Evolution of Mathematical Models of Processes of Non-Stationary Heat (Mass) Conduction in Bodies of Canonical Form

Number of journal: 8-2023
Autors:

Fedosov S.V.,
Bakanov M.O

DOI: https://doi.org/10.31659/0585-430X-2023-816-8-54-62
УДК: 001.891.573

 

AbstractAbout AuthorsReferences
Currently, there are a large number of materials that are thermally affected during their production. From the point of view of the principles of geometry, their shape can be reduced to classical bodies of canonical form: a plate, a cylinder, a ball. In the heat treatment of solid materials (heat and moisture treatment, drying, firing), the transfer potentials (temperature, mass content) change critically with respect to the process time. When solving boundary value problems of heat and mass (moisture) conductivity in similar cases, it is proposed to use the zonal method and the method of micro-processes. The main positions of the method of micro-processes, as applied to modeling boundary value problems of heat and mass transfer for canonical bodies under boundary conditions of the first kind (Dirichlet conditions), were outlined in previous articles by the authors. In this paper, a technique based on the method of micro-processes for solving boundary value problems of heat and moisture conduction under more general boundary conditions, conditions of the third kind (Riemann-Newton) is presented. The high adaptability of these conditions lies in the fact that, depending on the values of the Biot number (Bi), they are transformed into a condition of the first kind ((Bi→0) or the second (Bi→∞). The paper shows that for mathematical modeling of heat and mass transfer processes in systems with a solid phase based on the method of micro-processes, it is promising to search for solutions in the field of small Fourier numbers (Fo <0,1). Mathematical calculations for solving the corresponding boundary value problems are given and examples of the results of their numerical implementation are shown. The solution to the problems of heat conduction and diffusion for bodies, including the canonical form, is obtained in the form of Fourier series, which is typical for conditions with an uneven initial distribution of heat and mass transfer potentials, but solutions for small Fourier numbers are not given in the sources. At the same time, as the process time decreases, the numerical values of the Fourier criteria also decrease, and thus there are more members of the infinite series, which entails an increase in the error in further calculations. The paper presents solutions for canonical bodies – plates, cylinders and spheres, also presents nomograms of the dimensionless temperature of the body surface depending on the values of the Biot and Fourier numbers at specific values of the Bi number.
S.V. FEDOSOV1, Academician Russian Academy of Architecture and Construction Sciences (RAACS), Doctor of Sciences (Engineering), Professor (This email address is being protected from spambots. You need JavaScript enabled to view it.),
M.O. BAKANOV2, Adviser of RAACS, Doctor of Sciences (Engineering), Head of the Educational and Scientific Complex "Fire Fighting"(This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)
2 Ivanovo Fire and Rescue Academy of the State Fire Service of the Ministry of Emergency Situations of Russia (33, Stroiteley Prospect, Ivanovo, 153011, Russian Federation)

