russian).
13. Fedosov S., Bulgakov B., Ngo H.X., Aleksandrova O., Solovev V. Theoretical and experimental models to evaluate the possibility of corrosion resistant concrete for coastal offshore structures. Materials. 2022. Vol. 15 (13). 4697. https://doi.org/10.3390/ma15134697/
14. Хунг Н.С., Булгаков Б.И., Александрова О.В. Влияние минеральных добавок на прочность сцепления цементного камня бетона со стальной арматурой // Промышленное и гражданское строительство. 2022. № 6. С. 25–31. DOI: 10.33622/0869-7019.2022.06.25-31
14. Hung N.S., Bulgakov B.I., Aleksandrova O.V. Influence of mineral additives on the adhesion strength of cement stone concrete with steel reinforcement. Promyshlennoye i grazhdanskoye stroitel’stvo. 2022. No. 6, pp. 25–31. DOI: 10.33622/0869-7019.2022.06.25-31. (In Russian).
15. Федосов С.В., Александрова О.В., Нгуен Дык Винь Куанг, Федосеев В.Н., Логинова С.А. Физико-математическое обоснование теоретических и инженерных изысканий по разработке коррозионно-стойких материалов для заглубленных сооружений прибрежных зон // Техника и технология силикатов. 2022. Т. 29. № 1. С. 45–54.
15. Fedosov S.V., Aleksandrova O.V., Nguyen Duc Vinh Quang, Fedoseev V.N., Loginova S.A. Physico-mathematical substantiation of theoretical and engineering surveys for the development of corrosion-resistant materials for buried structures in coastal zones. Tekhnika i tekhnologiya silikatov. 2022. Vol. 29. No. 1, pp. 45–54. (In Russian).
16. Нгуен Дык Винь Куанг, Баженов Ю.М., Александрова О.В. Влияние кварцевого порошка и минеральных добавок на свойства высокоэффективных бетонов // Вестник МГСУ. 2019. Т. 14. Вып. 1. С. 102–117. DOI: 10.22227/1997-0935.2019.1.102-117
16. Nguyen Duc Vinh Quang, Bazhenov Y.M., Aleksandrovna O.V. Effect of quartz powder and mineral admixtures on the properties of high-performance concrete. Vestnik MGSU. Vol. 14. No. 1, 2019. pp. 102–117. doi:10.22227/1997–0935.2019.1.102-117
17. Petropavlovskaya V., Novichenkova Т., Petropavlovskii K., Aleksandrova O.V., Fischer H.B. Application of Fuel ash as a microfiller in cement dispersion systems. Materials Science Forum. 2021. Vol. 1037. pp. 729–736. https://doi.org/10.4028/www.scientific.net/msf.1037.729
18. Wang L. Zheng D., Zhang S., Cui H., Li D. Effect of nano-SiO2 on the hydration and microstructure of Portland cement. Nanomaterials (Basel). 2016. Vol. 6 (12). 241. DOI: 10.3390/nano6120241
19. Feng H., Wang Z., Sheikh M.N., Zhao X., Gao D., Hadi M.N. The effect of nano-SiO2, nano-Al2O3, and nano-Fe2O3 on the compressive strength and workability of magnesium phosphate cement-based mortar. Advance Civil Engineering Materials. 2019. Vol. 8, pp. 192–208. DOI: 10.1520/ACEM20190014
20. Snehal K., Das B., Akanksha M. Early age, hydration, mechanical and microstructure properties of nano-silica blended cementitious composites. Construction and Building Materials. 2020. Vol. 233. 117212. https://doi.org/10.1016/j.conbuildmat.2019.117212

For citation: Aleksandrova O.V., Nguyen Duc Vinh Quang, Bulgakov B.I. The effect of mineral additives on the corrosion resistance of steel reinforcement in reinforced concrete structures. Stroitel’nye Materialy [Construction Materials]. 2023. No. 1–2, pp. 69–75. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-810-1-2-69-75 


Print   Email