Log in

Effect of Filler and Aggregates Dosage and Particle Size Range on the 3D-Printable Mixture Extrudability

Number of journal: 1-2-2022
Autors:

Slavcheva G.S.,
Britvina E.A.,
Shvedova M.A.,
Yurov P.Y.

DOI: https://doi.org/10.31659/0585-430X-2022-799-1-2-21-29
УДК: 624:004.925.84

 

AbstractAbout AuthorsReferences
The article presents the results of studies of the rheological behaviour and plasticity of 3D-printable mixtures. The results of the influence of the type, dosage, and particle size range fillers, and aggregates on the rheological behaviour of mixtures, the stability of their structure, and plasticity under compression are discussed. Two types of 3D-printable mixtures were investigated “cement – filler – plasticizer – water”, “cement – aggregate – plasticizer – water”. A compression test with a constant strain rate of 5 mm/s was used in the experiments. It was found that the best extrusion ability is possessed by mixtures capable of viscoplastic flow without destruction of the structure. For these systems, overcoming the stability threshold and the onset of plastic flow without cracking corresponds to a pressure of 2.5–4 kPa, rational values of plastic yield value are 1.5–3.5 kPa. When fillers and aggregates with mono-particle size are applied, 3D-printable mixtures have low structural stability to the action of loading, they are characterized by irreversible destruction of the structure after overcoming the stability threshold. Fillers and aggregates with multi-particle size range in their particle size range d=1–630 mm can effectively regulate the plasticity and stability of the structure of 3D-printable mixtures. Higher ductility and aggregate stability under load are achieved when fillers with an amorphous structure are used. 3D-printable mixtures are capable of viscous-plastic flow without destruction of the structure and sufficient structural strength at a dosage of fillers (d=1–55 mm) up to 30% of the cement mass, aggregates (d=150–560 mm) in an amount of 100–125% by weight of cement.
G.S. SLAVCHEVA, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
E.A. BRITVINA, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
M.A. SHVEDOVA, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
P.Y. YUROV, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Voronezh State Technical University (84, 20-letiya Oktyabrya Street, 394006, Voronezh, Russian Federation)

