Log in

Prospects of Expanded Clay Gravel Production in Samara Region

Number of journal: 5-2022
Autors:

Chumachenko N.G.,
Gorin V.M.,
Tyurnikov V.V.,
Uporova M.G.

DOI: https://doi.org/10.31659/0585-430X-2022-802-5-34-39
УДК: 666.3-1

 

AbstractAbout AuthorsReferences
The information on reserves and swelling degree of examined exploited and non-exploited clay and clay loam deposits in Samara Region for the production of expanded clay gravel was collected. The results of the standard evaluation of clay raw materials, carried out by the geological service, are analyzed. The distribution of claydite clay raw materials by grades and categories is performed. A non-standard evaluation of claydite clays by the calculation method of the chemical composition was carried out. Deposits of clayey raw materials providing maximum swelling have been identified. The possibility of producing expanded clay gravel of the required quality with directional correction of clays by additives is substantiated. The types of additives to increase the swelling and strength are determined. A wide range of corrective additives is available in the Samara Region in the form of industrial waste.
N.G. CHUMACHENKO1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
V.M. GORIN2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
V.V. TYURNIKOV1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
M.G. UPOROVA1, Graduate Student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Samara State Technical University (244, Molodogvardeyskaya Street, Samara, 443001, Russian Federation)
2 CJSC NIIKeramzit (3a, Eroshevsky Street, Samara, 443086, Russian Federation)

1. Chumachenko N.G., Khafizov I.M., Kizilova D.R. Prospects for the use of clay raw materials of the Samara region for the production of building ceramics. Traditions and innovations in construction and architecture. Building technologies: collection of articles. Samara. 2019 – 1. ISBN 978-5-7964-2218-2. pp. 9–17 (In Russian).
2. Vasyanov G.P., Gorbachev B.F., Krasnikova E.V., Sadykov R.K., Kabirov R.R. Clay low-melting ceramic raw materials of the Republic of Tatarstan (the state of the raw material base and experience in the use of light-burning polymineral clays. Georesursy. 2015. No. 4 (63), pp. 44–49. (In Russian).
3. Kotlyar V.D., Terekhina Yu.V., Kotlyar A.V., Jashhenko R.A., D’jachenko N.E. Clays of the Kasminsky occurrence in the Kemerovo region – a promising raw material for the production of clinker bricks. Stroitel’nye Materialy [Construction Materials]. 2021. No. 12, pp. 17–22. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-798-12-17-22.
4. Kabanova M.K., Tokareva S.A., Uvarov P.P. The main criteria are safety, environmental friendliness and durability of building materials. Stroitel’nye Materialy [Construction Materials]. 2017. No. 1–2, pp. 90–93. DOI: https://doi.org/10.31659/0585-430X-2017-745-1-2-90-93(In Russian)
5. Regulations on the procedure for conducting geological exploration by stages and stages (solid minerals) / Approved by order of the Ministry of Natural Resources of the Russian Federation on 05.07.99 No. 83-R. Moscow, 1999. (In Russian).
6. Overview map of raw material deposits for the production of building materials in the Samara region. Scale 1:1000000. Moscow: Rosgeolfond, 1994. (In Russian).
7. Explanatory note to the survey map of deposits of building materials of the Kuibyshev region / Ministry of Geology of the RSFSR, Geological Fund. M. 1986. 187 p. (In Russian).
8. Lukin E.S., Andrianov N.T. Tehnicheskij analiz i kontrol’ proizvodstva keramiki [Technical analysis and control of ceramic production]. Moscow: Stroyizdat. 1986. 272 p.
9. Chumachenko N.G., Tyurnikov V.V., Galiullina D.R Study of melt amount influence on the expansion degree of expanded clay gravel. IOP Conference Series: Materials Science and Engineering, Vol. 775, International Conference on Civil, Architectural and Environmental Sciences and Technologies (CAEST 2019) November 19, 2019, Samara State Technical University, Samara, Russian Federation. p. 012109. (In Russian).
10. Raut S.P., Ralegaonkar R.V., Mandavgane S.A. Development of sustainable construction material using industrial and agricultural solid waste: A review of waste – create bricks. Construction and Building Materials. 2011. Vol. 25, pp. 4037–4042.
11. Fomenko A.I., Kaptyushina A.G., Gryzlov V.S. Expansion of the raw material base for building ceramics. Stroitel’nye Materialy [Construction Materials]. 2015. No. 12, pp. 25–27. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2015-732-12-25-27
12. Talpa B.V. Technogenic resources of the coal row of the Eastern Donbass and the prospects for their use in the ceramic industry. Stroitel’nye Materialy [Construction Materials]. 2018. No. 8, pp. 58–61. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2018-762-8-58-61
13. Salakhov A.M., Gerashchenko V.N., Salakhova R.A., Morozov V.P., Kabirov R.R. Energy-efficient ceramic wall materials from non-traditional raw materials. Stroitel’nye Materialy [Construction Materials]. 2012. No. 11, pp. 9–12. (In Russian).
14. Zubekhin A.P., Yatsenko N.D. Theoretical foundations of innovative technologies of building ceramics. Stroitel’nye Materialy [Construction Materials]. 2014. No. 1–2, pp. 88–92. (In Russian).
15. Gur’eva V.A., Dubinetskii V.V., Vdovin K.M. Drill cuttings in the production of building ceramics. Stroitel’nye Materialy [Construction Materials]. 2015. No. 4, pp. 75–77. (In Russian).

For citation: Chumachenko N.G., Gorin V.M., Tyurnikov V.V., Uporova M.G. Prospects of expanded clay gravel production in Samara Region. Stroitel’nye Materialy [Construction Materials]. 2022. No. 5, pp. 34–39. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-802-5-34-39

Artificial Porous Sand for Light Concretes

Number of journal: 5-2022
Autors:

Mizyuryaev S.A.,
Zhigulina A.Yu.,
Gorin V.M.

DOI: https://doi.org/10.31659/0585-430X-2022-802-5-30-33
УДК: 666.973

 

AbstractAbout AuthorsReferences
The efficiency of using the technology for the production of artificial porous aggregate to solve problems associated with the use of fine filler in lightweight concrete is substantiated. It has been established that on the basis of modified liquid glass, in order to change the rheological characteristics, it is possible to form stable-shaped raw granules that can swell during heat treatment at 150–250°C, forming a granular material with a size of no more than 5 mm. It has been established that to increase the strength and water resistance, it is effective to introduce clay materials into the initial composition, followed by firing at 800–850°C.
S.A. MIZYURYAEV1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.Yu. ZHIGULINA1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
V.M. GORIN2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Samara State Technical University (244, Molodogvardeyskaya Street, Samara, 443100, Russian Federation)
2 NIIKeramzit AO (3A, Eroshevskogo Street, Samara, 443086, Russian Federation)

1. Yarmakovskiy V.N., Bremner T. Lightweight concrete: present and future. Stroitelny ekspert. 2005. No. 20, pp. 5–7. (In Russian).
2. Zhigulina A.Yu., Chiknovoryan A.G., Mizyuryaev S.A. The use of lightweight concrete building envelopes to improve the comfort of housing. Gradostroitel’stvo i arkhitektura. 2020. Vol. 10. No. 2 (39), pp. 57–61. (In Russian).
3. Yudin I.V., Yarmakovskiy V.N. Innovative technologies in industrial housing construction using structural lightweight concrete. Stroitel’nye Materialy [Construction Materials]. 2010. No. 1, pp. 15–17. (In Russian).
4. Gorin V.M. Expansion of the field of application of expanded clay gravel. Stroitel’nye Materialy [Construction Materials]. 2003. No. 11, pp. 19–21. (In Russian).
5. Gorin V.M., Tokareva S.A., Vytchikov Yu.S. Modern enclosing structures made of expanded clay concrete for energy-efficient buildings. Stroitel’nye Materialy [Construction Materials]. 2011. No. 3, pp. 34–36. (In Russian).
6. Tueva T.V., Sudnitsina V.V. Influence of fine filler on the thermal conductivity of light and heavy concrete. Vestnik of the Cherepovets State University. 2009. No. 2 (21), pp. 121–123. (In Russian).
7. Grigoriev P.N., Matveev M.A. Rastvorimoye steklo [Soluble glass]. Moscow: Stroyizdat. 1956. 442 p.
8. Zin Min Htet, Tikhomirova I.N. Heat insulation material on the basis of expanded perlite and expanded mineral binder. Stroitel’nye Materialy [Construction Materials]. 2019. No. 1–2, pp. 107–112. DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-107-112 (In Russian).
9. Mizyuryaev S.A., Mamonov A.N., Gorin V.M., Tokareva S.A. Structured highly porous sodium silicate material of increased heat and thermal resistance. Stroitel’nye Materialy [Construction Materials]. 2011. No. 7, pp. 8–9. (In Russian).

For citation: Mizyuryaev S.A., Zhigulina A.Yu., Gorin V.M. Artificial porous sand for light concretes. Stroitel’nye Materialy [Construction Materials]. 2022. No. 5, pp. 30–33. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-802-5-30-33

Utilization of Large-Tonnage Waste. Processing, Neutralization and Obtaining Useful Products

Number of journal: 5-2022
Autors:

Tokareva S.A.,
Kabanova M.K.

