Log in

The Impact of Industrial Sulfur on Fluor Anhydrite-Based Composites

Number of journal: 12-2022
Autors:

Gumeniuk A.N.,
Polyanskikh I.S.,
Gordina А.F.,
Pestereva K.D.

DOI: https://doi.org/10.31659/0585-430X-2022-809-12-65-72
УДК: 691.54:666.962

 

AbstractAbout AuthorsReferences
Industrial sulfur and fluor anhydrite are types of by-products that have been formed due to anthropogenic activities of humankind and there are significant problems with their storage and utilization as it is with all by-products. Considering the properties of those by-products (industrial sulfur and fluor anhydrite) it might be suggested that it is possible to use them to form composite building materials and these materials are likely to have optimal characteristics including strength and electrical properties. There has been investigated the using of these by-products as constituents for building materials formation and it has been confirmed that the combining of several by-products allows to increase the characteristics of materials and to widen the functional areas of such materials. In order to increase physical technical and electrical properties the amount of dispersed industrial sulfur is to be varied. To analyze changes in physical technical and physical chemical properties of the materials wide range of common testing technique have been applied combining with up-to-date techniques including scanning electron microscopy, X-ray analysis and IR-analysis energy dispersive spectroscopy. It was found out that when 10% of industrial sulfur is in the composite then in 28 days of hardening compressive strength is 35.5 MPa, coefficient of softening is 0.69, volume resistivity is 35.5 kOm·cm. All that changes are due to interaction between industrial sulfur while it is transforming its polymorphic state (transformation α form to β form) while heat treatment and constituents of fluor anhydrite. Results show that it is possible to form a building material that consists of by-products only and its properties equals to common materials in terms of technical and economical aspects.
A.N. GUMENYUK, Engineer (Аssistant) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
I.S. POLYANSKIKH, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.F. GORDINA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
K.D. PESTEREVA, student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Kalashnikov Izhevsk State Technical University (7, Studencheskaya Street, Izhevsk, 426069, Russian Federation)