1. Le T.T., Austin S.A., Lim S., Buswell R.A., Gibb A.G.F., Thorpe T. Mix design and fresh properties for high-performance printing concrete. Material and Structure Constraction. 2012. No. 45 (8), pp. 1221–1232. DOI: 10.1617/s11527-012-9828-z
2. Zhang Y., Zhang Y., She W., Yang L., Liu G., Yang Y. Rheological and harden properties of the high-thixotropy 3D printing concrete. Constraction and Buildilding Materials. 2019. No. 201, pp. 278–285. https://doi.org/10.1016/j.conbuildmat.2018.12.061
3. Jayathilakage R., Rajeev P., Sanjayan J.. Yield stress criteria to assess the buildability of 3D concrete printing. Constraction and Buildilding Materials. 2020. No. 240. 117989. https://doi.org/10.1016/j.conbuildmat.2019.117989
4. Khan M.A. Mix suitable for concrete 3D printing: A review. Materials Today: Proceedings. 2020. No. 32 (4), pp. 831–837. https://doi.org/10.1016/j.matpr.2020.03.825
5. Mechtcherine V., Bos F.P., Perrot A., da Silva W.R.L., Nerella V.N., Fataei S. et al. Extrusion-based additive manufacturing with cement-based materials – Production steps, processes, and their underlying physics: A review. Cement and Concrete Research. 2020. No. 132. 106037. DOI: 10.1016/j.cemconres.2020.106037
6. Rehman A.U., Kim J.H.. 3D concrete printing: A systematic review of rheology, mix designs, mechanical, microstructural, and durability characteristics. Materials. 2021. No. 14. 3800. DOI: 10.3390/ma14143800
7. Roussel N. Rheological requirements for printable concretes. Cement and Concrete Research. 2018. No. 112, pp. 76–85. DOI: 10.1016/j.cemconres.2018.04.005
8. Hou S., Duan Z., Xiao J., Ye J.. A review of 3D printed concrete: Performance requirements, testing measurements and mix design. Constraction and Buildilding Materials. 2021. No. 273. 121745. DOI: 10.1016/j.conbuildmat.2020.121745
9. Ватин Н.И., Чумадова Л.И., Гончаров И.С., Зыкова В.В., Карпеня А.Н., Ким А.А., Фина-шенков E.A. 3D-печать в строительстве. Строи-тельство уникальных зданий и сооружений. 2017. № 1. С. 27–46.
9. Vatin N., Chumadova L., Goncharov I., Zykova V., Karpenya A., Kim A., Finashenkov E. 3D printing in construction. Construction of Unique Buildings and Structures. 2017. No. 1, pp. 27–46. (In Russian).
10. Zhang Y., Zhang Y., Liu G., Yang Y., Wu M., Pang B. Fresh properties of a novel 3D printing concrete ink. Constraction and Buildilding Materials. 2018. No. 174, pp. 263–271. https://doi.org/10.1016/j.conbuildmat.2018.04.115
11. Nerella V.N., Näther M., Iqbal A., Butler M., Mechtcherine V. Inline quantification of extrudability of cementitious materials for digital construction. Cement and Concrete Compositon. 2019. No. 95, pp. 260–270. https://doi.org/10.1016/j.cemconcomp.2018.09.015
12. Lu B., Weng Y., Li M., Qian Y., Leong K.F., Tan M.J., et al. A systematical review of 3D printable cementitious materials. Constraction and Buildilding Materials. 2019. No. 207, pp. 477–490. https://doi.org/10.1016/j.conbuildmat.2019.02.144
13. Matthäus C., Back D., Weger D., Kränkel T., Scheydt J., Gehlen C. Effect of cement type and limestone powder content on extrudability of lightweight concrete. RILEM Bookseries. 2020. No. 28, pp. 312–322. DOI: 10.1007/978-3-030-49916-7_32
14. Урьев Н.В. Физико-химическая динамика структурированных нанодисперсных систем и нано-дисперсных композиционных материалов. Ч. 1 // Физико-химия поверхности и защита материалов. 2010. Т. 46. № 1. С. 3–23.
14. Uriev N.V. Physico-chemical dynamics of structured nanodispersed systems and nanodispersed composite materials. Part 1. Fizikohimiya poverhnosti i zashita materialov. 2010. No. 46, pp. 3–23. (In Russian).
15. Славчева Г.С., Артамонова О.В. Реологическое поведение дисперсных систем для строительной 3d-печати: проблема управления и возможности арсенала «нано» // Нанотехнологии в строительстве. 2018. Т. 10. № 3. С. 107–122. DOI: dx.doi.org/10.15828/2075-8545-2018-10-3-107-122
15. Slavcheva G.S., Artamonova O.V. The rheological behavior of disperse systems for 3D printing in constrcution: the problem of control and possibility of «nano» tools application. Nanotehnologii v stroitel’stve. 2018. No. 10 (3), pp. 107–122. DOI: dx.doi.org/10.15828/2075-8545-2018-10-3-107-122. (In Russian).
16. Slavcheva G.S., Artamonova O.V. Rheological behavior and mix design for 3D printable cement paste. Key Engineering Materials. 2019. No. 799, pp. 282–287. DOI: 10.4028/www.scientific.net/KEM.799.282
17. Slavcheva G., Artamonova O., Babenko D., Ibryaeva A. Effect of limestone filler dosage and granulometry on the 3d printable mixture rheology. IOP Conf. Series: Materials Science and Engineering. 2020. No. 972. 012042. DOI: 10.1088/1757-899X/972/1/012042
18. Slavcheva G.S., Artamonova O.V., Shvedova M.A., Britvina E.A. Effect of viscosity modifiers on structure formation in cement systems for construction 3D printing. Inorganic. Materials. 2021. No. 57 (1), pp. 94–100. DOI:  10.1134/S0020168521010143
19. Slavcheva G., Britvina E., Shvedova M. Heat Release during 3d-Printable materials setting and hardening. Material and Science Forum. 2021. No. 1043, pp. 37–42. DOI: 10.4028/www.scientific.net/MSF.1043.37
20. Roussel N., Lanos C. Plastic fluid flow parameters identification using a simple squeezing test. Applied Rheology. 2003. No. 13 (3), pp. 132–341.
21. Toutou Z., Roussel N., Lanos C. The squeezing test: A tool to identify firm cement-based material’s rheological behaviour and evaluate their extrusion ability. Cement and Concrete Research. 2005. No. 35 (10), pp. 1891–1899. DOI: 10.1016/j.cemconres.2004.09.007

