Cement Sector Decarbonization and Development of Environmental and Energy Management Systems

Number of journal: 9-2023
Autors:

Bashmakov I.A.,
Potapova E.N.,
Borisov K.B.,
Lebedev O.V.,
Guseva T.V.

DOI: https://doi.org/10.31659/0585-430X-2023-817-9-4-12
УДК: 666.94:504.7

 

AbstractAbout AuthorsReferences
The article discusses the prospects for decarbonization of technological processes and products of the cement industry. An analysis of international trends is given and the strengthening of the role of carbon prices in regional and national systems of stimulating the decarbonization of the economy is emphasized. Decarbonization methods recommended by “the Cement Sustainability Initiative” and the International Energy Agency are presented. The set of the initial data required for the calculation of specific greenhouse gas emissions in the cement industry is described. The role of benchmarking in setting targets for the carbon intensity of cement and cement clinker is emphasized and a list of the main international and national benchmarking systems is presented. The specific emissions of greenhouse gases in the production of cement in various countries of the world are analyzed. It is noted that in the Russian Federation carbon intensity benchmarking is carried out as part of the updating of sectoral Reference Documents on the Best Available Techniques, during the development of which a system has been formed for collecting and analyzing data characterizing technological processes, resource consumption and the main emissions characteristic for industrial installations. At the same time, the use (implementation) of best available technologies aimed at increasing the production resource efficiency makes it possible to reduce emissions of not only conventional pollutants, but also greenhouse gases. As a result of benchmarking in the Russian Federation, indicative sectoral parameters of specific greenhouse gas emissions of two levels are set: the upper level has a restrictive character while the lower one is designed to stimulate industrial enterprises to develop and implement green projects aimed at deep decarbonization of technological processes and products. Expected that state support instruments will be available for enterprises implementing such projects. Approaches to the calculation of indicative parameters are presented. It is concluded that the results of benchmarking (including indicative parameters) form a system of coordinates to substantiate aims and objectives of enhancing environmental and energy management systems of industrial enterprises, as well as for working out sustainable development (including green) projects in industry seeking preferential loans or governmental economic support measures.
I.A. BASHMAKOV1, Doctor of Science (Economy), Noble Prize Laureate (This email address is being protected from spambots. You need JavaScript enabled to view it.);
E.N. POTAPOVA2, Doctor of Science (Engineering), Professor (This email address is being protected from spambots. You need JavaScript enabled to view it.);
K.B. BORISOV1, Candidate of Science (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
O.V. LEBEDEV1, Candidate of Science (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
T.V. GUSEVA3, Doctor of Science (Engineering), Profeccor (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 LLC Company “Center for Energy Efficiency – XXI” (61, Novocheremushkinskaya Street, Moscow, 117418, Russian Federation)
2 Dmitry Mendeleev University of Chemical Technology of Russia (9, Miusskaya Square, Moscow, 125047, Russian Federation)
3 Federal State Autonomous Institution «Research Institute «Environmental Industrial Policy Center» (42, Olimpiiskii Prospect, Mytishchi, Moscow region, 141006, Russian Federation)