DOI: https://doi.org/10.31659/0585-430X-2022-802-5-25-29
УДК: 631.879.32

 

AbstractAbout AuthorsReferences
The work is devoted to the actual problem of neutralization, disposal and processing of large-tonnage waste to obtain useful products that are in demand in the construction comlex of the Russian Federation. The issues of utilization of ash and slag wastes from thermal power plants, including the development of clay-ash expanded clay, slag-cosite, special-purpose aggregates for heat-resistant concretes, are considered. The use of clay-ash expanded clay and slag-cosite stone solves many problems of modern housing construction, including manufacturing: products for large-panel construction; claydite-concrete blocks for cottages, monolithic structures in prefabricated-monolithic, frame-monolithic construction. Drilling wastes (formed during the development of oil and gas fields) have been studied in order to process them and obtain demanded products – porous aggregates. The main advantages of the developed technology of double neutralization and disposal of drilling cuttings are the full volume of drilling cuttings utilization; a high degree of waste neutralization with obtaining an environmentally friendly material; for the construction of the technological line, affordable domestic equipment is used.
S.A. TOKAREVA, Director, (This email address is being protected from spambots. You need JavaScript enabled to view it.),
M.K. KABANOVA, Candidate of Sciences (Engineering)

NIIKeramzit АО (3a, Eroshevskogo Street, Samara, 443086 Russian Federation)

1. Tarasova G.I. The problem of disposal of large-tonnage industrial waste. Energy and resource-saving environmentally friendly chemical-technological processes of environmental protection. collection of reports of the international scientific and technical conference. Belgorod State Technological University. V.G. Shukhov. 2015, pp. 367–374. (In Russian).
2. Moskalenko A.P. Research of the market segment of large-tonnage wastes of thermal power engineering. Trudi of the Kuban State Agrarian University. 2006. No. 1, pp. 305–322. (In Russian).
3. Pichugin E.A. Analytical review of the experience accumulated in the Russian Federation of involving ash and slag waste from thermal power plants in the economic circulation. Problems of regional ecology. 2019. No. 4, pp. 77–87. (In Russian).
4. Zaurbekov Sh.Sh., Murtazaev S.A.Yu., Uspanova A.S., Saidumov M.S. The use of ash and slag waste from the thermal power plant of the city of Grozny for the production of building composites. Ekologiya i promyshlennost’ Rossii. 2011. No. 1, pp. 26–28. (In Russian).
5. Volokitin G.G., Skripnikova N.K., Volokitin O.G., Volland S. Technology for obtaining mineral fibers by recycling ash and slag waste and oil shale waste. Steklo i keramika. 2011. No. 8, pp.  3–5. (In Russian).
6. Voronina S.A., Soboleva S.V. Utilization of ash and slag wastes of OAO Krasnoyarsk CHPP-1 with the production of clay ash expanded clay. Ecological education and nature management in the innovative development of the region. Collection of articles based on the materials of the interregional scientific-practical conference of schoolchildren, students, graduate students and young scientists. 2016, pp. 187–188. (In Russian).
7. Tokareva S.A., Petrov V.P. Kinetics of combustion of carbon in granules during the firing of clay-ash expanded clay in rotary kilns. Izvestiya vysshikh uchebnykh zavedeniy. Stroitel’stvo. 2011. No. 5 (629), pp. 20–27. (In Russian).
8. Korenkova S.F., Petrov V.P., Maksimov B.A. Physico-mechanical properties of slag stone and slag concrete. Stroitel’nye Materialy [Construction Materials]. 2002. No. 10, pp. 20–21. (In Russian).
9. Novikova V.I., Petukhov V.V., Terekhova M.S., Lasman I.A. Slags in the production of light compo-site filler. CONSTRUCTION-2016. Materials of the II Bryansk International Innovation Forum. 2016, pp. 99–103. (In Russian).
10. Bykov N.Yu., Gumenyuk A.S., Litvinenko V.I. Okhrana okruzhayushchey sredy pri stroitel’stve skvazhin [Environmental protection during well construction]. Moscow: VNIIOENG. 1985. 37 p.
11. Budnikov V.F., Bulatov A.I., Makarenko P.P. Okhrana okruzhayushchey sredy v neftegazovoy promyshlennosti [Environmental protection in the oil and gas industry]. Moscow: Nedra. 1997. 483 p.
12. Sheveleva T.N., Ramzova S.A. Waste production. Information bulletin “On the state of the natural environment of the Khanty-Mansiysk Autonomous Okrug”. Khanty-Mansiysk: NPTs “Monitoring”, 2003. 85 p. (In Russian).
13. Onatsky S.P. Proizvodstva keramzita [Expanded clay production]. Moscow: Stroyizdat. 1987. 331 p.

For citation: Tokareva S.A., Kabanova M.K. Utilization of large-tonnage waste. Processing, neutralization and obtaining useful products. Stroitel’nye Materialy [Construction Materials]. 2022. No. 5, pp. 25–29. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-802-5-25-29

LLC «Vinzili Expanded Clay Gravel Plant» (Tyumen Region). Building Materials Made of Expanded Clay and Expanded Clay Concrete for Civil and Industrial Construction “From The Foundation to the Roof”

Number of journal: 5-2022
Autors:

Sammasov R.F.,
Panchenko Yu.F.

DOI: https://doi.org/10.31659/0585-430X-2022-802-5-19-21
УДК: 691.327.32

 

AbstractAbout AuthorsReferences
The article presents information about one of the largest companies for the production of building materials in Western Siberia – LLC “Vinzili Expanded Clay Gravel Plant” (LLC “VZKG”). Over the past 20 years, the company has expanded the range of products from three names to more than 350. Starting with the production of expanded clay gravel, today the company includes production lines for the production of expanded clay concrete blocks (for foundation and walls), reinforcing and reinforced concrete products, landscaping elements, lime, silicate bricks, lime plaster mix. The article shows the perspective directions of the company’s development.
R.F. SAMMASOV1, General Director;
Yu.F. PANCHENKO1,2, Candidate of Sciences (Engineering), Deputy General Director for Science and Development

1 LLC « Vinzilinskij zavod keramzitovogo gravija» (1, Vokzal’naja Street, Tjumen Region, 1625530, Vinzili Villege)
2 Industrial University of Tyumen (38, Volodarsky Street, Tyumen, 625000, Russian Federation)

For citation: Sammasov R.F., Panchenko Yu.F. LLC «Vinzili expanded clay gravel plant» (Tyumen region). Building materials made of expanded clay and expanded clay concrete for civil and industrial construction "from the foundation to the roof". Stroitel’nye Materialy [Construction Materials]. 2022. No. 5, pp. 19–21. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-802-5-19-21

Expanded Clay and Expanded Clay Concrete in the Construction Complex of the Country

Number of journal: 5-2022
Autors:

Gorin V.M.

DOI: https://doi.org/10.31659/0585-430X-2022-802-5-15-18
УДК: 692.522.8

 

AbstractAbout AuthorsReferences
The main goals and objectives of the activities of the NIIKeramzit Institute are given, on the initiative of which the Union of Manufacturers of Expanded Clay and Expanded Clay Concrete was created in 2005. It coordinates the efforts of industry enterprises to solve the most urgent problems of the development of expanded clay production, improve the quality of expanded clay and expanded clay concrete, and disseminate advanced scientific and technical experience. The main enterprises of the Union that provide a wide range of products are presented: expanded clay of different fractions, products made of expanded clay and expanded clay concrete for civil and industrial construction, expanded clay concrete blocks.
V.M. GORIN, Candidate of Sciences (Engineering), General Director (This email address is being protected from spambots. You need JavaScript enabled to view it.)