For citation: Slavcheva G.S., Britvina E.A., Shvedova M.A., Yurov P.Y. Effect of filler and aggregates dosage and particle size range on the 3d-printable mixture extrudability. Stroitel’nye Materialy [Construction Materials]. 2022. No. 1–2, pp. 21–29. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-799-1-2-21-29

Properties of Cement Matrices with Increased Electrical Conductivity

Number of journal: No.1-2-2021
Autors:

Yakovlev G.I.,
Vit Černy,
Pudov I.A.,
Polyanskikh I.S.,
Saidova Z.S.,
Begunova E.V.,
Semenova S.N.

DOI: https://doi.org/10.31659/0585-430X-2022-799-1-2-11-20
УДК: 691.3:539.2

 

AbstractAbout AuthorsReferences
The modification of silicate composites is an urgent task in building materials science. There is a growing demand on the market for the materials with peculiar properties, suitable for operation in specific conditions. Examples of such materials can be those that have electrically conductive properties, which can be obtained through the addition of conductive functional additives. In this research, the composition of an electrically conductive concrete was developed and its mechanical properties, electrical conductivity, and the microstructure were studied. X-ray microanalysis was also carried out in order to study the chemical composition of the hydration products and modifying additives in the hardened matrix. The additives that were used for the modification of the composition included electrically conductive nickel/carbon nanostructures and dispersed chrysotile nanofibers in combination with a solution of calcium nitrate. Methods for the manufacture and functionalization of additives before their introduction into the cement matrix are described. As a result of the Ni/C nanocomposite introduction, an increase in the strength characteristics and a decrease in electrical resistance of the modified composite are noted, which are due to structural changes in the cement matrix. X-ray microanalysis indicated the formation of new structures in the modified cement matrix. However, the electrical conductivity of the composite with Ni/C dispersions does not show stability and decreases with time. The second part of the research shows the results of the cement matrix modification with a calcium nitrate solution added into the composition together with chrysotile nanofibers. In this case, an ultrafine suspension was preliminary prepared, which made it possible to stabilize the electrical resistivity values during the hardening of the cement stone. It is assumed that the combined introduction of Ni/C nanocomposites with a solution of chemical salts will also allow the stabilization of the electrical resistivity of the composition during hardening.
G.I. YAKOVLEV1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
Vit ERNY2, Dr.-Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.);
I.A. PUDOV1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
I.S. POLYANSKIKH1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
Z.S. SAIDOVA1, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
S.N. SEMYONOVA1, Engineer (post-graduate student) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
E.V. BEGUNOVA1, Engineer (postgraduate student) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Kalashnikov Izhevsk State Technical University (7, Studencheskaya Street, Izhevsk, 426069, Russian Federation)
2 Faculty of Civil Engineering, Brno University of Technology (Veveří 331/95, 602 00 Brno, Czech Republic)