1. Wynn M., Jones P. Industry approaches to the Sustainable Development Goals. International Journal of Environmental Studies. 2022. Vol. 79. Iss. 1, pp. 13–18. DOI: https://doi.org/ 10.1080/00207233.2021.1911101
2. Скобелев Д.О. Промышленная политика повышения ресурсоэффективности и достижение целей устойчивого развития // Journal of New Economy. 2020. Т. 21. № 4. С. 153–173. DOI: https://doi.org/10.29141/2658-5081-2020-21-4-8
2. Skobelev D.O. Industrial policy of increasing resource efficiency and the achievement of the sustainable development goals. Journal of New Economy. 2020. Vol. 21. No. 4, pp. 153-173. (In Russian). DOI: https://doi.org/10.29141/2658-5081-2020-21-4-8
3. Скобелев Д.О., Федосеев С.В. Политика повышения ресурсоэффективности и формирование экономики замкнутого цикла // Компетентность. 2021. № 3. С. 5–13. DOI: https://doi.org/ 10.24412/1993-8780-2021-3-05-14
3. Skobelev D.O., Fedoseev S.V. Resource efficiency policy and circular economy development. Competency (Russia). 2021. No. 3, pp. 5–13. (In Russian). DOI: https://doi.org/ 10.24412/1993-8780-2021-3-05-14
4. Доброхотова М.В., Матушанский А.В. Примене-ние концепции наилучших доступных технологий в целях технологической трансформации промышленности в условиях энергетического перехода // Экономика устойчивого развития. 2022. № 2 (50). С. 63–68.
4. Dobrohotova M.V., Matushanskij A.V. Applying the best available techniques concept for the technological transformation of industry under the energy transition conditions. Economica ystoychivogo razvitiya. 2022. No. 2 (50), pp. 63–68. (In Russian).
5. Никитин Г.С., Скобелев Д.О. Эффективность государственных и корпоративных инвестиций в развитие реального сектора экономики // Вестник Нижегородского университета им. Н.И. Лоба-чевского. Сер.: Социальные науки. 2022. № 4 (68). С. 32–41.
5. Nikitin G.S., Skobelev D.O. Efficiency of state and corporate investments in the development of the real sector of the economy. Vestnik Nizhegorodskogo universiteta imeni N.I. Lobachevskogo. Seriya: Sotsial’nye nauki. 2022. No. 4 (68), pp. 32–41. (In Russian).
6. Скобелев Д.О. Ресурсная эффективность экономики: аспекты стратегического планирования // Менеджмент в России и за рубежом. 2020. № 4. С. 3–13.
6. Skobelev D.O. Resource efficiency of the economy: strategic planning aspects. Management v Rossii i za rubezhom. 2020. No. 4, pp. 3–13. (In Russian).
7. Башмаков И.А., Скобелев Д.О., Борисов К.Б., Гусева Т.В. Системы бенчмаркинга по удельным выбросам парниковых газов в черной металлургии // Черная металлургия. Бюллетень научно-технической и экономической информации. 2021. Т. 77. № 9. С. 1071–1086. DOI: https://doi.org/ 10.32339/0135-5910-2021-9-1071-1086
7. Bashmakov I.A., Skobelev D.O., Borisov K.B., Guseva  T.V. Benchmarking systems for greenhouse gases specific emissions in steel industry. Chernaya metallurgiya. Byulleten’ nauchno-tekhnicheskoi i ekonomicheskoi informatsii. 2021. Vol. 77. Iss. 9, pp. 1071–1086. DOI: https://doi.org/ 10.32339/0135-5910-2021-9-1071-1086 (In Russian).
8. Доброхотова М.В. Особенности перехода российской угольной промышленности к наилучшим доступным технологиям // Уголь. 2022. № 9. С. 34–40. DOI: https://doi.org/ 10.18796/0041-5790-2022-9-34-40
8. Dobrokhotova M.V. Specific features of the russian coal industry’s transition to the best available technologies. Ugol’. 2022. No. 9, pp. 34–40. (In Russian). DOI: https://doi.org/ 10.18796/0041-5790-2022-9-34-40
9. Reimink H., Maciel F. CO2 data collection user guide, Version 10. Partnership for Market Readiness. A Guide to Greenhouse Gas Benchmarking for Climate Policy Instruments. Washington. DC. World Bank. 2021. 120 р.
10. Tudor C., Sova R. Benchmarking GHG emissions: forecasting models for global climate policy. Electronics. 2021. No. 10, pp. 3149. DOI: https://doi.org/ 10.3390/electronics10243149
11. Скобелев Д.О., Волосатова А.А. Разработка научного обоснования системы критериев «зеленого» финансирования проектов, направленных на технологическое обновление российской промышленности // Экономика устойчивого развития. 2021. № 1 (45). С. 181–188.