NIIKeramzit JSC (3а, Eroshevskogo Street, Samara, 443086, Russian Federation)

1. Gorin V.M., Shiyanov L.P. Expanded clay and claydite-concrete in housing construction and communal services Stroitel’nye Materialy [Construction Materials]. 2007. No. 10, pp. 98–100. (In Russian).
2. Gorin V.M., Tokareva S.A., Kabanova M.K. Efficient expanded clay concrete in Russia. Stroitel’nye Materialy [Construction Materials]. 2009. No. 9, pp. 54–57. (In Russian).
3. Kudyakov A.I., Petrov G.G., Abakumov A.E., Sergeeva A.V. High-strength expanded clay concrete for the construction of energy-saving residential buildings. In the collection: Perspective materials in technology and construction (PMTS-2013). Materials of the First All-Russian scientific conference of young scientists with international participation. 2013, pp. 399–401. (In Russian).
4. Zvezdov A.I., Falikman V.R. High-strength lightweight concretes in construction and architecture Zhilishchnoe Stroitel’stvo [Housing Construction]. 2008. No. 7, pp. 2–6. (In Russian).
5. Strokova V.V., Solovieva L.N., Mospan V.I., Khodykin E.I., Grinev A.P. Structural light concretes on the basis of active granulated fillers. Stroitel’nye Materialy [Construction Materials]. 2009. No. 10, pp. 23–25.
6. Denisov A.S. Lightweight concrete with variable granulometry of porous aggregate for the walls of buildings operating in harsh climatic conditions. Diss… Doctor of Sciences (Engineering). Novosibirsk. 2007. 361 p. (In Russian).
7. Davidyuk A.N., Savin V.I., Kuzmich T.A., Strotsky V.N., Davidyuk A.A. Normalized parameters of light concretes on mineral porous fillers and assessment of the bearing capacity of structures based on them. Promyshlennoye i grazhdanskoye stroitel’stvo. 2018. No. 4, pp. 56–64. (In Russian).
8. Aksenova S.M. Lightweight concretes on porous aggregates in modern construction. Oriented fundamental and applied research is the basis for the modernization and innovative development of the architectural, construction and road transport complexes in Russia. Materials of the international 66th scientific and practical conference. 2012, pp. 150–154.
9. Yarmakovskiy V.N., Savin V.I. Concrete on porous aggregates. In the collection: NIIZhB – 75 years in construction. Collection of essays on the history of the Research, Design and Technological Institute of Concrete and Reinforced Concrete (NIIZhB). Moscow. 2002, pp. 35–45. (In Russian).
10. Semeynykh N.S., Sopegin G.V., Fedoseev A.V. Evaluation of the physical and mechanical properties of porous fillers for lightweight concrete. Vestnik MGSU. 2018. Vol. 13. No. 2 (113), pp. 203–212. (In Russian).
11. Union of manufacturers of expanded clay and expanded clay concrete is gaining strength. Stroitel’nye Materialy [Construction Materials]. 2006. No. 10. p. 79. (In Russian).
12. The Union of Expanded Clay and Expanded Clay Concrete Producers is developing an anti-crisis program for the effective use of expanded clay in modern industrial housing construction. Stroitel’nye Materialy [Construction Materials]. 2009. No. 12, pp. 65–68. (In Russian).
13. Meeting on the use of expanded clay concrete in construction. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2010. No. 8. p. 13.
14. Ryazanov A.N., Shigapov R.I., Sinitsin D.A., Kinzyabulatova D.F., Nedoseko I.V. The use of gypsum compositions in the technologies of construction 3D printing of low-rise residential buildings. Problems and prospects. Stroitel’nye Materialy [Construction Materials]. 2021. No. 8, pp. 39–44. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-794-8-39-44

For citation: Gorin V.M. Expanded clay and expanded clay concrete in the construction complex of the country. Stroitel’nye Materialy [Construction Materials]. 2022. No. 5, pp. 15–18. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-802-5-15-18

Lightweight and Extra Lightweight Expanded Clay and Expanded Clay Concrete. Analysis of Traditional and Promising Areas of Their Use in Civil and Industrial Construction

Number of journal: 5-2022
Autors:

Nedoseko I.V.,
Sinitsin D.A.,
Gorin V.M.,
Safonov P.V.,
Mironiuk E.Yu.,
Kuzmin V.V.

DOI: https://doi.org/10.31659/0585-430X-2022-802-5-8-14
УДК: 691.327.32

 

AbstractAbout AuthorsReferences
Traditional and modern constructive and technological solutions for the use of expanded clay and expanded clay concrete of standard and reduced density in industrial and housing and civil engineering are considered. The use of particularly light expanded clay as a backfill insulation of attic floors makes it possible to significantly reduce the cost of construction and installation works and increase the operational reliability of buildings during their overhaul and reconstruction. More than twenty years of operation of mansard structures made of coarse-porous expanded clay concrete under various, including extreme temperature and humidity conditions, testifies to the increased durability of expanded clay concrete and its good compatibility with traditional finishing materials – wood and drywall. It is rational to use expanded clay concrete for thermal insulation of foundation slabs of low-rise buildings and for the installation of a “floating foundation” for prefabricated hangar-type buildings on permafrost in the climatic conditions of Siberia and the Far East.
I.V.NEDOSEKO1,Doctor of Sciences (Engineering), Professor (This email address is being protected from spambots. You need JavaScript enabled to view it.),
D.A. SINITSIN1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
V.M. GORIN2, Candidate of Sciences (Engineering), General Director (This email address is being protected from spambots. You need JavaScript enabled to view it.);
P.V. SAFONOV3, General Director;
E.Yu. MIRONIUK1, Master’s Student (This email address is being protected from spambots. You need JavaScript enabled to view it.);
V.V. KUZMIN4, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Ufa State Petroleum Technological University (1 Kosmonavtov Street, Ufa, 450062, Republic of Bashkortostan, Russian Federation)
2 JSC “NIIKERAMZIT” (3A Eroshevskogo Street, Samara, 443086, Russian Federation)
3 Non-profit Organization Foundation “Regional operator of capital repairs of common property in apartment buildings located on the territory of the Republic of Bashkortostan” (7 Richard Sorge Street, Ufa, 450059, Republic of Bashkortostan, Russian Federation)
4 Branch of Samara State Technical University in Belebey, Republic of Bashkortostan (11 Sovetskaya Street, Belebey, 452000, Republic of Bashkortostan, Russian Federation)

1. Sadykov R.K., Sabitov A.A., Kabirov R.R. Prospects for the use of the mineral resource base of expanded clay raw materials in the Republic of Tatarstan. Stroitel’nye Materialy [Construction Materials]. 2014. No. 5, pp. 4–7. (In Russian).
2. Derbasova E.M., Filin V.A. Expanded clay concrete small blocks as products for the construction of wall structures of an individual low-rise building. Nauchnyy potentsial regionov na sluzhbu modernizatsii. 2013. Vol. 2. No. 3 (6), pp. 38–41. (In Russian).
3. Ermakova K.O. Efficient use of heat-insulating materials in enclosing structures. Series “Construction”: Collection of articles undergraduates and graduate students. In 2 vol. St. Petersburg: St. Petersburg State University of Architecture and Civil Engineering. 2020, pp. 283–298. (In Russian).
4. Vytchikov Yu.S., Vytchikov A.Yu., Belyakov I.G., Prilepskii A.S. Evaluation of the heat-shielding characteristics of masonry from hollow claydite-concrete stones. Traditions and innovations in construction and architecture. Natural sciences and technospheric safety: collection of articles. Samara: Samara State University of Architecture and Civil Engineering. 2017, pp. 146–150. (In Russian).
5. Nedoseko I.V., Babkov V.V., Aliev R.R., Kuzmin V.V. The use of structural and heat-insulating expanded clay in low-rise construction. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2008. No. 3, pp. 26–27. (In Russian).
6. Nesvetaev G.V., Belyaev A.V. Self-compacting expanded clay concrete of classes B12.5–B20 with a grade of average density D1400. Naukovedenie Internet Journal. 2016. Vol. 8. No. 1 (32), p. 27. (In Russian).
7. Shigapov R.I., Sinitsin D.A., Biktasheva A.R., Nedoseko I.V. The use of lightweight expanded clay for insulation of attic floors. Stroitel’nye Materialy [Construction Materials]. 2020. No. 4–5, pp. 104–108. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-780-4-5-104-108
8. Nedoseko I.V., Babkov V.V., Aliev R.R., Kuzmin V.V. The use of structural and heat-insulating expanded clay concrete in the construction and reconstruction of buildings for housing and civil purposes. Izvestiya of the Kazan State University of Architecture and Civil Engineering. 2010. No. 1 (13), pp. 325–330. (In Russian).
9. Nedoseko I.V., Ishmatov F.I., Aliev R.R. The use of structural and heat-insulating expanded clay concrete in the bearing and enclosing structures of buildings for residential and civil purposes. Stroitel’nye Materialy [Construction Materials]. 2011. No. 7, pp. 14–17. (In Russian).
10. Ryazanov A.N., Shigapov R.I., Sinitsin D.A., Kinzyabulatova D.F., Nedoseko I.V. The use of gypsum compositions in the technologies of construction 3D printing of low-rise residential buildings. Problems and prospects. Stroitel’nye Materialy [Construction Materials]. 2021. No. 8, pp. 39–44. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-794-8-39-44
11. Plotnikov A.N., Gafiyatulin N.A., Vasiliev P.A. Bearing capacity of external wall panels made of structural expanded clay concrete with steel and composite reinforcement. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2017. No. 3, pp. 52–57. (In Russian).
12. Erofeev P.S., Maksimova I.N., Merkulov A.I., Erofeev V.T. Study of the mechanical parameters of frame concrete based on expanded clay filler. Modern technologies in mechanical engineering and problems of research and design of machines: collection of articles of the XVIII International Scientific and Practical Conference. Edited by E.A. Chufistov. Penza. February 26, 2015, pp. 100–103. (In Russian).
13. Galiakberov R.R., Aliev R.R., Nedoseko I.V. The use of large-pore claydite concrete in the enclosing structures of attic floors. Stroitel’nye Materialy [Construction Materials]. 2006. No. 7, pp. 8–9. (In Russian).
14. Nukhova E.E., Chernyshov I.N., Chetkarev S.V. Efficiency of using expanded clay as a heat-insulating material when building a foundation on a clay base. Young scientists – to accelerate scientific and technological progress in the XXI century: a collection of materials of the III All-Russian scientific and technical conference of graduate students, undergraduates and young scientists with international participation: electronic scientific edition. Izhevsk, April 22–23, 2015, pp. 964–969. (In Russian).