1. Li Z., Ding S., Yu X., B. Han, J. Ou. Multifunctional cementitious composites modified with nano titanium dioxide: a review. Composites Part A: Applied Science and Manufacturing. 2018. Vol. 111, pp. 115–137. DOI: 10.1016/j.compositesa.2018.05.019.
2. You I., Yoo D.-Y., Kim S., Kim M.-J., Zi G. Electrical and self-sensing properties of ultra-high-performance fiber-reinforced concrete with carbon nanotubes. Sensors. 2017. Vol. 17, pp. 2481. DOI: 10.3390/s17112481
3. Baránek Š., Černý V., Yakovlev G., Drochytka R. Silicate conductive composites with graphite-based fillers. IOP Conf. Series: Materials Science and Engineering. 2021. 1209. DOI: 10.1088/1757-899X/1209/1/012035
4. Ramezani M., Dehghani A., Sherif M.-M. Carbon nanotube reinforced cementitious composites: A comprehensive review. Construction and Building Materials. 2022. Vol. 315. 125100. DOI:10.1016/j.conbuildmat.2021.125100
5. Wang J., Yin J., Kong X. Influences of PCE superplasticizers with varied architectures on the formation and morphology of calcium hydroxide crystals. Cement and Concrete Research. 2022. Vol. 152. 106670. DOI: 10.1016/j.cemconres.2021.106670
6. Yakovlev G.I., Drochytka R., Skripkiunas G., Urkhanova L., Polyanskikh I., Pudov I., Karpova E., Saidova Z., Ali E.M.M. Elrefai. Effect of ultrafine additives on the morphology of cement hydration products. Crystals. 2021. Vol. 11. No. 8. 1002. DOI: 10.3390/cryst11081002
7. Yakovlev G., Polyanskikh I., Belykh V., Stepanov V., Smirnova O. Evaluation of changes in structure of modified cement composite using fractal analysis. Appl. Sci. 2021. Vol. 11. No. 9. 4139. DOI: 10.3390/app11094139
8. Караваева Н.М., Першин Ю.В., Кодолов В.И. Свойства и высокая реакционная способность металл/углеродных нанокомпозитов // Вестник Казанского технологического университета. 2017. № 19. С. 54–56.
8. Karavaeva N.M., Pershin Y.V., Kodolov V.I. Properties and high reactivity of metal/carbon nanocomposites. Vestnik Kazanskogo tekhnologicheskogo universiteta. 2017. No. 19, pp. 54–56. (In Russian).
9. Ахметшина Л.Ф., Кодолов В.И., Терешкин И.П., Коротин А.И. Влияние углеродных металлсодержащих наноструктур на прочностные свойства бетонных композитов // Нанотехнологии в строительстве: научный интернет-журнал. 2010. № 6.
С. 35–46. http://www.nanobuild.ru/magazine/nb/Nanobuild_6_2010.pdf
9. Akhmetshina L.F., Kodolov V.I., Tereshkin I.P., Korotin A.I. Influence of carbon metal-containing nanostructures on the strength properties of concrete composites. Nanotekhnologii v stroitel’stve: scientific online journal. 2010. No. 6, pp. 35–46. (In Russian).
10. Патент РФ 2221744. Способ получения металлсодержащих углеродных наноструктур из органического соединения с добавками неорганических солей / Кодолов В.И., Дидик А.А., Волков А.Ю., Волкова Е.Г. Заявл. 08.04.2002. Опубл. 20.01.2004.
10. Patent RF 2221744 Sposob polucheniya metallsoderzhashchih uglerodnyh nanostruktur iz organicheskogo soedineniya s dobavkami neorganicheskih solej [Method to produce metal-containing carbon nanostructures from organic compound with additives of inorganic salts]. Kodolov V.I., Didik A.A., Volkov A.Yu., Volkova E.G. Declared 08.04.2002. Published 20.01.2004. (In Russian).
11. Кодолов В.И., Тринеева В.В. Перспективы развития направления самоорганизации наносистем в полимерных матрицах // Химическая физика и мезоскопия. 2011. № 3. С. 363–375.
11. Kodolov V.I., Trineeva V.V. Prospects for the development of the direction of self-organization of nanosystems in polymer matrices. Himicheskaja fizika i mezoskopija. 2011. No. 3, pp. 363–375. (In Russian).
12. Кодолов В.И., Кодолова-Чухонцева В.В., Першин Ю.В. Возможные причины снижения активности металл/углеродных нанокомпозитов и углеродных нанотрубок при подготовке к модификации ими полимерных материалов // Химическая физика и мезоскопия. 2020. № 1. С. 16–24.
12. Kodolov V.I., Kodolova-Chukhontseva V.V., Pershin Yu.V. Possible reasons for the decrease in the activity of metal/carbon nanocomposites and carbon nanotubes in preparation for their modification of polymer materials. Himicheskaja fizika i mezoskopija. 2020. No. 1, pp. 16–24. (In Russian).