1. Федосов С.В., Баканов М.О. Применение метода «микропроцессов» для моделирования процессов теплопроводности и диффузии в телах канонической формы // Известия вузов. Химия и химическая технология. 2020. Т. 63. Вып. 10. С. 90–95. DOI: 10.6060/ivkkt.20206310.6275
1. Fedosov S.V., Bakanov M.O. Application of the “microprocesses” method for modeling the processes of heat conduction and diffusion in bodies of canonical form. Izvestiya vuzov. Khimiya i khimicheskaya tekhnologiya. 2020. Vol. 63. Iss. 10, pp. 90–95. (In Russian) DOI:  10.6060/ivkkt.20206310.6275
2. Федосов С.В., Баканов М.О. Моделирование процессов теплопроводности и диффузии в телах канонической формы с применением метода «микропроцессов» для области малых значений числа Фурье // Известия вузов. Химия и химическая технология. 2021. Т. 64. Вып. 10. С. 78–83. DOI: 10.6060/ivkkt.20216410.6387
2. Fedosov S.V., Bakanov M.O. Modeling of processes of heat conduction and diffusion in bodies of canonical form using the method of «microprocesses» for the region of small values of the Fourier number. Izvestiya vuzov. Khimiya i khimicheskaya tekhnologiya. 2021. Vol. 64. Iss. 10, pp. 78–83. (In Russian). DOI: 10.6060/ivkkt.20216410.6387
3. Баканов М.О. Моделирование высокотемпературных процессов в технологии пеностекла. Ч. 1. Формирование динамики циклических нестационарных двумерных температурных полей. Вестник Поволжского государственного технологического университета. Серия: Материалы. Конструкции. Технологии. 2021. № 2. С. 87–102. DOI: 10.25686/2542-114Х.2021.2.87
3. Bakanov M.O. Modeling of high-temperature processes in foam glass technology. Part 1: Formation of the dynamics of cyclic non-stationary two-dimensional temperature fields. Vestnik of the Volga State Technological University. Series: Materials. Constructions. Technologies. 2021. No. 2, pp. 87–102. (In Russian). DOI: 10.25686/2542-114Х.2021.2.87
4. Claesson J. Dynamic thermal networks: a methodology to account for time-dependent heat conduction. In book: Research in Building Physics. 2020. 1st Edition, pp. 407-415.
5. Stankevičius V., Barkauskas V. Pastatų atitvarų šiluminė fizika [Building physics]. Kaunas: Technologija. 2000. 286 p.
6. Pupeikis D., Stankevičius V., Burlingis A. The effect of the Fourier number on calculation of an unsteady heat transfer of building walls. Journal of Civil Engineering and Management. 2010. Vol. 16. No. 2, pp. 298–305. DOI:. No. https://doi.org/10.3846/jcem.2010.34
7. Hensen J.L.M., Nakhi A.E. Fourier and Biot numbers and the accuracy of conduction modelling. Proceedings of BEP’94 Conference. 1994, pp. 247–256.
8. Cuesta F.J., Lamúa M. Fourier series solution to the heat conduction equation with an internal heat source linearly dependent on temperature: application to chilling of fruit and vegetables. Journal of food engineering. 2009. Vol. 90. No. 2, pp. 291–299. https://doi.org/10.1016/j.jfoodeng.2008.06.036
9. Рудобашта С.П., Карташов Э.М. Диффузия в химико-технологических процессах. М.: КолосС, 2013. 478 с.
9. Rudobashta S.P., Kartashov E.M. Diffuziya v khimiko-tekhnologicheskikh protsessakh [Diffusion in chemical-technological processes]. Moscow: Kolos. 2013. 478 p.
10. Федосов С.В. Тепломассоперенос в технологических процессах строительной индустрии. Иваново: ИПК «ПресСто», 2010. 363 с.
10. Fedosov S.V. Teplomassoperenos v tekhnologicheskikh protsessakh stroitel’noy industrii [Heat and mass transfer in technological processes of the construction industry]. Ivanovo: IPK «PresSto». 2010. 363 p.
11. Лыков А.В. Теория теплопроводности. М.: Высшая школа, 1967. 600 с.
11. Lykov A.V. Teoriya teploprovodnosti [Theory of thermal conductivity]. Moscow: Vysshaya shkola. 1967. 600 p.
12. Лыков А.В., Михайлов Ю.А. Теория тепло- и массопереноса. М.; Л.: Госэнергоиздат, 1963. 535 с.
12. Lykov A.V., Mikhailov Yu.A. Theory of heat and mass transfer. Moscow-Leningrad: Gosenergoizdat. 1963. 535 p.
13. Мамонтов А.Е. Методы математической физики: Учебное пособие. Новосибирск: НГПУ, 2016. 129 с.
13. Mamontov A.E. Metody matematicheskoy fiziki: uchebnoye posobiye [Methods of mathematical physics] Novosibirsk: NGPU. 2016. 129 p.
14. Шамин Р.В. Концентрированный курс высшей математики. М.: URSS, 2017. 398 с.
14. Shamin R.V. Kontsentrirovannyy kurs vysshey matematiki [Concentrated course of higher mathematics]. Moscow: URSS. 2017. 398 p.
15. Цой П.В. Методы расчета отдельных задач тепломассопереноса. М.: Энергия, 1971. 384 с.
15. Tsoi P.V. Metody rascheta otdel’nykh zadach teplomassoperenosa [Methods for calculating individual problems of heat and mass transfer]. Moscow: Energiya. 1971. 384 p.
