Improving the Performance Properties of Cement Composites with Complex Additives

Number of journal: 8-2023
Autors:

Fedortsov V.A.,
Gladkin S.S.,
Fedortsov A.P.,
Erofeev V.T.

DOI: https://doi.org/10.31659/0585-430X-2023-816-8-72-79
УДК: 691.327:666.9

 

AbstractAbout AuthorsReferences
The influence of complex additives on the strength and durability of cement composites under environmental conditions is considered. The PFM-NLK additive of factory manufacture is a mixture of a superplasticizer with the addition of an air-entrapping and hydrophobic complex. The second complex additive contained a superplasticizer, sodium tetraborate and boric acid. The content of the superplasticizer is common for additives. It allows you to reduce the I /C of the mixture and thereby increase the density and strength of the composite, and accordingly its frost resistance and corrosion resistance. Hydrophobic and air-entrapping PFM-NLK complexes additionally contribute to the formation of a material structure with increased frost resistance. Boric acid and sodium tetraborate form a borate buffer system, which leads to a softening of the “chemical shock” and thereby further increase corrosion resistance. As a result of the conducted studies, the effectiveness of complex additives was revealed and the regularity was confirmed that if each factor individually contributes to the improvement of the property, then with their combined action the effect becomes greater. The components of PFM-NLC, when combined, contribute to obtaining a material structure with high frost resistance. An additive containing a hyperplasticizer, boric acid and sodium tetraborate leads to an increase in strength and acid resistance.
V.A. FEDORTSOV1, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.);
S.S. GLADKIN2,3, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.P. FEDORTSOV1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
V.T. EROFEEV2,3, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 National Research Ogarev Mordovia State University (68, Bolshevistskaya Street, Saransk, 430005, Republic of Mordovia, Russian Federation)
2 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)
3 Scientific-Research Institute of Building Physics of the Russian Academy architecture and construction sciences (21, Lokomotivniy Driveway, Moscow,127238, Russian Federation)

