Evaluation of the Efficiency of Protection Against Static Electricity when Using Nanomodified Paint Coatings

Number of journal: 3-2023
Autors:

Pchelnikov A.V.

DOI: https://doi.org/10.31659/0585-430X-2023-811-3-27-32
УДК: 691.1:539.2

 

AbstractAbout AuthorsReferences
This article deals with the protection of agro-industrial complex objects from static electricity by nanomodified coatings. It is indicated that one of the main causes of ignition of objects of the agro-industrial complex is static electricity discharges, leading to damage to equipment, possible fires, explosions and injuries to maintenance personnel. The conducted experimental studies of modified coatings with carbon nanotubes are reflected. With a concentration of compositions with carbon nanotubes in the paintwork material up to 0.1%, the resulting coating becomes up to two times more antistatic and has increased adhesive strength (adhesion strength increases two or more times). When analyzing the samples on a scanning electron microscope, it was determined that the introduction of carbon nanotubes into the composition of paint and varnish materials contributes to a faster (1.2–1.5 times) passage of electrons through the coating and, as a result, the formation of dark areas in electronic images, which characterizes conductive and antistatic coating quality. The use of acrylic paints and varnishes modified with carbon nanotubes will reduce the risk of ignition of fire hazardous objects of the agro-industrial complex, as well as extend the service life of protective coatings.
A.V. PCHELNIKOV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Novosibirsk State Agrarian University (630039, Novosibirsk, Dobrolyubova Street, 160)

1. World fire statistics for the year. Statistics and causes of fires (Electronic resource). https://ortait.ru/mirovaya-pozharnaya-statistika-za-god-statistika-i-prichiny-pozharov/. Date of access: 04.12.2022. (In Russian).
2. Summary statistics of fires in the Russian Federation (Electronic resource). https://wikifire.org/Summary%20statistics%20%20fires%20%20Russian%20Federation.ashx. Accessed: 04.12.2022. (In Russian).
3. Statistics of fires in Russia (Electronic resource) http://www.pojarnayabezopasnost.ru/statistika.html/. Date of access: 04.12.2022. (In Russian).
4. Pchelnikov A.V., Pichugin A.P., Khritankov V.F., Voloboi E.A. Modeling of the process and methods for assessing the combustion of protective coatings of metal structures and equipment. Izvestiya vysshikh uchebnykh zavedenii. Stroitel’stvo. 2020. No. 6 (738), pp. 81–90. DOI: 10.32683/0536-1052-2020-738-6-81-90.
5. Reibman A.I. Zashchitnye lakokrasochnye pokrytiya [Protective paint coatings. 5th ed., revised. and additional]. Leningrad: Khimiya, 1982. 320 p.
6. Yazykov S.Yu., Dammer V.Kh., Panin S.V., Ovechkin B.B. Antistatic composite coatings for the protection of magnesium alloys based on powder paints processed in a planetary ball mill. Izvestiya TPU. Mathematics and mechanics. Physics. 2014. Vol. 325. No. 2, pp. 105–113. (In Russian).
7. Stepin S.N., Abdullin I.Sh., Svetlakova T.N., Ziganshina M.R., Svetlakov A.P. Nanoscale objects in the field of anti-corrosion protection with polymer coatings. Lakokrasochnye materialy i ikh primenenie. 2009. No. 3, pp. 40–42. (In Russian).
8. Shashok Zh.S., Prokopchuk N.R. Primenenie uglerodnykh nanomaterialov v polimernykh kompozitsiyakh [Application of carbon nanomaterials in polymer compositions]. Minsk: BSTU. 2014. 232 p.
9. Pchelnikov A.V., Pichugin A.P., Khritankov V.F., Smirnova O.E. The role of nano-additives in the formation of a strong contact layer of protective coatings. Stroitel’nye Materialy [Construction Materials]. 2022. No. 7, pp. 45–50. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-804-7-45-50
10. Pichugin A.P., Khritankov V.F., Pchelnikov A.V. Thermomechanical studies of protective impregnating compositions with nanosized and special additives. Inzhenerno-stroitel’nyi vestnik Prikaspiya. 2020. No. 3 (33), pp. 53–58. (In Russian).
11. Hippel A.R. Dielektriki i ikh primenenie [Dielectrics and their application]. Moscow-Leningrad: Gosenergoizdat. 1959. 336 p.
12. Pchelnikov A.V., Pichugin A.P., Lutsik R.V., Tkachenko S.E., Dielectric analysis of operational characteristics and the aging process of protective coatings. Ekspert: teoriya i praktika. 2022. No. 1 (16), pp. 14–22. (In Russian). DOI: 10.51608/26867818_2022_1_14
13. Vinogradov S.A., Pichugin M.A., Khritankov V.F., Pichugin A.P. Dielectric properties and strength of cement stone in fine-grained concrete. Izvestiya vysshikh uchebnykh zavedenii. Stroitel’stvo. 2019. No. 3 (723), pp. 20–30. (In Russian).
14. Application guide for 200 and 300 series Tuball Matrix. Oxial. 2019. 6 p.
15. Yazykov S.Yu., Dammer V.Kh., Panin S.V., Ovechkin B.B. Antistatic composite coatings for the protection of magnesium alloys based on powder paints processed in a planetary ball mill. Izvestiya TPU. Mathematics and mechanics. Physics. 2014. Vol. 325. No. 2, pp. 105–113.
16. Conductive enamels (Electronic resource). http://npklkp.ru/emali-tokoprovodyashchiye. Date of access: 12.04.2022. (In Russian).

For citation: Pchelnikov A.V. Evaluation of the efficiency of protection against static electricity when using nanomodified paint coatings. Stroitel’nye Materialy [Construction Materials]. 2023. No. 3, pp. 27–32. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-811-3-27-32


Print   Email