For citation: Nedoseko I.V., Sinitsin D.A., Gorin V.M., Safonov P.V., Mironiuk E.Yu., Kuzmin V.V. Lightweight and extra lightweight expanded clay and expanded clay concrete. Analysis of traditional and promising areas of their use in civil and industrial construction. Stroitel’nye Materialy [Construction Materials]. 2022. No. 5, pp. 8–14. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-802-5-8-14

Experience in the Construction of a Pit Fence in Particularly Cramped Conditions

Number of journal: 4-2022
Autors:

Sokolov N.S.

DOI: https://doi.org/10.31659/0585-430X-2022-801-4-71-78
УДК: 624.134.4

 

AbstractAbout AuthorsReferences
The construction of facilities in cramped conditions is always a complex geotechnical problem associated with the provision of accident-free operation of buildings and structures of the surrounding development. The arsenal of geotechnicians has accumulated a great potential of geotechnical technologies for the construction of pit fences. Often not all are suitable for the conditions of their use in cramped conditions. Technologies that use drilled wells (wells for drilling piles and ground anchors) with subsequent filling with concrete and at the same time not violating the stress-strain state of the surrounding soil are the most suitable for such cases. The use of drill-injection piles and ground anchors arranged by electric discharge technology (ERT technology) in many cases successfully solves the problem of construction in cramped conditions. One of the geotechnical cases of the construction of a pit fence in particularly cramped conditions is considered. The algorithm of the arrangement of drilling-injection anchors of the ERT and the procedure for the production of concrete works under different weather conditions are given.
N.S. SOKOLOV1,2, Candidate of Sciences (Engineering), Director (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 I.N. Ulianov Chuvash State University (15, Moskovsky Ave., Cheboksary, 428015, Chuvash Republic, Russian Federation)
2 OOO NPF “FORST” (109a, Kalinina Streer, Cheboksary, 428000, Chuvash Republic, Russian Federation)

1. Ilichev V.A., Konovalov P.A., Nikiforova N.S., Bulgakov L.A. Deformations of the retaining structures upon deep excavations in Moscow. Proc. Of Fifth Int. Conf on Case Histories in Geotechnical Engineering, April 3–17. New York, 2004, pp. 5–24.
2. Улицкий В.М., Шашкин А.Г., Шашкин К.Г. Геотехническое сопровождение развития городов. СПб.: Геореконструкция, 2010. 551 с.
2. Ulickij V.M., Shashkin A.G., Shashkin K.G. Geotekhnicheskoe soprovozhdenie razvitiya gorodov [Geotechnical Support of Urban Development]. Saint Petersburg: Georeconstruction, 2010. 551 p.
3. Ilichev V.A., Nikiforova N.S., Koreneva E.B. Computing the evaluation of deformations of the buildings located near deep foundation tranches. Proc. of the XVIth European conf. on soil mechanics and geotechnical engineering. Madrid, Spain, 24–27th September 2007. «Geo-technical Engineering in urban Environments». Vol. 2, pp. 581–585.
4. Nikiforova N.S., Vnukov D.A. Geotechnical cut-off diaphragms for built-up area protection in urban underground development. The pros, of the 7thI nt. Symp. «Geotechnical aspects of underground construction in soft ground», 16–18 May, 2011. tc28 IS Roma, AGI, 2011, No. 157NIK.
5. Ильичев В.А., Мангушев Р.А., Никифорова Н.С. Опыт освоения подземного пространства российских мегаполисов // Основания, фундаменты и механика грунтов. 2012. № 2. С. 17–20.
5. Ilichev V.A., Mangushev R.A., Nikiforova N.S. Experience of development of russian megacities underground space. Osnovaniya, fundamenty i mekhanika gruntov. 2012. No. 2, pp. 17–20. (In Russian).
6. Nikiforova N.S., Vnukov D.A. The use of cut off of different types as a protection measure for existing buildings at the nearby underground pipelines installation. Proc. of Int. Geotech. Conf. dedicated to the Year of Russia in Kazakhstan. Almaty, Kazakhstan, 23–25 September 2004, pp. 338–342.
7. Мангушев Р.А., Бояринцев А.В., Зуев И.И., Камаев И.С. Эффект воздействия изготовления свай «Фундекс» на ранее выполненные конструкции // Жилищное строительство. 2021. № 9. С. 28–35. DOI: https://doi.org/10.31659/0044-4472-2021-9-28-35
7. Mangushev R.A., Boyarintsev A.V., Zuev I.I., Kamaev I.S. Effect of the impact of making “Fundex” piles on previously completed structures. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2021. No. 9, pp. 28–35. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2021-9-28-35
8. Мангушев Р.А., Никифорова Н.С. Технологические осадки зданий и сооружений в зоне влияния подземного строительства. М.: АСВ, 2017. 168 с.
8. Mangushev R.A., Nikiforova N.S. Tekhnologicheskiye osadki zdaniy i sooruzheniy v zone vliyaniya podzemnogo stroitel’stva. Pod red. R.A. Mangusheva [Technological settlements of buildings and structures in the zone of influence of underground construction. Edited by R.A. Mangushev]. Moscow: ASV. 2017. 168 p.
9. Petrukhin V.P., Shuljatjev O.A., Mozgacheva O.A. Effect of geotechnical work on settlement of surrounding buildings at underground construction. Proceedings of the 13th European Conference on Soil Mechanics and Geotechnical Engineering. Prague, 2003.
10. Мангушев Р.А., Ершов А.В., Осокин А.И. Современные свайные технологии. М.; СПб.: АСВ, 2010. 260 с.
10. Mangushev R.A., Ershov A.V., Osokin A.I. Sovremennye svainye tekhnologii [Modern pile technologies]. Moscow, Saint Petersburg: ASV. 2010 260 p.
11. Соколов Н.С. Технологические аспекты увеличения надежности существующих подпорных стен // Жилищное строительство. 2022. № 1–2. С. 56–59. DOI: https://doi.org/10.31659/0044-4472-2022-1-2-56-59
11. Sokolov N.S. Technological aspects of increasing the reliability of existing retaining walls. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2022. No. 1–2, pp. 56–59. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2022-1-2-56-59
12. Sokolov N.S. Ground Ancher Produced by Elektric Discharge Technology, as Reinforsed Concrete Structure. Key Enginiring Materials. 2018. June. 771:75-81. DOI: 10.4028/www.scientific.net/KEM.771.75
13. Sokolov N.S. Use of the Piles of Effective Type in Geotechnical Construction. Key Enginiring Materials.
2018 June. 771:70-74. DOI: 10.4028/www.scientific.net/KEM.771.70
14. Соколов Н.С. Один из случаев усиления основания деформированной противооползневой подпорной стены // Жилищное строительство. 2021. № 12. С. 23–27. DOI: https://doi.org/10.31659/0044-4472-2021-12-23-27
14. Sokolov N.S. One of the cases of strengthening the base of a deformed landslide protection retaining wall. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2021. No. 12, pp. 23–27. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2021-12-23-27

For citation: Sokolov N.S. Experience in the construction of a pit fence in particularly cramped conditions. Stroitel’nye Materialy [Construction Materials]. 2022. No. 4, pp. 72–78. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-801-4-72-78

Gypsum Materials Modified with Complex Additive Based on Nanosilica

Number of journal: 4-2022
Autors:

Batova М.D.,
Zhukova N.S.,
Gordina А.F.,
Yakovlev G.I.,
Shaibadullina A.V.,
Elrefai А.E.М.М.,
Orban Z.