1. Курмангалиева А.И., Аниканова Л.А., Волкова О.В., Кудяков А.И., Саркисов Ю.С., Абзаев Ю.А. Активация процессов твердения фторангидритовых композиций химическими добавками солей натрия // Известия вузов. Химия и химическая технология. 2020. Т. 63. № 8. С. 73–80. DOI: 10.6060/ivkkt.20206308.6137
1. Kurmangalieva A.I., Anikanova L.A., Volkova O.V., Kudyakov A.I., Sarkisov Y.S., Abzaev Y.A. Activation of hardening processes of fluorogypsum compositions by chemical additives of sodium salts. Russian Journal of Chemistry and Chemical Technology. 2020. Vol. 63. No. 8, pp. 73–80. DOI 10.6060/ivkkt.20206308.6137
2. Manjit Singh, Mridul Garg Making of anhydrite cement from waste gypsum. Cement and Concrete Research. 2000. No. 30, pp. 571–577. DOI: 10.1016/S0008-8846(00)00209-X
3. Kamarou M., Korob N., Kwapinski W., Romanovski V. High-quality gypsum binders based on synthetic calcium sulfate dihydrate produced from industrial waste. Journal of Industrial and Engineering Chemistry. 2021. No. 100, pp. 324–332. https://doi.org/10.1016/j.jiec.2021.05.006
4. Romanovski V., Klyndyuk A., Kamarou M. Green approach for low-energy direct synthesis of anhydrite from industrial wastes of lime mud and spent sulfuric acid. Journal of Environmental Chemical Engineering. 2021. Vol. 9 (6). https://doi.org/10.1016/j.jece.2021.106711
5. Gijbels K., Pontikes Y., Samyn P., Schreurs S., Schroeyers W. Effect of NaOH content on hydration, mineralogy, porosity and strength in alkali/sulfate-activated binders from ground granulated blast furnace slag and phosphogypsum. Constructions. 2020. Vol. 10 (2). https://doi.org/10.1016/j.cemconres.2020.106054
6. Azad N.M, Samarakoon S.M. Utilization of industrial by-products/waste to manufacture geopolymer cement/concrete. Sustainability. 2021. Vol. 13 (2). 873. https://doi.org/10.3390/su13020873
7. Singh M., Garg M. Activation of fluorogypsum for building materials. Journal of Scientific and Industrial Research. 2009. No. 68, pp. 130–134.
8. Korolev E.V., Smirnov V.A., Evstigneev A.V. Nanostructure of matrices of sulfur building composites: methodology, methods, instrumentation. Nanotechnology in construction: scientific online journal. 2014. No. 6, pp. 106–148. DOI: 10.15828/2075-8545-2014-6-6-106-148
9. Скрипунов Д.А., Филатова О.Е., Алехина М.Н., Власова Н.Е. Современное состояние производства и использования серы в России // Химическая промышленность сегодня. 2014. № 12. С. 6–14.
9. Skripunov D.A., Filatova O.E., Alekhina M.N., Vlasova N.E. The current state of production and use of sulfur in Russia. Chemical industry today. 2014. No. 12, pp. 6–14. (In Russian).
10. Скрипунов Д.А., Филатова О.Е. и др. Проблема избыточной серы в газах, пути решения. Газохим 2011: Материалы II Международной конференции. Москва: Газпром ВНИИГАЗ. 2011.
10. Skripunov D.A., Filatova O.E. and others. The problem of excess gas sulfur, solutions. Gasochem 2011: materials of the II International Conference. Moscow: Gazprom VNIIGAZ. 2011. (In Rusian).
11. Moon J., Kalb P.D., Milian L. Characterization of a sustainable sulfur polymer concrete using activated fillers. Cement and Concrete Composites. 2016. Vol. 67, pp. 20–29. https://doi.org/10.1016/j.cemconcomp.2015.12.002
12. Галдина В.Д. Серобитумные вяжущие: Монография. Омск: СибАДИ, 2011. 124 с.
12. Galdina V.D. Serobitumnye vyazhushchie [Sulfur-bituminous binders: monograph]. Omsk: SibADI, 2011. 124 p.
13. Diez S., Hoefling A., Theato P., Pauer W. Mechanical and electrical properties of sulfur-containing polymeric materials prepared via inverse vulcanization. Polymers. 2017. Vol. 9(2). https://doi.org/10.3390/polym9020059
14. Rasheed M.F., Rahim A., Irfan-ul-Hassan M. et al. Sulfur concrete made with waste marble and slag powders: 100% recycled and waterless concrete. Environmental Science and Pollution Research. 2022. Vol. 29, pp. 65655–65669.
15. Dugarte M., Martinez-Arguelles G., Torres J. Experimental evaluation of modified sulfur concrete for achieving sustainability in industry applications. Sustainability. 2019. No. 11. https://doi.org/10.3390/su11010070