1. Kalashnikov V.I., Volodin V.M., Moroz M.N. [et al.] Super and hyperplasticizers. Microsilica. New generation concretes with low specific cement consumption per unit strength. Molodoj Uchenyj. 2014. No. 19 (78), pp. 201–210. (In Russian).
2. Kaprielov S.S., Sheinfeld A.V., Krivoborodov Yu.R. Influence of cement stone structure with additives of micro-silica and superplasticizer on concrete properties. Beton i Zhelezobeton. 1992. No. 7, pp. 4–7. (In Russian).
3. Gulyaev E.V., Erofeeva I.V., Kalashnikov V.I. [et al.] Influence of reaction-active additives on the strength properties of plasticized cement stone. Molodoj Uchenyj. 2014. No. 19, pp. 194–196. (In Russian).
4. Erofeev V., Bobryshev A., Lakhno A., Shafigullin L., Khalilov I., Sibgatullin K., Igtisamov R. Theoretical evaluation of rheological state of sand cement composite systems with polyoxyethylene additive using topological dynamics concept. Solid State Phenomena. 2016. 871, pp. 96–103. DOI: 10.4028/www.scientific.net/MSF.871.96
5. Rusakov K.V., Fedortsov A.P. Development of frost-resistant cement concrete for structures with increased technical requirements. Actual issues of architecture and construction: proceedings of the International Scientific and Technical Conference. Saransk: Publishing House of Mordovian University, 2014, pp. 107–109.
6. Janfeshan Araghi H., Nikbin I.M., Rahimi Reskati S., Rahmani E., Allahyari H. An experimental investigation on the erosion resistance of concrete containing various PET particles percentages against sulfuric acid attack. Construction and Building Materials. 2015. Vol. 77, pp. 461–471. DOI: 10.1016/j.conbuildmat.2014.12.037
7. Vishwakarma V., George R.P., Ramachandran D., Anandkumar B., Mudali U.K. Studies of detailed biofilm characterization on fly ash concrete in comparison with normal and superplasticizer concrete in seawater environments. Environmental Technology. 2014. Vol. 35. Iss. 1, pp. 42–51. DOI: 10.1080/09593330.2013.808249
8. Ramachandran D., George R.P., Vishwakarma V., Kamachi Mudali U. Strength and durability studies of fly ash concrete in sea water environments compared with normal and superplasticizer concrete. KSCE Journal of Civil Engineering. 2017. Vol. 21, Iss. 4, pp. 1282–1290. DOI: 10.1007/s12205-016-0272-4
9. Noeiaghaei T., Dhami N., Mukherjee A. Nanoparticles surface treatment on cemented materials for inhibition of bacterial growth. Construction and Building Materials. 2017. Vol. 150, pp. 880–891. DOI: 10.1016/j.conbuildmat.2017.06.046
10. Volpi E., Foiadelli C., Trasatti S., Koleva D.A. Development of smart corrosion inhibitors for reinforced concrete structures exposed to a microbial environment. Industrial and Engineering Chemistry Research. 2017. Vol. 56. Iss. 20, pp. 5778–5794. DOI: 10.1021/acs.iecr.7b00127.
11. Strigác J., Martauz P Fungistatic properties of granulated blastfurnace slag and related slagcontaining cements. Ceramics–Silikaty. 2016. Vol. 60. Iss. 1, pp. 19–26. DOI: 10.13168/cs.2016.0003
12. Erofeev V.T., Fedortsov A.P., Fedortsov V.A. Increase of corrosion resistance of cement composites by active additives. Stroitel’stvo i Rekonstrukcija. 2020. No. 2 (88), pp. 51–60. (In Russian).
13. Fedortsov A.P. Fiziko-himicheskoe soprotivlenie stroitel’nyh kompozitov i sposoby ego povyshenija [Physico-chemical resistance of building composites and ways to increase it]. Saransk: Publishing House of Mordovian University, 2015. 464 p.
14. Chernyshev E.M., Korotkikh D.N., Artamonova O.V. Nanotechnological conditions for controlling the structure formation of high-strength cement concrete. Trudy central’nogo regional’nogo otdelenija RAASN. 2010, pp. 102–123. (In Russian).
15. Dvorkin L.I., Shabman I.B., Chudnovsky S.M., et al. High-strength concrete with the use of fly ash. Beton i Zhelezobeton. 1993. No. 1, pp. 23–25. (In Russian).
16. Marcos-Meson V., Fischer G., Edvardsen C., Skovhus T.L., Michel A. Durability of Steel Fibre Reinforced Concrete (SFRC) exposed to acid attack – A literature review. Construction and Building Materials. 2019. Vol. 200, pp. 490–501. DOI: 10.1016/j.conbuildmat.2018.12.051
17. Komokhov P.G., Svatovskaya L.B., Shangina N.N., Leikin A.P. Control of properties of cement mixtures by nature of filler. Izvestija Vuzov. Stroitel’stvo. 1997. No. 9, pp. 51–54. (In Russian).
18. Ramachandran V., Feldman R., Baudouin J. Nauka o betone: Fiziko-himicheskoe betonovedenie [Science of concrete: Physico-chemical concrete science] / trans. from Engl. Moscow: Stroyizdat. 1986. 278 p.
19. Batrakov V.G., Kaprielov S.S., Shejnfel’d A.V. Efficiency of using ultrafine wastes of ferroalloy production. Beton i zhelezobeton. 1989. No. 8, pp. 24–26. (In Russian).
20. Malinina L.A., Dovzhag V.G., Leshchinsky M.Y., Entin Z.B. Saving of materials and energy resources in concrete technology. Beton i Zhelezobeton. 1988. No. 9, pp. 25–27. (In Russian).
21. Afanasyev N.F., Tseluiko M.K.. Dobavki v betony i rastvory [Additives in concrete and mortars]. Kiev: Budivelnik. 1989. 128 p.
22. Solomatov V.I., Selyaev V.P., Fedortsov A.P., Borisova E.A. Cement compositions with silica fillers. Izvestija vuzov. Stroitel’stvo i Arhitektura. 1990. No. 6, pp. 53–56. (In Russian).
23. Solomatov V.I., Dudynov S.V., Fedortsov A.P. Povysheniye kislotostoykosti tsementnogo betona / Korroziya stroitel’nykh konstruktsiy i meropriyatiya po ikh effektivnoy zashchite [Increase of acid resistance of cement concrete / Corrosion of building structures and measures for their effective protection]. Saratov: Publishing House of Giproniigaz Institute, 1990, pp. 3–10.
24. Fedortsov A.P., Oshkina L.M., Martynova L.A. et al. Improvement of cement stone properties by introduction of additives forming buffer systems. Vestnik of the Mordovian University. 1998. No. 3–4, pp. 101–105. (In Russian).
25. Fedortsov A.P., Fomchenkov V.V., Erofeev V.T., Mitina E.A. Complex additives for concrete corrosion protection. Actual issues of construction: materials of the International scientific and technical conference. Saransk: Publishing House of Mordovian University, 2004, pp. 301–304.
26. Alekseev S.N., Ivanov F.M., Modry S., Schissl P. Dolgovechnost’ zhelezobetona v agressivnyh sredah [Durability of reinforced concrete in aggressive media]. Moscow: Stroyizdat. 1990. 320 p.
27. Khimicheskiy entsiklopedicheskiy slovar’ [Chemical Encyclopedic Dictionary] / ed. by I.L. Knunyants. Moscow: Soviet Encyclopedic Dictionary. 1983. 792 p.
28. Lazarev A.I., Kharlamov I.P., Yakovlev P.Y., Yakovleva E.F. Spravochnik khimika-analitika [Reference book of analytical chemist]. Moscow: Metallurgy. 1976. 184 p.

For citation: Fedortsov V.A., Gladkin S.S., Fedortsov A.P., Erofeev V.T. Improving the Performance Properties of cement composites to environmental influences with complex additives. Stroitel’nye Materialy [Construction Materials]. 2023. No. 8, pp. 72–79. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-816-8-72-79


Print   Email