DOI: https://doi.org/10.31659/0585-430X-2022-801-4-64-71
УДК: 666.914

 

AbstractAbout AuthorsReferences
In the article the results of using nanosilica and active mineral admixture for gypsum binder and their effect on structure formation are represented. In order to improve properties of additives nanosilica has been undergo by ultrasonic treatment. It was confirmed that the effect of ultrasonic treatment allowed the usage of nanosilica to be a key component for additives and there was no relation between initial particle size and that effect. The activated complex additive positively influences the mechanical properties of the material and this influence is being observed from hydration process till the hardening. Having used activated complex additive has resulted in 40% increase of compressive strength for gypsum binder. Both Portland cement and nanosilica lead to changes in the matrix composition. The changed matrix is characterized by higher density and compressive strength. This result is due to formation of new growths based on hydrated calcium silicate that may bond together gypsum crystals and fill voids at the same time. New growths based on hydrated calcium silicate had been identified by physical and chemical analysis methods, including IR spectral and differential thermal analysis, scanning electron microscopy, and energy dispersive X-ray spectroscopy.
М.D. BATOVA1, Master student (This email address is being protected from spambots. You need JavaScript enabled to view it.),
N.S. ZHUKOVA1, Engineer (postgraduate) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.F. GORDINA1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
G.I. YAKOVLEV1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.V. SHAIBADULLINA1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
А.E.М.М. ELREFAI2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
Z. ORBAN3, PhD, Director of Engineering and Smart Technology Institute (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Kalashnikov Izhevsk State Technical University (7, Studencheskaya Street, Izhevsk, 426000, Russian Federation)
2 Egyptian-Russian University (11829, Cairo-Suez road, Badr City, Cairo, Egypt)
3 University of Pecs (H-7622 Pécs, Vasvári Pál u. 4)

1. Gaitova A.R., Akhmadulina I.I., Pechenkina T.V., Pudovkin A.N., Nedoseko I.V. Nanostructural aspects of hydration and hardening of gypsum and gypsum slag compositions based on two-water gypsum. Stroitel’nye Materialy [Construction Materials]. 2014. No. 1–2, pp. 46–51. (In Russian).
2. Morsy M.S., Alsayed S.H., Salloum Y.A. Development of eco-friendly binder using metakaolin-fly ash-lime-anhydrous gypsum. Construction and Building Materials. 2012. No. 35. DOI: https://doi.org/10.1016/j.conbuildmat.2012.04.142.
3. Katulskaya A.S., Parfenova L.M. Complex mineral additive based on industrial waste for gypsum binder. Vestnik Polotskogo gosudarstvennogo universiteta. 2019. No. 16, pp. 24–29. (In Russian).
4. Starostina I.V., Efremov R.O., Porozhnyuk E.V. [and others]. Use of silica-containing industrial wastes in the technology of composite gypsum binders. Vestnik Tekhnologicheskogo universiteta. 2016. Vol. 19. No. 13, pp. 178–181. (In Russian).
5. Khaliullin M.I., Rakhimov R.Z., Gayfullin A.R. The composition and structure of the stone of the composite gypsum binder with lime additives and ground ceramite dust. Vestnik MGSU. 2013. No. 12, pp. 109–117. (In Russian).
6. Escalante-Garcia J.I., Martínez-Aguilar O.A., Gomez-Zamorano L.Y. Calcium sulphate anhydrite based composite binders; effect of Portland cement and four pozzolans on the hydration and strength. Cement and Concrete Composites. 2017. No. 82, pp. 227–233. DOI: https://doi.org/10.1016/j.cemconcomp.2017.05.012
7. Kondratieva N., Barre M., Goutenoire F., Sanytsky M. Study of modified gypsum binder. Construction and Building Materials. 2017. No. 149, pp. 535–542. DOI: https://doi.org/10.1016/j.conbuildmat.2017.05.140
8. Salamanova M.Sh., Okueva P.Kh., Movsulov M.M., Magomadov Kh.A. Development of the formulation of gypsum compositions based on mineral silica additive. Ustoichivoe razvitie nauki i obrazovaniya. 2017. No. 8. pp. 131–135. (In Russian).
9. Voitovich E.V., Cherevatova A.V. Nanostructured composite plaster binder – a new generation binder. Vestnik of Belgorod State Technical University named after V.G. Shukhova. 2010. No. 3, pp. 32–34. (In Russian).
10. Berdov G.I., Mashkin N.A. Promising directions of improvement of compositions and technology of building materials based on mineral binders. Izvestiya vysshikh uchebnykh zavedenii. Stroitel’stvo. 2015. No. 4 (676), pp. 45–57. (In Russian).
11. Tobón J.I., Payá J., Restrepo O.J. Study of durability of Portland cement mortars blended with silica nanoparticles. Construction and Building Materials. 2015. No. 80. pp. 92–97. DOI: https://doi.org/10.1016/j.conbuildmat.2014.12.074
12. Stucchi N.M.E., Tesser E., Zaccariello G., Antonelli F., Benedetti A. Evaluating two nanosilica dimensional range for the consolidation of degraded silicate stones. Construction and Building Materials. 2022. No. 329. 127191. DOI: https://doi.org/10.1016/j.conbuildmat.2022.127191
13. Munkhtuvshin D., Balabanov V.B., Putsenko K.N. Experience in the use of micro- and nanosilicon additives from silicon waste in concrete technologies. Izvestiya vuzov. Investitsii. Stroitel’stvo. Nedvizhimost’. 2017. Vol. 7. No. 3 (22), pp. 107–115. (In Russian).
14. Raheem A.A., Abdulwahab R., Kareem M.A. Incorporation of metakaolin and nanosilica in blended cement mortar and concrete- A review. Journal of Cleaner Production. 2021. No. 290. 125852. DOI: https://doi.org/10.1016/j.jclepro.2021.125852
15. Varisha, Zaheer M.M., Hasan S.D. Mechanical and durability performance of carbon nanotubes (CNTs) and nanosilica (NS) admixed cement mortar. Materials Today: Proceedings. 2021. No. 42, pp. 1422–1431. DOI: https://doi.org/10.1016/j.matpr.2021.01.151
16. Baldi-Sevilla A., Montero M.L., Aguiar J.P., Loría L.G. Influence of nanosilica and diatomite on the physicochemical and mechanical properties of binder at unaged and oxidized conditions. Construction and Building Materials. 2016. No. 127, pp. 176–182. DOI: https://doi.org/10.1016/j.conbuildmat.2016.09.140
17. Ezzat H., El-Badawy S., Gabr A., Zaki E.-S.I., Breakah T. Evaluation of asphalt binders modified with nanoclay and nanosilica. Procedia Engineering. 2016. No. 143, pp. 1260–1267. DOI: https://doi.org/10.1016/j.proeng.2016.06.119
18. Chen P., Ma B., Tan H., Su Y., Jin Z., Liu X., Wu L. Effect of tricalcium aluminate and nano silica on performance of hemihydrate gypsum. Construction and Building Materials. 2022. No. 321. 126362. DOI: https://doi.org/10.1016/j.conbuildmat.2022.126362
19. Potapov V.V., Gorev D.S. Comparative results of increasing the strength of concrete by introducing nanosilicon and microsilicon. Sovremennye naukoemkie tekhnologii. 2018. No. 9, pp. 98–102. (In Russian).
20. Sagdatullin D.G. High-strength gypsum cement-puzzolan binder Diss… Candidate of Sciences (Engineering). Kazan. 2010. 120 p. (In Russian).
21. Isotov V.S., Mukhametrakhimov R.Kh., Galautdi-nov A.R. Study of the effect of active mineral additives on the rheological and physical-mechanical properties of gypsum-cement-puzzolan binder. Stroitel’nye Materialy [Construction Materials]. 2015. No. 5, pp. 20–23. (In Russian).
22. Batova M.D., Semenova Yu.A., Gordina A.F. Modification of calcium sulphate-based binders with fine mineral additives. Collection of materials of the XXIX Republican Exhibition-Session of Student Innovation Projects and the Forum of Scientific and Technical Creativity of Youth OA «IEMZ «Kupol» «Innovation Exhibition – 2020 (spring session)». 2020, pp. 58–61. (In Russian).
23. Batova М.D., Semenova Yu.А., Gordina А.F., Yakovlev G.I., Elrefai А.E.М.М., Saidova Z.S., Khazeev D.R. Сomplex mineral additives for the modification of calcium sulphate based materials. Stroitel’nye Materialy [Construction Materials]. 2021. No. 1–2, pp. 13–21. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-788-1-2-13-21

For citation: Batova М.D., Zhukova N.S., Gordina А.F., Yakovlev G.I., Shaibadullina A.V., Elrefai А.E.М.М., Orban Z. Gypsum materials modified with complex additive based on nanosilica. Stroitel’nye Materialy [Construction Materials]. 2022. No. 4, pp. 64–71. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-801-4-64-71

Integrated Approach in Concrete Science

Number of journal: 4-2022
Autors:

Kondrashchenko V.I.