16. Milica M. Vlahovic, Sanja P. Martinovic, Tamara Dj. Boljanac, Predrag B. Jovanic, Tatjana D. Volkov-Husovic. Durability of sulfur concrete in various aggressive environments. Construction and Building Materials. 2011. No. 25, pp. 3926–3934. doi:10.1016/j.conbuildmat.2011.04.024
17. Rimkevicius M., Kaminskas A. Mechaniskai aktyvinto ekstrakcino pusvandenio fosfogipso savybes. J. Civ. Eng. Manag. 2003. No. 9, pp. 49–54.
18. Kosenko N.F., Belyakov A.S., Smirnova M.A. Effect of mechanical activation procedure on the phase composition of gypsum. Inorganic Materials. 2010. No. 5, pp. 545–550.
19. Кудяков А.И., Аниканова Л.А., Редлих В.В., Саркисов Ю.С. Влияние сульфата и сульфита натрия на процессы структурообразования фторангидритовых композиций // Строительные материалы. 2012. № 10. С. 50–52.
19. Kudyakov A.I., Anikanova L.A., Redlich V.V. Influence of sodium sulfate and sulfite on the processes of structure formation of fluoroanhydrite compositions. Stroitel’nye Materialy [Construction Materials]. 2012. No. 10, pp. 50–52. (In Rusian).
20. Будников П.П., Зорин С.П. Ангидритовый цемент. M.: Государственное издательство литературы по строительным материалам, 1954. 93 c.
20. Budnikov P.P., Zorin S.P. Angidritovyy tsement [Anhydrite cement]. Moscow: State publishing house of literature on building materials.1954. 93 p.
21. Аниканова Л.А., Кудяков А.И., Ковлер К. Управление процессами структурообразования вяжущих, стеновых и отделочных материалов на основе фторангидритового сырья. Повышение качества и эффективности строительных и специальных материалов: Сборник Национальной научно-технической конференции с международным участием. 18–22 февраля 2019 г. Новосибирск. С. 106–110.
21. Anikanova L.A., Kudyakov A.I., Kovler K. Сontrol of the structure formation of binding, wall and decorating materials based on fluoroanhydrite raw materials. In the collection: improving the quality and efficiency of building and special materials. Collection of the National Scientific and Technical Conference with International Participation. 2019. pp. 106–110. (In Rusian)
22. Аниканова Л.А. Эффективность использования фторангидрита в производстве стеновых и отделочных материалов // Вестник Томского государственного архитектурно-строительного университета. 2015. № 1. С. 163–171.
22. Anikanova L.A. Efficient use of acid fluoride in walling and finishing material production. Vestnik of Tomsk state university of architecture and building. 2015. No. 1, pp. 163–171.
23. Бондаренко С.А. Модифицированное фторангидритовое вяжущее и строительные материалы на его основе: Дис. ... канд. техн. наук. Челябинск. 2008. 146 с.
23. Bondarenko S.A. Modified fluoroanhydrite binder and building materials based on it. Diss… Candidate of sciences (Engineering). Chelyabinsk. 2008. 146 p. (In Rusian).
24. Joseph C.G., Taufiq-Yap Y.H., Krishnan V., Li Puma G. Application of modified red mud in environmentally-benign applications: A review paper. Environmental Engineering Research. 2022. Vol. 25 (1). https://doi.org/10.4491/eer.2019.374
25. Arunothayan A.R., Nematollahi B., Ranade R., Khayat K.H., Sanjayan J.G. Digital fabrication of eco-friendly ultra-high-performance fiber-reinforced concrete. Cement and Concrete Composites. 2022. Vol. 125. https://doi.org/10.1016/j.cemconcomp.2021.104281
26. Rosales J, Gázquez M, Cabrera M, Bolivar JP, Francisco Agrela. Application of phosphogypsum for the improvement of eco-efficient cements. Waste and Byproducts in Cement-Based Materials. Innovative Sustainable Materials for a Circular Economy. Woodhead Publishing Series in Civil and Structural Engineering. 2021, pp. 153–189. https://doi.org/10.1016/B978-0-12-820549-5.00016-4
27. Патуроев В.В. Полимербетоны. М.: Стройиздат; НИИ бетона и железобетона, 1987. 286 с.
27. Paturoev V.V. Polimerbetony [Polymer concretes]. Moscow: Stroyizdat, Research Institute of Concrete and Reinforced Concrete. 1987. 286 p.
28. Romanovski V., Klyndyuk A., Kamarou M. Green approach for low-energy direct synthesis of anhydrite from industrial wastes of lime mud and spent sulfuric acid. Journal of Environmental Chemical Engineering. 2021. Vol. 9 (6). https://doi.org/10.1016/j.jece.2021.106711
