Radiation-Protective Properties of Cellular Barite-Containing Concrete

Number of journal: 8-2023
Autors:

Samchenko S.V.,
Bruyako M.G.,
Novikov N.V.

DOI: https://doi.org/10.31659/0585-430X-2023-816-8-42-47
УДК: 666.974

 

AbstractAbout AuthorsReferences
In the modern construction practice, to protect medical personnel from the harmful effects of ionizing radiation, materials with high density and mass are used, which negatively affect the technical and economic performance of the construction. In this paper, the possibility of using cellular barite-containing concrete as a structural material for the radiation protection of the medical premises is considered. The aim of this approach is to reduce the weight of the protective structure while maintaining the required protective characteristics. Using the method of mathematical modeling, based on the elemental compositions and densities of the studied materials, the radiation-protective characteristics of barite-containing cellular concrete, designed to attenuate the radiation intensity in accordance with the existing policies, were determined. The allowable attenuation ratio of photon radiation resulting from the operation of x-ray equipment was calculated for the protective structures. The linear attenuation coefficients of photon radiation, the necessary thicknesses and mass per unit area of protective structures are determined. The obtained results were compared with similar indicators of structures made of standard concrete used for protection X-ray rooms from ionizing radiation. Reducing the density of the material leads to a decrease in radiation-protective characteristics, however, with an increase in the thickness of the structure made of cellular barite-containing concrete, it is possible to achieve a reduction in the mass of the structure necessary to achieve the required radiation-protective characteristics. The greatest effect can be achieved by shielding radiation with an energy range of 0.02–0.1 MeV. In this power range, it is possible to achieve a reduction in the mass of the building structures by 28–59%. At a radiation energy range of 0.2-3 MeV, the reduction in mass is 2–8%.
S.V. SAMCHENKO, Doctor of Science (Engineering), Professor, Head of Department of building materials science,
M.G. BRUYAKO, Candidate of Science (Engineering), Assistant professor,
N.V. NOVIKOV, Engineer (Postgraduate student) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Онищенко Г.Г., Романович И.К. Основные направления обеспечения радиационной безопасности населения Российской Федерации на современном этапе // Радиационная гигиена. 2014. Т. 7. № 4. С. 5–22.
1. Onishchenko G.G., Romanovich I.K. The main directions of ensuring the radiation safety of the population of the Russian Federation at the present stage Radiatsionnaya gygiena. 2014. Vol. 7. No. 4, pp. 5–22. (In Russian).
2. Балонов М.И., Голиков В.Ю., Звонова И.А., Кальницкий С.А., Репин В.С., Сарычева С.С., Чипига Л.А. Современные уровни медицинского облучения в России // Радиационная гигиена. 2015. Т. 8. № 3. С. 67–79.
2. Balonov M.I., Golikov V.Yu., Zvonova I.A., Kalnitsky S.A., Repin V.S., Sarycheva S.S., Chipiga L.A. Modern levels of medical exposure in Russia. Radiatsionnaya gygiena. 2015. Vol. 8. No. 3, pp. 67–79. (In Russian).