DOI: https://doi.org/10.31659/0585-430X-2022-801-4-54-63
УДК: 693

 

AbstractAbout AuthorsReferences
An integrated approach to solving one of the priority problems of building materials science is proposed – appointment of recipe-technological parameters for obtaining materials, taking into account a set of requirements for both the properties of the concrete mix and concrete (traditional differentiated approach), and the properties of the structure for which this material is intended (proposed integrated approach). A specific example shows the difference in the results of differentiated and integrated approaches when assigning the optimal composition of only slag-pumice concrete and taking into account its work in a reinforced concrete structure. The most effectively integrated approach can be implemented on the basis of one of the methods of computer materials science – the method of structural simulation.
V.I. KONDRASHCHENKO, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Russian University of Transport (Вuil. 9, 9, Obraztsova Street, Moscow, 127994, Russian Federation)

1. Skramtaev B.G., Shubenkin P.F., Bazhenov Ju.M. Sposoby opredelenija sostava betona razlichnyh vidov [Methods for determination of concrete composition of different types]. Moscow. Stroyizdat. 1966. 159 p.
2. Bazhenov Ju.M. Sposoby opredelenija sostava betona razlichnyh vidov [Methods for determination of concrete composition of different types]. Moscow. Stroyizdat. 1975. 272 p.
3. Kirienko I.A. Raschet sostava vysokoprochnyh i obychnyh betonov i rastvorov [Calculation of the composition of high-strength and conventional concretes and mortars]. Kiev. Gosstroyizdat. 1961. 145 p.
4. Soroker V.I. Proizvodstvennye raschety sostava betona [Production calculations of concrete composition]. Moscow. Stroyizdat. 1933. 235 p.
5. Sizov V.P. Racional’nyj podbor sostavov tjazhelogo betona [Rational selection of heavy concrete compositions]. Moscow. Stroyizdat. 1995. 174 p.
6. Shmigal’skij V.N. Optimizacija sostavov cementobetonov [Optimization of cement concrete compositions]. Kishinev: Shtiinca. 1981. 123 p.
7. Frenkel’ I.M. Osnovy tehnologii tjazhelogo betona [Basics of heavy concrete technology]. Moscow. Stroyizdat. 1966. 223 p.
8. Rukovodstvo po podboru sostavov tyazhelogo beton [Heavy concrete composition selection guide]. Moscow. Stroyizdat. 1979. 102 p.
9. Rukovodstvo po podboru sostavov konstruktivnykh legkikh betonov na poristykh zapolnitelyakh [Guidelines for selection of structural light concrete compositions on porous aggregates]. Moscow. Stroyizdat. 1974. 54 p.
10. Ryb’ev I.A., Sulejmanov F.G. Optimizacija sostava betona na osnove teorii ISK s primeneniem JeVM [Optimization of concrete composition based on ISS theory using computers]. Moscow. VZISI. 1989. 110 p.
11. Shein V.I. Fiziko-himicheskie osnovy optimizacii tehnologii betona. Pod red Mchedlova-Petrosyana. [Physical and chemical bases of concrete technology optimization. Edited by O.P. Mchedlov-Petrosyan]. Moscow. Stroyizdat. 1977. 272 p.
12. Punagin V.M., Savin L.S., Hasanov B.V., Shishkin O.O. Fiziko-analiticheskiy metod proektuvannja sostava betonа [Physical and analytical method of concrete composition design]. Dnepropetrovsk. NVO “Zakhist”. 1994. 154 p.
13. Babushkin V.I. Fiziko-himicheskie processy korrozii betona i zhelezobetona [Physical and chemical processes of concrete and reinforced concrete corrosion]. Moscow. Stroyizdat. 1968. 187 p.
14. Zazimko V.G. Optimizacija svojstv stroitel’nyh materialov [Optimization of building materials properties]. Moscow. Transport. 1981. 103 p.
15. Gusev B.V. Stress-strain state of a polydisperse composite material, such as cement concrete. Proceedings of the International Scientific and Practical Conference: Science and technology of silicate materials – the present and the future. Vol. 1. Moscow. Mendeleev University. 2003, pp. 71–91. (In Russian).
16. Chernyshov E.M., D’jachenko E.I., Makeev A.I. Heterogeneity of structure and regularity of formation of internal stress field during force loading of construction composites. Vestnik RAACS. 2000. No. 3, pp. 184–193. (In Russian).
17. Bazhenov Ju.M., Voznesenskiy V.A. Perspektivy primenenija matematicheskih metodov v tehnologii sbornogo zhelezobetona [Prospects for application of mathematical methods in precast concrete technology]. Moscow. Stroyizdat. 1974. 192 p.
18. Dvorkin L.I., Shamban I.B. Mnogofaktornoe prognozirovanie svojstv i proektirovanie sostavov betona [Multivariate property prediction and concrete composition design]. Moscow. Stroyizdat. 1992. 132 p.
19. Lyashenko T.V. Fields of properties of building materials (concept, analysis, optimization). Diss… Doctor of Sciences (Engineering). Odessa. 2003. 185 p. (In Russian).
20. Voznesenskiy V.A. Statisticheskie metody planirovanija jeksperimenta v tehniko-jekonomicheskih issledovanijah [Statistical methods for experimental planning in feasibility studies]. Moscow. Finansy i statistika. 1981. 263 p.
21. Dvorkin L.I. Optimal’noe proektirovanie sostavov betona [Optimal design of concrete compositions]. L’vov. Vishha shkola. 1981. 159 p.
22. Dvorkin O.L. Proektirovanie sostavov betona (osnovy teorii i metodologii) [Concrete composition design (basis of theory and methodology)]. Rovno: UDUVGP. 2003. 266 p.
23. Fajner M.Sh. Vvedenie v matematicheskoe modelirovanie tehnologii betona [Introduction to mathematical modeling of concrete technology]. L’vov. Svit. 1993. 240 p.
24. Stork Ju. Teorija sostava betonnoj smesi [Concrete mix composition theory]. Leningrad. Stroyizdat. 1971. 238 p.
25. Mironov S.A. Teorija i metody zimnego betonirovanija [Theory and methods of winter concreting]. Moscow. Stroyizdat. 1975. 700 p.
26. Punagin V.M., Pshinko O.M., Rudenko N.M. Assignment of hydraulic concrete warehouses. Dnipropetrovsk. Art-Press. 1998. 213 p. (In Ukrainian).
27. Sovetov B.Ja., Jakovlev S.A. Modelirovanie sistem [Systems Modeling]. Moscow. Vysshaja shkola. 1998. 319 p.
28. Prastacos G., Soderquist K., Spanos Y., Wassenhove L. An integrated framework for managing change in the new competitive landscape. European Management Journal. 2002. Vol. 20. Iss. 1, pp. 55–71. https://doi.org/10.1016/S0263-2373(01)00114-1
29. Gryzlov V.S., Demidov S.V. Information-physical aspects of macrostructure formation of concrete. Izvtstiya vuzov. Stroitel’stvo. 2000. No. 7–8, pp. 39–42. (In Russian).
30. Bondarenko V.M., Ivahnjuk V.A., Kolchunov V.I., Jur’ev A.G. Optimization of the material of construction. Vestnik RAACS. 2000. No. 3, pp. 23–25. (In Russian).
31. Kondrashhenko V.I. Primenenie metodov optimizacii sostavov betona s cel’ju povyshenija jeffektivnosti zhelezobetonnyh izdelij [Application of methods for optimizing concrete compositions in order to increase the efficiency of reinforced concrete products]. Harkov. HIIT. 1990. 189 p.
32. L’vovskij E.N., Bordejanu G.V. Jeksperimental’no-statisticheskie issledovanija deformacij polzuchesti zavodskogo betona s postroeniem matematicheskih modelej vtorogo porjadka dlja ih vychislenija i prognozirovanija. V kn.: Prochnost’, deformativnost’ i ustojchivost’ stroitel’nyh konstrukcij [Experimental-statistical studies of creep deformations of factory concrete with the construction of mathematical models of the second order for their calculation and prediction. In the book: Strength, deformability and stability of building structures]. Kishinev. Shtiinca. 1977, pp. 3–11.
33. Hassan A., Jones S. Non-destructive testing of ultra high performance fibre reinforced concrete (UHPFRC): A feasibility study for using ultrasonic and resonant frequency testing techniques. Construction and Building Materials. 2012. Vol. 35, pp. 361–367. DOI:10.1016/j.conbuildmat.2012.04.047
34. Kim K.Y., Yun T.S., Choo J., Kang D.H., Shin H.S. Determination of air-void parameters of hardened cement-based materials using X-ray computed tomography. Construction and Building Materials. 2012. Vol. 37, pp. 93–101. https://doi.org/10.1016/j.conbuildmat.2012.07.012
35. Łazniewska-Piekarczyk B. The type of air-entraining and viscosity modifying admixtures and porosity and frost durability of high performance self-compacting concrete. Construction and Building Materials. 2013. Vol. 40, pp. 659–671. DOI: 10.1016/j.conbuildmat.2012.11.032
36. Piradov K.A., Mamaev T.L., Kozhabekov T.A., Marchenko S.M. Physical-mechanical, power, energy and structure-forming parameters of concrete. Beton i zhelezobeton. 2002. No. 2, pp. 10–12. (In Russian).
37. Krakovskiy M.B. Methods for optimizing reinforced concrete structures based on the principle of separation of parameters. Abstract diss… Doctor of Sciences (Engineering). Moscow. NIIZhB. 1980. 49 p.
38. Rykov A.S. Poiskovaja optimizacija. Metody deformiruemyh konfiguracij [Search engine optimization. Deformable configuration methods]. Moscow: Fizmatlit. 1993. 216 p. (pp. 146–153).
39. Ljashenko T.V., Voznesenskij V.A. Metodologija recepturno-tehnologicheskih polej v komp’juternom stroitel’nom materialovedenii [Methodology of recipe-technological fields in computer building materials science]. Odessa. Asroprint. 2017. 168 p.
40. Kondrashhenko V.I. Tehnologija i svojstva vysokoprochnogo shlakopemzobetona [Technology and properties of high-strength slag-pumice concrete]. Abstract diss… Candidate of Sciences (Engineering). Moscow. 1982. 25 p.
41. Kondrashhenko V.I. An integrated approach to optimizing the composition of materials for building structures. Proceedings of the International Scientific and Practical Conference: Science and technology of silicate materials – the present and the future. Moscow. Mendeleev University. 2003. Vol. V, pp. 123–128. (In Russian).
42. Bondarenko V.M., Ivahnjuk V.A., Kolchunov V.I., Jur’ev A.G. Optimization of materials of construction. Vestnik of the department of building sciences RAACS. 2000. Iss.  3, pp. 23–25. (In Russian).
43. Kondrashhenko V.I. Optimization of compositions and technological parameters for obtaining bar type products by methods of computer material science]. Diss… Doctor of Sciences (Engineering). Moscow. 2005. 551 p. (In Russian).
44. Zajcev Ju.V. Modelirovanie deformacij i prochnosti betona metodami mehaniki razrushenija [Modeling of deformations and strength of concrete by methods of fracture mechanics]. Moscow: Stroyizdat. 1982. 196 p.
45. Bazhenov Ju.M., Vorob’ev V.A., Iljuhin A.V. Computer materials science of building composite materials. Status and development prospects. Izvestiya vuzov. Stroitel’stvo. 1999. No. 11, pp. 25–28. (In Russian).
46. Askadskij A.A., Kondrashhenko V.I. Komp’juternoe materialovedenie polimerov. Vol. 1. Atomno-molekuljarnyj uroven’ [Computer materials science of polymers. Vol. 1. Atomic-molecular level]. Moscow. Nauchnyj mir. 1999. 544 p.