11. Skobelev D.O., Volosatova A.A. Scientific rationale for the development of the “Green” project financing criteria system designed to achieve technological restoration for the Russian industry. Economica ustoichivogo razvitiya. 2021. No. 1 (45), pp. 181–188. (In Russian).
12. Shchelchkov K.A., Guseva T.V., Tikhonova I.O., Potapova E.N., Rudomazin V.V. The concept of best available techniques as an instrument for increasing industrial resource efficiency and reducing environmental impact in the Arctic. Proceedings of IOP Conference Series: Earth And Environmental Science. International Russian Conference on Ecology and Environmental Engineering (RusEcoCon 2022). P. 012010.13. DOI: https://doi.org/ 10.1088/1755-1315/1061/1/012010
13. Technology Roadmap low-carbon transition in the cement industry. IEA & CSI. 2018. 61 p.
14. Toward net zero: decarbonization roadmap for China’s cement industry. RMI and China Cement Association. Beijing. 2022. 15 p.
15. Existing and potential technologies for carbon emissions reductions in the Indian cement industry. CSI & IFC, 2018. 88 p.
16. Скобелев Д.О., Череповицына А.А., Гусева Т.В. Технологии секвестрации углекислого газа: роль в достижении углеродной нейтральности и подходы к оценке затрат // Записки Горного института. 2023. Т. 259. С. 125–140. DOI: https://doi.org/10.31897/PMI.2023.10
16. Skobelev D.O., Cherepovitsyna A.A., Guseva T.V. Carbon capture and storage: net zero contribution and cost estimation approaches. Zapiski gornogo instituta. 2023. Vol. 259, pp. 125–140. (In Russian). DOI: https://doi.org/10.31897/PMI.2023.10
17. Decarbonizing Building. 2023 Climate Report. URL: https://www.holcim.com/sites/holcim/files/2023-03/31032023-holcim-climate-report-2023-7392605829.pdf (Date of access 08.06.2023).
18. Heidelberg Materials. Annual and Sustainability Report. 2022. URL: https://www.heidelbergmaterials.com/sites/default/files/2023-03/HM_Annual_and_Sustainability_Report_2022.pdf (Date of access 08.06.2023).
19. CEMEX: Building a Better Future. 2021 Integrated Report. URL: https://liferayprod-cdn.cemex.com/documents/20143/57102208/IntegratedReport2021.pdf (Date of access 08.06.2023).
20. Башмаков И. А. Масштаб необходимых усилий по декарбонизации мировой промышленности // Фундаментальная и прикладная климатология. 2022. Т. 8. № 2. С. 151–174. DOI: https://doi.org/10.21513/2410-8758-2022-2-151-174
20. Bashmakov I.A. The scale efforts required to decarbonize global industry. Fundamentalnaya i prikladnaya climatologiya. 2022. Vol. 8. No. 2, pp. 151–174. (In Russian). DOI: https://doi.org/10.21513/2410-8758-2022-2-151-174
21. International Energy Agency. Cement Sector Analysis. URL: https://www.iea.org/reports/cement (Date of access 08.06.2023).
22. Dietz S., Hastreiter N., Jahn V. Carbon performance assessment of cement producers: note on methodology. The Transition Pathway Initiative, London, 2021. URL: https://www.transitionpathwayinitiative.org/publications/104.pdf?type=Publication (Date of access 08.06.2023).
23. Cai B., Wang J., He J., Geng Y. Evaluating CO2 emission performance in China’s cement industry: An enterprise perspective. Applied Energy. 2016. Vol. 166, pp. 191–200. DOI: 10.1016/j.apenergy.2015.11.006
24. Башмаков И.А. Перспективы развития и декарбонизации цементной промышленности мира // Фундаментальная и прикладная климатология. 2023. Т. 9. № 1. С. 33–64. DOI: https://doi.org/ 10.21513/2410-8758-2023-1-33-64
24. Bashmakov I. A. Global cement industry development and decarbonization perspectives. Fundamentalnaya i prikladnaya climatologiya. 2023. Vol. 9. No. 1, pp. 33–64. (In Russian). DOI: https://doi.org/ 10.21513/2410-8758-2023-1-33-64

For citation: Bashmakov I.A., Potapova E.N., Borisov K.B., Lebedev O.V., Guseva T.V. Cement sector decarbonization and development of environmental and energy management systems. Stroitel’nye Materialy [Construction Materials]. 2023. No. 9, pp. 4–12. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-817-9-4-12


Print   Email