3. Онищенко Г.Г., Попова А.Ю., Романович И.К., Водоватов А.В., Башкетова Н.С., Историк О.А., Чипига Л.А., Шацкий И.Г., Репин Л.В., Библин А.М. Современные принципы обеспечения радиационной безопасности при использовании источников ионизирующего излучения в медицине. Ч. 1. Тенденции развития, структура лучевой диагностики и дозы медицинского облучения // Радиационная гигиена. 2019. Т. 12. № 1. С. 6–24. DOI: https://doi.org/10.21514/1998-426X-2019-12-1-6-24
3. Onischenko G.G., Popova A.Yu., Romanovich I.K., Vodovatov A.V., Bashketova N.S., Istorik O.A., Chipiga L.A., Shatsky I.G., Repin L.V., Biblin A.M. Modern principles of the radiation protection from sources of ionizing radiation in medicine. Part 1: Trends, structure of x-ray diagnostics and doses from medical exposure. Radiatsionnaya gygiena. 2019. Vol. 12. No. 1, pp. 6–24. (In Russian) https://doi.org/10.21514/1998-426X-2019-12-1-6-24
4. Yıldız A., Köse E., Demirtaş Ö.C. Analysis of precautions taken for protection from X-rays in a hospital in Gaziantep in the context of workplace health and safety. Journal of Radiation Research and Applied Sciences. 2022. Vol. 15. No. 4. DOI: https://doi.org/10.1016/j.jrras.2022.08.004
5. Ташлыков О.Л., Щеклеин С.Е., Хомяков А.П., Русских И.М., Селезнев Е.Н. Расчетно-экспериментальное исследование гомогенных защит от гамма-излучения // Ядерная и радиационная безопасность. 2015. № 3 (77). С. 17–24.
5. Tashlykov O.L., Shcheklein S.E., Khomyakov A.P., Russkikh I.M., Seleznev E.N. Computational and experimental study of homogeneous protection against gamma radiation. Yadernaya i radiatsionnaya bezopasnost’. 2015. No. 3 (77), pp. 17–24. (In Russian).
6. Abu Al Roos N.J., Amin N.A.B., Zainon R. Conventional and new lead-free radiation shielding materials for radiation protection in nuclear medicine: A review. Radiation Physics and Chemistry. 2019. Vol. 165. DOI: https://doi.org/10.1016/j.radphyschem.2019.108439
7. Ташлыков О.Л., Щеклеин С.Е., Лукьяненко В.Ю., Михайлова А.Ф., Русских И.М., Селезнев Е.Н., Козлов А.В. Оптимизация состава радиационной защиты // Известия высших учебных заведений. Ядерная энергетика. 2015. № 4. С. 36–42. DOI: 10.26583/npe.2015.4.04
7. Tashlykov O.L., Shcheklein S.E., Lukyanenko V.Yu., Mikhailova A.F., Russkikh I.M., Seleznev E.N., Kozlov A.V. Optimization of the composition of radiation protection. Izvestiya vysshikh uchebnykh zavedeniy. Yadernaya energetika. 2015. No. 4, pp. 36–42. (In Russian). DOI: 10.26583/npe.2015.4.04
8. Daungwilailuk T., Yenchai C., Rungjaroenkiti W., Pheinsusom P., Panwisawas C., Pansuk W. Use of barite concrete for radiation shielding against gamma-rays and neutrons. Construction and Building Materials. 2022. Vol. 326. DOI: https://doi.org/10.1016/j.conbuildmat.2022.126838
9. Akkurt I., Basyigit C., Kilincarslan S., Mavi B. The shielding of γ-rays by concretes produced with barite. Progress in Nuclear Energy. 2005. Vol. 46. No. 1, pp. 1–11. DOI: https://doi.org/10.1016/j.pnucene.2004.09.015
10. Saidani K., Ajam L., Ouezdou M. B. Barite powder as sand substitution in concrete: Effect on some mechanical properties. Construction and Building Materials. 2015. Vol. 95, pp. 287–295. DOI: https://doi.org/10.1016/j.conbuildmat.2015.07.140
11. Luković J., Biljana B., Bučevac D., Prekajski M., Pantić J., Baščarević Z., Matović B. Synthesis and characterization of tungsten carbide fine powders. Ceramics International. 2015. Vol. 41. No. 1. Part B, pp. 1271–1277. DOI: https://doi.org/10.1016/j.ceramint.2014.09.057