For citation: Kondrashchenko V.I. Integrated approach in concrete science. Stroitel’nye Materialy [Construction Materials]. 2022. No. 4, pp. 54–63. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-801-4-54-63

The Effect of Technological Additives on the Structure of Foam Glass

Number of journal: 4-2022
Autors:

Grushko I.S.

DOI: https://doi.org/10.31659/0585-430X-2022-801-4-44-48
УДК: 666.189.3

 

AbstractAbout AuthorsReferences
The set of properties of foam glass provides the possibility of its use in many sectors of the national economy. Despite a fairly large number of publications devoted to foam glass, the issues of its structure have not been sufficiently studied. The issues of the kinetics of the foaming process of foam glass, the charge compositions of which are differently predisposed to crystallization, as well as the creation of foam glass with specified properties, depending on the conditions of its synthesis, are little studied. The purpose of this work is to study the effect of technological additives on the structure of foam glass. 9 compositions of foam glass, the main components of which are cullet, ash-slag mixture, are considered. Sodium tetraborate, technical chalk were used as technological additives; chromium oxide, zirconium dioxide, magnesium oxide were used as initiators of crystallization, anthracite was used as a gas–forming agent. The synthesized samples were studied using microtomographic analysis, the calculation and analysis of microtomographic porosity was carried out, the total and closed porosity, histograms of the distribution of the pure volume by quantity were calculated, the distribution patterns of the substance, the densest inclusions and pores in the volume are visualized. The mechanism of volumetric crystallization of glass, characterized by chemical differentiation of glass, causing heterogeneity of its structure, is shown. The results are a sequential stage in a series of studies aimed at solving the problem of developing a technology for designing building materials with the use of ash and slag waste from various thermal power plants.
I.S. GRUSHKO1,2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Don State Technical University (1, 344000, Gagarina Square., Rostov-on-Don, Russian Federation)
2 Platov South-Russian State Polytechnic University (132, Prosvjaschenija Street, Novocherkassk, 346428, Russian Federation)

1. Lebullenger R., Chenu S., Rocherullé J. et al. Glass foams for environmental applications. Journal of Non-Crystalline Solids. 2010. Vol. 356. Iss. 44–49, pp. 2562–2568. https://doi.org/10.1016/j.jnoncrysol.2010.04.050
2. Taurino R., Lancellotti I., Barbieri L., Leonelli C. Glass-ceramic foams from borosilicate glass waste. International Journal of Applied Glass Science. 2014. Vol. 5. Iss. 2, pp. 136–145. https://doi.org/10.1111/ijag.12069
3. Xu B., Liang K. M., Cao J. W., Li Y. H. Preparation of foam glass ceramics from phosphorus slag. Advanced Materials Research. 6th China International Conference on HighPerformance Ceramics, CICC-6. Harbin, China. 2009. Vol. 105–106. Iss. 1. 2010, pp. 600–603.
4. Puchka O.V., Sergeev S.V., Weisser S.S., Kalashnikov N.V. Highly efficient heat-insulating materials based on technogenic raw materials. Vestnik BSTU named after V.G. Shuhov. 2013. No. 2, pp. 51–55. (In Russian).
5. Kazmina O.V., Kuznetsova N.A. Obtaining a highly efficient heat-insulating building material based on ash and slag waste of thermal power plants. Ogneupory i tehnicheskaja keramika. 2012. No. 1–2, pp. 78–82. (In Russian).
6. Rawlings R.D., Wu J.P., Boccaccini A.R. Glass-ceamics: Their production from wastes-A Review. Journal of Materials Science. 2006. Vol. 41, Iss. 3, pp. 733–761. https://doi.org/10.1007/s10853-006-6554-3
7. Kolekova A.V., Rachinskaya M.P. Foam glass and its use in Russia. Sovremennie nauchnie issledovanija i innovacii. 2012. No. 5 (13), p.  8. (In Russian).
8. Minko N.I., Puchka O.V., Evtushenko E.I., Nartsev V.M., Sergeev S.V. Foam glass – a modern effective inorganic thermal insulation material. Fundamental’nie issledovanija. 2013. No. 64, pp. 849–854. (In Russian).
9. Fedosov S.V., Bakanov M.O., Nikishov S.N. The main principles of the technology for producing heat-insulating foam glass, modeling approaches. Collection “Effective building composites” Scientific and practical conference dedicated to the 85th anniversary of the Honored Scientist of the Russian Federation, Academician of the RAACS, Doctor of Technical Sciences Yury Mikhailovich Bazhenov. Belgorod. 2015, pp. 690–699. (In Russian).
10. Qu Y.-N. et al. Lightweight and high-strength glass foams prepared by a novel green spheres hollowing technique. Ceramics International. 2016. Vol. 42. Iss. 2, pp. 2370–2377. doi: 10.1016/j.ceramint.2015.10.034
11. Damdinova D.R., Pavlov V.E., Khardaev P.K., Druzhinin D.K., Vtorushin N.S., Batorova I.Yu. Composition influence on the structure and properties of foam glass using ash and slag waste from thermal power plants. Nauchnoe obozrenie. 2016. No. 10, pp. 47–55. (In Russian).
12. Puchka O.V., Lesovik V.S., Weisser S.S. Use of glass composites for construction in the Arctic. Intelligent building composites for green building: collection of reports of the international scientific and practical conference dedicated to the 70th anniversary of V.S. Lesovik: in 3 parts. Belgorod. 2016, pp. 29–36. (In Russian).
13. Grushko I., Skibin G., Druzhinina E. Substantiation and design of compositions of heat-insulating material (foam glass) using recyclable resources. Stroitel’stvo i tekhnogennaja bezopasnost’. 2019. No. 15 (67), pp. 87–100. (In Russian).
14. Lázár M., Hnatko M., Sedláček J., Čarnogurská M., Brestovič T. Upgrading the glassy slag from waste disposal by thermal plasma treatment. Waste Management. 2018. Vol. 78, pp. 173–182. DOI: 10.1016/j.wasman.2018.05.042
15. Li J., Zhuang X., Querol X., Font O., Moreno N. A review on the applications of coal combustion products in China. International Geology Review. 2018. Vol. 60. Iss. 5–6, pp. 671–716. https://doi.org/10.1080/00206814.2017.1309997

For citation: Grushko I.S. The effect of technological additives on the structure of foam glass. Stroitel’nye Materialy [Construction Materials]. 2022. No. 4, pp. 44–48. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-801-4-44-48

Wastes of Nickel Production in the Technology of Building Ceramics

Number of journal: 4-2022
Autors:

Gur'eva V.A.,
Il'ina A.A.