16. Wang C.C. Application of the maximum principle for differential equations in combination with the finite difference method to find transient approximate solutions of heat equations and error analysis. Numerical Heat Transfer. Part B: Fundamentals. 2009. Vol. 55. No. 1, pp. 56–72. https://doi.org/10.1080/10407790802557524
17. Šadauskienė, J., Buska A., Burlingis A., Bliūdžius R., Gailius A. The effect of vertical air gaps to thermal transmittance of horizontal thermal insulating layer. Journal of Civil Engineering and Management. 2009. Vol. 15 (3), pp. 309–315. DOI: 10.3846/1392-3730.2009.15.309-315.
18. Карташов Э.М., Кудинов В.А. Аналитические методы теории теплопроводности и ее приложений. М.: URSS, 2018. 1080 с.
18. Kartashov E.M., Kudinov V.A. Analytical methods of the theory of heat conduction and its applications. Moscow: URSS. 2018. 1080 p. [Analytical methods of the theory of heat conduction and its applications]. Moscow: URSS. 2018. 1080 p.
19. Rudobashta S., Zuev N., Zueva G. Mathematical modeling and numerical simulation of seeds drying under oscillating infrared irradiation. Drying Technology. 2014. Vol. 32. No. 11, pp. 1352–1359. DOI: No. 10.1080 / 07373937.2014.892508
20. Rudobashta S., Zueva G. Drying of seeds through oscillating infrared heating. Drying Technology. 2016. Vol. 34. No. 5, pp. 505–515. DOI: No. 10.1080/07373937.2015.1060997
21. Рудобашта С.П., Зуева Г.А., Дмитриев В.М. Исследование массопроводных свойств слоя семян // Известия вузов. Химия и химическая технология. 2017. № 60 (7). С. 72–77. DOI: 10.6060/tcct.2017607.5556
21. Rudobashta S.P., Zueva G.A., Dmitriev V.M. Study of the mass-conducting properties of the seed layer. Izvestiya vuzov. Chemistry and chemical technology. 2017. No. 60 (7), pp. 72–77. DOI: 10.6060/tcct.2017607.5556
22. Румянцева В.Е., Смельцов В.Л., Федосова Н.Л., Хрунов В.А., Костерин А.Я. Экспериментальные исследования процессов массопереноса при жидкостной коррозии цементных бетонов // Приволжский научный журнал. 2010. № 1 (13). С. 39–46.
22. Rumyantseva V.E., Smeltsov V.L., Fedosova N.L., Khrunov V.A., Kosterin A.Ya. Experimental studies of mass transfer processes during liquid corrosion of cement concretes. Privolzhskiy nauchnyy zhurnal. 2010. No. 1 (13), pp. 39–46. (In Russian).
23. Румянцева В.Е., Красильников И.В., Лавринович С.С., Виталова Н.М. Сравнительный анализ уравнений распределения температур по толщине железобетонной панели в процессах тепловлажностной обработки // Приволжский научный журнал. 2015. № 3 (35). С. 70–76.
23. Rumyantseva V.E., Krasilnikov I.V., Lavrinovich S.S., Vitalova N.M. Comparative analysis of the equations of temperature distribution over the thickness of a reinforced concrete panel in the processes of heat and moisture treatment. Privolzhskiy nauchnyy zhurnal. 2015. No. 3 (35), pp. 70–76.
24. Федосов С.В., Румянцева В.Е., Коновалова В.С., Гоглев И.Н. Явления массопереноса в системе «Цементный раствор – композитная пластиковая арматура» на стадии структурообразования композита. Ч. 1. Физические представления и математическая постановка задачи // Academia. Архитектура и строительство. 2020. № 1. С. 118–123.
24. Fedosov S.V., Rumyantseva V.E., Konovalova V.S., Goglev I.N. Mass transfer phenomena in the «Cement mortar-composite plastic reinforcement» system at the stage of composite structure formation. Part 1. Physical representations and mathematical formulation of the problem. Academia. Arkhitektura i stroitel’stvo. 2020. No. 1, pp. 118–123. (In Russian).
25. Красильников И.В., Красильникова И.А., Новикова У.А., Строкин К.Б. Способ аппроксимации аналитическими уравнениями экспериментальных данных о динамике массопереноса в теле строительных конструкций. Инженерные и социальные системы: Сборник научных трудов института архитектуры, строительства и транспорта ИВГПУ. Иваново, 2021. С. 11–18.
25. Krasilnikov I.V., Krasilnikova I.A., Novikova U.A., Strokin K.B. Method of approximation by analytical equations of experimental data on the dynamics of mass transfer in the body of building structures. In the collection: Engineering and social systems. Collection of scientific papers of the institute of architecture, construction and transport of IVSPU. Ivanovo. 2021, pp. 11–18. (In Russian).
26. Чернявская А.С., Бобков С.П. Моделирование процессов теплопереноса в движущейся жидкости // Вестник ИГЭУ. 2014. Вып. 4. С. 53–57.
26. Chernyavskaya A.S., Bobkov S.P. Modeling of heat transfer processes in a moving fluid. Vestnik of ISEU. 2014. Iss. 4, pp. 53–57. (In Russian).

For citation: Fedosov S.V., Bakanov M.O. Evolution of mathematical models of processes of non-stationary heat (mass) conduction in bodies of canonical form. Stroitel’nye Materialy [Construction Materials]. 2023. No. 8, pp. 54–62. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-816-8-54-62


Print   Email