12. Duran S.U., Küçüköğmeroğlu B., Çiriş A., Ersoy H. Gamma-ray absorbing characteristic of obsidian rocks as a potential material for radiation protection. Radiation Physics and Chemistry. 2022. Vol. 199. DOI: https://doi.org/10.1016/j.radphyschem.2022.110309
13. Алфимова Н.И., Пириева С.Ю., Федоренко А.В., Шейченко М.С., Вишневская Я.Ю. Современные тенденции развития радиационно-защитного материаловедения // Вестник Белгородского госу-
дарственного технологического университета им. В.Г. Шухова. 2017. № 4. С. 20–25. DOI: 10.12737/article_58e24bcd42faa5.10006763
13. Alfimova N.I., Pirieva S.Yu., Fedorenko A.V., Sheichenko M.S., Vishnevskaya Ya.Yu. Modern trends in the development of radiation-protective materials science. Vestnik of the Belgorod State Technological University named after V.G. Shukhov. 2017. No. 4, pp. 20–25. (In Russian) DOI: 10.12737/article_58e24bcd42faa5.10006763
14. Костылев В.А., Наркевич Б.Я. Медицинская физика. М.: Медицина, 2008. 464 c.
14. Kostylev V.A., Narkevich B.Ya. Meditsinskaya fizika [Medical physics]. Moscow: Medicine. 2008. 464 p.
15. Reda S.M., Saleh H.M. Calculation of the gamma radiation shielding efficiency of cement-bitumen portable container using MCNPX code. 2021. Progress in Nuclear Energy. Vol. 142. DOI: https://doi.org/10.1016/j.pnucene.2021.104012
16. Cherkashina N., Gavrish V., Chayka T. Experiment – calculated investigation of composite materials for protection against radiation. Materials Today: Proceedings. 2019. Vol. 11. Part 1, pp. 554–560. DOI: https://doi.org/10.1016/j.matpr.2019.01.028
17. Şensoy A., Gökçe H. Simulation and optimization of gamma-ray linear attenuation coefficients of barite concrete shields. Construction and Building Materials. 2020. Vol. 253. DOI: https://doi.org/10.1016/j.conbuildmat.2020.119218
18. Lakshminarayana G., Kumar A., Dong M., Sayyed M., Long N.V., Mahdi M. Exploration of gamma radiation shielding features for titanate bismuth borotellurite glasses using relevant software program and Monte Carlo simulation code. Journal of Non-Crystalline Solids. 2018. Vol. 481, pp. 65–73. DOI: https://doi.org/10.1016/j.jnoncrysol.2017.10.027
19. Baltas H., Sirin M., Celik A., Ustabas I., El-Khayatt A. Radiation shielding properties of mortars with minerals and ores additives. Cement and Concrete Composites. 2019. Vol. 97, pp. 268–278. DOI: https://doi.org/10.1016/j.cemconcomp.2019.01.006
20. Sayyed M., Askin A., Zaid M., Olukotun S., Khandaker M.U., Tishkevich D.I., Bradley D. Radiation shielding and mechanical properties of Bi2O3–Na2O–TiO2–ZnO–TeO2 glass system. Radiation Physics and Chemistry. 2021. Vol. 186. DOI: https://doi.org/10.1016/j.radphyschem.2021.109556
21. Комаровский А.Н. Строительство ядерных установок. М.: Атомиздат, 1969. 503 c.
21. Komarovsky A.N. Stroitel’stvo yadernykh ustanovok [Construction of nuclear installations]. Moscow: Atomizdat. 1969. 503 p.
22. Немец О.Ф., Гофман Ю.В. Справочник по ядерной физике. Киев: Наукова думка, 1975. 414 c.
22. Nemets O.F., Gofman Yu.V. Spravochnik po yadernoi fizike [Handbook of nuclear physics]. Kyiv: Naukova Dumka. 1975. 414 p.

For citation: Samchenko S.V., Bruyako M.G., Novikov N.V. Radiation-protective properties of cellular barite-containing concrete. Stroitel’nye Materialy [Construction Materials]. 2023. No. 8, pp. 42–47. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-816-8-42-47


Print   Email