DOI: https://doi.org/10.31659/0585-430X-2022-801-4-38-42
УДК: 666.3

 

AbstractAbout AuthorsReferences
An analysis of the needs and assessment of the potential of brick and tile raw materials for the Orenburg region in the production of ceramic bricks was carried out. The high concentration of mining and smelting enterprises in the Ural region determines the need to consider industrial waste, including nickel slag, as a possible raw material for the production of ceramic bricks. Statistical data on the quantitative stock of brick clays and formed technogenic wastes of nickel production on the territory of the Orenburg region are presented. A review of existing developments in the field of production of ceramic bricks, with the addition of nickel slag, was carried out, taking into account the advantages and disadvantages of the finished product. The properties of nickel slag obtained at metallurgical enterprises of the Orenburg region and the features of its use as a component in the composition of ceramic bricks are described. The compositions of the ceramic mass were developed using clay from the Khalilovskoye deposit (Orenburg region) with the addition of nickel slag (36, 46 and 56% by weight) and their physical and mechanical properties (ultimate compressive strength, ultimate flexural strength, frost resistance, water absorption) were determined. The presented studies show that the development of ceramic products from local raw materials using nickel production waste is a promising direction and allows the production of competitive local building materials.
V.A. GUR'EVA, Doctor of Sciences (Engineerig) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.A. IL'INA, Graduate Student

Orenburg State University (13, Pobedy Avenue, Orenburg, 460018, Russian Federation)

1. On approval of the list of subsoil plots of local importance in the Orenburg region, proposed for granting for use for geological study for the purpose of prospecting and evaluating deposits of common minerals at the expense of subsoil users in 2018. Evening Orenburg. 2018. Vol. 50. (In Russian).
2. Information on the state and prospects for the use of the mineral resource base of the Orenburg region as of June 15, 2021 [Electronic resource]. http://atlaspacket.vsegei.ru/#3204c666aa8ed5083 (In Russian).
3. State reports on the protection and state of the environment of the Russian Federation. [Electronic resource]. http://www.mnr.gov.ru (In Russian).
4. Gilmundinov V.M., Tagaeva T.O., Boxler A.I. Analysis and forecasting of waste management processes in the Russian Federation. Problemy prognozirovaniya. 2020. No. 1 (178), pp. 126–134. (In Russian).
5. Gurieva V.A., Ilyina A.A., Mazhirin A.D., Zhdanova A.S. Analysis of the raw material base of the Orenburg region for the production of resource-saving ceramic bricks. Building materials science: present and future. Collection of materials of the I All-Russian Scientific Conference dedicated to the 90th anniversary of the outstanding materials scientist, Academician of the RAACS Yuri Mikhailovich Bazhenov. Moscow, October 2020, pp. 215–220. (In Russian).
6. Zhanga C., Wang X., Zhu H., Wua Q., Hu Z., Feng Z., Jia Z. Preparation and properties of foam ceramic from nickel slag and waste glass powder. Ceramics International. 2020. Vol. 46. Iss. 15, pp. 23623–23628. https://doi.org/10.1016/j.ceramint.2020.06.134
7. Wu Q., Wu Y., Tong W., Ma H. Utilization of nickel slag as raw material in the production of Portland cement for road construction. Construction and Building Materials. 2018. Vol. 193, pp. 426–434 https://doi.org/10.1016/j.conbuildmat.2018.10.1098
8. Patent RF 606841. Raw mix for the manufacture of building products / Koroleva L.V., Kulik L.V., Yakubov V.I. 1978. Bulletin No. 18. (In Russian).
9. Patent RF 2358947. Raw mix for the manufacture of facing tiles / Shchepochkin Yu.A. 2009. Bulletin No. 17. (In Russian).
10. Avgustinik A.I. Keramika. [Ceramics]. Moscow: Stroyizdat, 1975. 592 p.
11. Efimov A.I. High-strength ceramic brick with iron-containing additives that improve rheology and sintering of clayey rocks. Stroitel’nye Materialy [Construction Materials]. 2000. No. 4, pp. 15–16. (In Russian).
12. Steklov K.K. Struktura i svoystva ogneuporov: Metallurgiya [Structure and properties of refractories: Metallurgy]. Moscow. 1972. 216 p.

For citation: Gur'eva V.A., Il'ina A.A. Wastes of nickel production in the technology of building ceramics. Stroitel’nye Materialy [Construction Materials]. 2022. No. 4, pp. 38–42. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-801-4-38-42

Characteristics of Stone-Like Clay Rocks as Raw Materials for the Production of Building Ceramics

Number of journal: 4-2022
Autors:

Kotlyar A.V.

DOI: https://doi.org/10.31659/0585-430X-2022-801-4-31-37
УДК: 666.3:552.52

 

AbstractAbout AuthorsReferences
General information about the state of the raw material base for the construction ceramics industry in Russia is given. The main reasons, as a result of which the state of the raw material base cannot be called satisfactory, are indicated. It is noted that Russia has huge reserves of stone–like clay raw materials (KGP) – argillite-like clays, argillites, shale argillites and clay shales, which are widespread in many regions of Russia and which are practically not used for the production of construction ceramics. The scheme-characteristic of the KGP according to the degree of lithification, mineral composition, structural and textural features and their physical properties, which have a significant impact on the ceramic technological properties – both pre-firing and firing, is presented. Thus, the formation of argillite-like clays occurred at the stage of early catagenesis at a depth of immersion of the initial clay rocks at 1–1.5 km, temperature up to 70оC and lithostatic pressure up to 50 MPa. The formation of argellites occurred at the stage of middle-late catagenesis at a depth of immersion of the initial clay rocks at 2–4 km, temperature up to 200оC and lithostatic pressures up to 100–120 MPa. The formation of clay shales occurred at the stage of late catagenesis and metagenesis, at depths of 4–6 km and more, pressure up to 200 MPa and temperature up to 200–300оC. The scheme presented makes it possible to assume the pre-firing and firing ceramic properties of the KGP, the method of preparing raw materials, the method of molding products, the need to input certain additional materials, depending on the intended type of products and production technology.
A.V KOTLYAR, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Don State Technical University (1, Gagarin Square, Rostov-on-Don, 344000, Russian Federation)

1. Samoilova E.M. Pochvoobrazuyushchie porody [Soil-forming rocks]. Moscow: MGU. 1992. 175 p.
2. Barry C.C., Grant N.M. Ceramic Materials. Science and Engineering. Springer. 2007. 716 p.
3. Goncharov Yu.I. Syr’evye materialy silikatnoi promyshlennosti [Silicate raw materials]. Moscow: ASV. 2009. 124 p.
4. Avgustinik A.I. Keramika [Ceramics]. Leningrad: Stroyizdat. 1975. 592 p.
5. Kotlyar A.V. Low-temperature sintering clinker brick based on argillite-like clays and argillites. Diss…. Cand. os Sciences (Engineering). Rostov-on-Don. 2018. 199 p. (In Russian).
6. Kara-Sal B.K., Chyudyuk S.A., Irgit B.B. Features of the use of argillite overburden in coal mining for the production of ceramic wall materials. Vestnik Tuvinskogo gosudarstvennogo universiteta. 2020. No. 2 (62), pp. 6–18. (In Russian).
7. Kotlyar A.V., Lapunova K.A., Lazareva Y.V., Orlova M.E. Effect of argillites reduction ratio on ceramic tile and paving clinker of low-temperature sintering. Materials and Technologies in Construction and Architecture. Materials Science Forum Submitted. 2018. Vol. 931, pp. 526–531. https://doi.org/10.4028/www.scientific.net/MSF.931.526
8. Lapunova K.A., Lazareva Ya.V., Nekrasova M.E., Kotlyar V.D. Design and application in architecture of facade ceramic slabs based on argillite-like clays. Dizain. Materialy. Tekhnologiya. 2017. No. 3 (47), pp. 10–15. (In Russian).
9. Guidelines for the application of the classification of deposits and inferred resources of solid minerals. Clay rocks. Moscow: MPR. 2007. 37 p. (In Russian).
10. Kotlyar A.V. Genesis and general characteristics of argillite-like clays as raw materials for the production of clinker bricks. Vestnik Tuvinskogo gosudarstvennogo universiteta. 2016. No. 3, pp. 14–21. (In Russian).
11. Khmelevtsov A.A. Formation conditions and specific properties of argillite-like clays in the Greater Sochi region. Inzhenernyi vestnik Dona. Setevoi nauchnyi zhurnal. 2010. No. 3. http://www.ivdon.ru/ru/magazine/archive/n3y2010/231 (Date of access 22.02.2022). (In Russian).
12. Kotlyar A.V. Technological properties of argillite-like clays in the production of clinker bricks. Vestnik TGASU. 2016. No. 2(55), pp. 164–175. (In Russian).
13. Logvinenko N.V. Petrografiya osadochnykh porod [Petrography of sedimentary rocks.]. Moscow: Vysshaya shkola. 1984. 450 p.
14. Frolov V.T. Litologiya. Kniga 2 [Lithology. Book 2]. Moscow: MGU. 1993. 432 p.
15. Kuznetsov V.G. Litologiya. Osadochnye gornye porody i ikh izuchenie [Lithology. Sedimentary rocks and their study]. Moscow: Nedra-Biznestsentr. 2007. 511 p.
16. Osipov V.I., Sokolov V.N., Eremeev V.V. Glinistye pokryshki neftyanykh i gazovykh mestorozhdenii [Clay seals of oil and gas fields]. Moscow: Nauka. 2001. 238 p.
17. Kotlyar A.V., Talpa B.V., Lazareva Ya.V. Features of the chemical composition of argillite-like clays and argillites. Stroitel’nye Materialy [Construction Materials]. 2016. No. 4, pp. 10–13. (In Russian)

For citation: Kotlyar A.V. Characteristics of stone-like clay rocks as raw materials for the production of building ceramics. Stroitel’nye Materialy [Construction Materials]. 2022. No. 4, pp. 31–37. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-801-4-31-37

https://www.traditionrolex.com/10