Effect of Filler and Aggregates Dosage and Particle Size Range on the 3D-Printable Mixture Extrudability

Number of journal: 1-2-2022
Autors:

Slavcheva G.S.,
Britvina E.A.,
Shvedova M.A.,
Yurov P.Y.

DOI: https://doi.org/10.31659/0585-430X-2022-799-1-2-21-29
УДК: 624:004.925.84

 

AbstractAbout AuthorsReferences
The article presents the results of studies of the rheological behaviour and plasticity of 3D-printable mixtures. The results of the influence of the type, dosage, and particle size range fillers, and aggregates on the rheological behaviour of mixtures, the stability of their structure, and plasticity under compression are discussed. Two types of 3D-printable mixtures were investigated “cement – filler – plasticizer – water”, “cement – aggregate – plasticizer – water”. A compression test with a constant strain rate of 5 mm/s was used in the experiments. It was found that the best extrusion ability is possessed by mixtures capable of viscoplastic flow without destruction of the structure. For these systems, overcoming the stability threshold and the onset of plastic flow without cracking corresponds to a pressure of 2.5–4 kPa, rational values of plastic yield value are 1.5–3.5 kPa. When fillers and aggregates with mono-particle size are applied, 3D-printable mixtures have low structural stability to the action of loading, they are characterized by irreversible destruction of the structure after overcoming the stability threshold. Fillers and aggregates with multi-particle size range in their particle size range d=1–630 mm can effectively regulate the plasticity and stability of the structure of 3D-printable mixtures. Higher ductility and aggregate stability under load are achieved when fillers with an amorphous structure are used. 3D-printable mixtures are capable of viscous-plastic flow without destruction of the structure and sufficient structural strength at a dosage of fillers (d=1–55 mm) up to 30% of the cement mass, aggregates (d=150–560 mm) in an amount of 100–125% by weight of cement.
G.S. SLAVCHEVA, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
E.A. BRITVINA, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
M.A. SHVEDOVA, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
P.Y. YUROV, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Voronezh State Technical University (84, 20-letiya Oktyabrya Street, 394006, Voronezh, Russian Federation)