13. Ахметшина Л.Ф. Разработка метода функционализации металл/углеродных нанокомпозитов и способов получения суспензий на их основе для модификации композиционных материалов. Дис. ... канд. техн. наук. Пермь, 2011. 180 с.
13. Akhmetshina L.F. Development of a method for functionalization of metal/carbon nanocomposites and methods for obtaining suspensions based on them for modifying composite materials. Diss… Candidate of Sciences (Engineering). Perm. 2011. 180 p. (In Russian).
14. Пенкаля Т.В. Очерки кристаллохимии / Пер. с пол. В.В. Макарского; Под ред. проф. В.А. Франк-Каменецкого. Л.: Химия. Ленингр. отд-ние, 1974. 496 с.
14. Penkalya T.V. Ocherki kristallohimii [Essays on crystal chemistry. Trans. from Polish Makarenko V.V. Ed. by prof. V.A. Frank-Kamenetsky. Leningrad: Khimiya publishing house. 1974. 496 p.
15. Yakovlev G.I., Černý V., Polyanskikh I.A., Gordina A.F., Pudov I.А., Gumenyuk A.В., Smirnova O.М. The effect of complex modification on the impedance of cement matrices. Materials. 2021. No. 3, pp. 557–567. https://www.mdpi.com/1996-1944/14/3/557
16. Yakovlev G.I., Begunova E.V., Drochytka R., Melichar J., Pudov I.A., Saidovа Z.S. The influence of activated dispersed additives on electrical conductivity of anhydrite compositions. Solid State Phenomena. 2021. Vol. 321, pp. 51–57. DOI: 10.4028/www.scientific.net/SSP.321.51
17. Černý V.,Yakovlev G.I., Drochytka R., Baránek Š., Mészárosová L., Melichar J. and Hermann R. Impact of carbon particle character on the cement-based composite electrical resistivity. Materials. 2021. Vol. 14. No. 24. 7505. DOI:10.3390/ma14247505
18. Zhiyong Liu, Yuncheng Wang, Dong Xu, Chuyue Zang, Yunsheng Zhang, Jinyang Jiang. Multiple ions transport and interaction in calcium silicate hydrate gel nanopores: Effects of saturation and tortuosity. Construction and Building Materials. 2021. Vol. 283. 122638. DOI: 10.1016/j.conbuildmat.2021.122638
19. Патент РФ RU 2681624C1. Лабораторная установка для диспергирования текучих эмульсий и суспензий / Пудов И.А., Яковлев Г.И., Грахов В.П., Шайбадуллина И.В., Первушин Г.Н., Полян-ских И.С., Гордина А.Ф., Хазеев Д.Р., Карпова Е.А. Заявл. 02.08.2018. Опубл. 11.03.2019. Бюл. № 8.
19. Patent RF RU 2681624C1. Laboratornaya ustanovka dlya dispergirovaniya teuchih emul’siy i suspeziy [Laboratory installation for dispersion of fluid emulsions and suspensions]. Pudov I.A., Yakovlev G.I., Grakhov V.P., Shaibadullina I.V., Pervushin G.N., Polyanskikh I.S., Gordina A.F., Khazeev D.R., Karpova E.A. Declared 02.08.2018. Published 11.03.2019. Bulletin No. 8. (In Russian).
20. Saidovа Z.S.,Yakovlev G.I., Smirnova O.M., Gordina A.F., Kuzmina N. Modification of cement matrix with complex additive based on chrysotyl nanofibers and carbon black. Applied Sciences (Switzerland). 2021. Vol. 11. No. 15. DOI: 10.3390/app11156943

For citation: Yakovlev G.I., Vit Černy, Pudov I.A., Polyanskikh I.S., Saidova Z.S., Begunova E.V., Semenova S.N. Properties of cement matrices with increased electrical conductivity. Stroitel’nye Materialy [Construction Materials]. 2022. No. 1–2, pp. 11–20. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-799-1-2-11-20

Overview of the Russian Cement Market (Results of 9 Months of 2020)

Number of journal: No.1-2-2021
Autors:

Semenov A.A.

DOI: https://doi.org/10.31659/0585-430X-2022-799-1-2-5-7
УДК: 666.94:339.13

 

AbstractAbout AuthorsReferences
The information on the state and main trends of the cement market development in Russia in 2021 is given. Data on the volumes and dynamics of production, consumption and foreign trade operations with cement are summarized.
A.A. SEMENOV, Candidate of Science (Engineering), General Director (This email address is being protected from spambots. You need JavaScript enabled to view it.)

LLC “GS-Expert” http://www.gs-expert.ru/

For citation: Semenov A.A. Overview of the Russian cement market (results of 9 months of 2020). Stroitel’nye Materialy [Construction Materials]. 2022. No. 1-2, pp. 5–7. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-799-1-2-5-7

https://www.traditionrolex.com/10