1. Le T.T., Austin S.A., Lim S., Buswell R.A., Gibb A.G.F., Thorpe T. Mix design and fresh properties for high-performance printing concrete. Material and Structure Constraction. 2012. No. 45 (8), pp. 1221–1232. DOI: 10.1617/s11527-012-9828-z
2. Zhang Y., Zhang Y., She W., Yang L., Liu G., Yang Y. Rheological and harden properties of the high-thixotropy 3D printing concrete. Constraction and Buildilding Materials. 2019. No. 201, pp. 278–285. https://doi.org/10.1016/j.conbuildmat.2018.12.061
3. Jayathilakage R., Rajeev P., Sanjayan J.. Yield stress criteria to assess the buildability of 3D concrete printing. Constraction and Buildilding Materials. 2020. No. 240. 117989. https://doi.org/10.1016/j.conbuildmat.2019.117989
4. Khan M.A. Mix suitable for concrete 3D printing: A review. Materials Today: Proceedings. 2020. No. 32 (4), pp. 831–837. https://doi.org/10.1016/j.matpr.2020.03.825
5. Mechtcherine V., Bos F.P., Perrot A., da Silva W.R.L., Nerella V.N., Fataei S. et al. Extrusion-based additive manufacturing with cement-based materials – Production steps, processes, and their underlying physics: A review. Cement and Concrete Research. 2020. No. 132. 106037. DOI: 10.1016/j.cemconres.2020.106037
6. Rehman A.U., Kim J.H.. 3D concrete printing: A systematic review of rheology, mix designs, mechanical, microstructural, and durability characteristics. Materials. 2021. No. 14. 3800. DOI: 10.3390/ma14143800
7. Roussel N. Rheological requirements for printable concretes. Cement and Concrete Research. 2018. No. 112, pp. 76–85. DOI: 10.1016/j.cemconres.2018.04.005
8. Hou S., Duan Z., Xiao J., Ye J.. A review of 3D printed concrete: Performance requirements, testing measurements and mix design. Constraction and Buildilding Materials. 2021. No. 273. 121745. DOI: 10.1016/j.conbuildmat.2020.121745
9. Ватин Н.И., Чумадова Л.И., Гончаров И.С., Зыкова В.В., Карпеня А.Н., Ким А.А., Фина-шенков E.A. 3D-печать в строительстве. Строи-тельство уникальных зданий и сооружений. 2017. № 1. С. 27–46.
9. Vatin N., Chumadova L., Goncharov I., Zykova V., Karpenya A., Kim A., Finashenkov E. 3D printing in construction. Construction of Unique Buildings and Structures. 2017. No. 1, pp. 27–46. (In Russian).
10. Zhang Y., Zhang Y., Liu G., Yang Y., Wu M., Pang B. Fresh properties of a novel 3D printing concrete ink. Constraction and Buildilding Materials. 2018. No. 174, pp. 263–271. https://doi.org/10.1016/j.conbuildmat.2018.04.115
11. Nerella V.N., Näther M., Iqbal A., Butler M., Mechtcherine V. Inline quantification of extrudability of cementitious materials for digital construction. Cement and Concrete Compositon. 2019. No. 95, pp. 260–270. https://doi.org/10.1016/j.cemconcomp.2018.09.015
12. Lu B., Weng Y., Li M., Qian Y., Leong K.F., Tan M.J., et al. A systematical review of 3D printable cementitious materials. Constraction and Buildilding Materials. 2019. No. 207, pp. 477–490. https://doi.org/10.1016/j.conbuildmat.2019.02.144
13. Matthäus C., Back D., Weger D., Kränkel T., Scheydt J., Gehlen C. Effect of cement type and limestone powder content on extrudability of lightweight concrete. RILEM Bookseries. 2020. No. 28, pp. 312–322. DOI: 10.1007/978-3-030-49916-7_32
14. Урьев Н.В. Физико-химическая динамика структурированных нанодисперсных систем и нано-дисперсных композиционных материалов. Ч. 1 // Физико-химия поверхности и защита материалов. 2010. Т. 46. № 1. С. 3–23.
14. Uriev N.V. Physico-chemical dynamics of structured nanodispersed systems and nanodispersed composite materials. Part 1. Fizikohimiya poverhnosti i zashita materialov. 2010. No. 46, pp. 3–23. (In Russian).
15. Славчева Г.С., Артамонова О.В. Реологическое поведение дисперсных систем для строительной 3d-печати: проблема управления и возможности арсенала «нано» // Нанотехнологии в строительстве. 2018. Т. 10. № 3. С. 107–122. DOI: dx.doi.org/10.15828/2075-8545-2018-10-3-107-122
15. Slavcheva G.S., Artamonova O.V. The rheological behavior of disperse systems for 3D printing in constrcution: the problem of control and possibility of «nano» tools application. Nanotehnologii v stroitel’stve. 2018. No. 10 (3), pp. 107–122. DOI: dx.doi.org/10.15828/2075-8545-2018-10-3-107-122. (In Russian).
16. Slavcheva G.S., Artamonova O.V. Rheological behavior and mix design for 3D printable cement paste. Key Engineering Materials. 2019. No. 799, pp. 282–287. DOI: 10.4028/www.scientific.net/KEM.799.282
17. Slavcheva G., Artamonova O., Babenko D., Ibryaeva A. Effect of limestone filler dosage and granulometry on the 3d printable mixture rheology. IOP Conf. Series: Materials Science and Engineering. 2020. No. 972. 012042. DOI: 10.1088/1757-899X/972/1/012042
18. Slavcheva G.S., Artamonova O.V., Shvedova M.A., Britvina E.A. Effect of viscosity modifiers on structure formation in cement systems for construction 3D printing. Inorganic. Materials. 2021. No. 57 (1), pp. 94–100. DOI:  10.1134/S0020168521010143
19. Slavcheva G., Britvina E., Shvedova M. Heat Release during 3d-Printable materials setting and hardening. Material and Science Forum. 2021. No. 1043, pp. 37–42. DOI: 10.4028/www.scientific.net/MSF.1043.37
20. Roussel N., Lanos C. Plastic fluid flow parameters identification using a simple squeezing test. Applied Rheology. 2003. No. 13 (3), pp. 132–341.
21. Toutou Z., Roussel N., Lanos C. The squeezing test: A tool to identify firm cement-based material’s rheological behaviour and evaluate their extrusion ability. Cement and Concrete Research. 2005. No. 35 (10), pp. 1891–1899. DOI: 10.1016/j.cemconres.2004.09.007

For citation: Slavcheva G.S., Britvina E.A., Shvedova M.A., Yurov P.Y. Effect of filler and aggregates dosage and particle size range on the 3d-printable mixture extrudability. Stroitel’nye Materialy [Construction Materials]. 2022. No. 1–2, pp. 21–29. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-799-1-2-21-29


Print   Email