29. Zhakupova G, Sadenova M.A., Varbanov P.S., Possible alternatives for cost-effective neutralisation of fluoroanhydrite minimising environmental impact. Chemical Engineering Transactions. 2019. Vol. 76. DOI: 10.3303/CET1976179
30. Rajković M., Tošković D.V. Investigation of the possibilities of phosphogypsum application for building partitioning walls-elements of a prefabricated house. Acta Periodica Technologica. 2002. Iss. 33, pp. 71–92. https://doi.org/10.2298/APT0233071R
31. Биспен Т.А., Масленников И.Г., Молдавский Д.Д. Получение фтористого водорода и плавиковой кислоты высокой чистоты // Известия Санкт-Петербургского государственного технологического института. 2016. № 33 (59). 13–18.
31. Bispen T.A., Maslennikov I.G., Moldavsky D.D. Obtaining hydrogen fluoride and high purity hydrofluoric acid. Izvestiya of the St. Petersburg State Technological Institute. 2016. No. 33 (59), pp. 13–18. (In Rusian).
32. Патент на изобретение 2760962 C1, 01.12.2021. Многофункциональный состав на основе термопластичного отхода топливно-энергетического комплекса и способ его приготовления / Гуменюк А.Н., Гордина А.Ф. Заявка № 2020133692 от 13.10.2020.
32. Patent for an invention. 2760962 C1, 12/01/2021. Multifunctional composition based on thermoplastic waste from the fuel and energy complex and method for its preparation. Gumenyuk A.N., Gordina A.F. Application No. 2020133692 dated 10/13/2020. (In Rusian).
33. Гуменюк А.Н., Полянских И.С., Первушин Г.Н., Гордина А.Ф., Яковлев Г.И., Хазеев Д.Р. Структу-рирующая добавка на основе отхода производства для минеральных вяжущих // Строительные материалы. 2019. № 7. С. 41–46. DOI: https://doi.org/10.31659/0585-430X-2019-772-7-41-46
33. Gumeniuk A.N., Polyanskikh I.S., Pervushin G.N., Gordina A.F., Yakovlev G.I., Khazeev D.R. Structuring additive based on production waste for mineral binders. Stroitel’nye Materialy [Construction Materials]. 2019. No. 7, pp. 41–46. (In Rusian). DOI: https://doi.org/10.31659/0585-430X-2019-772-7-41-46
34. Kamarou M., Korob N., Kwapinski W., Romanovski V. High-quality gypsum binders based on synthetic calcium sulfate dihydrate produced from industrial waste. Journal of Industrial and Engineering Chemistry. 2021. Vol. 100, pp. 324-332. https://doi.org/10.1016/j.jiec.2021.05.006
35. Dehghanpour H., Yilmaz K., Ipek M. Evaluation of recycled nano carbon black and waste erosion wires in electrically conductive concretes. Construction and Building Materials. 2019. Vol. 221, pp. 109–121. https://doi.org/10.1016/j.conbuildmat.2019.06.025
36. Hong S.H., Choi J.S., Yuan T.F., Yoon Y.S. Mechanical and electrical characteristics of lightweight aggregate concrete reinforced with steel fibers. Materials. 2021. Vol. 14 (21). https://doi.org/10.3390/ma14216505
37. Schultz J. Conductive material prevents build-up of static electricity. AORN journal. 1970. Vol. 27 (6), pp. 1226–1228. https://doi.org/10.1016/S0001-2092(07)60644-9
38. Garcia-Macias E., D’Alessandro A., Castro-Trigue-ro R., Pérez-Mira D., Ubertini F. Micromechanics modeling of the electrical conductivity of carbon nanotube cement-matrix composites. Composites Part B: Engineering. 2016. Vol. 108, pp. 451–469. https://doi.org/10.1016/j.compositesb.2016.10.025
39. Hong S.-H., Choi J.-S., Yuan T.-F., Yoon Y.-S. Mechanical and electrical characteristics of lightweight aggregate concrete reinforced with steel fibers. Materials. 2021. 14. 6505. https://doi.org/10.3390/ma14216505
40. Brencich A., Lątka D., Matysek P., Orban Z., Sterpi E. Compressive strength of solid clay brickwork of masonry bridges: Estimate through Schmidt Hammer tests. Construction and Building Materials. 2021. Vol. 306. 124494. DOI: 10.1016/j.conbuildmat.2021.124494

For citation: Gumeniuk A.N., Polyanskikh I.S., Gordina А.F., Pestereva K.D. The impact of industrial sulfur on fluor anhydrite-based composites. Stroitel’nye Materialy [Construction Materials]. 2022. No. 12, pp. 65–72. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-809-12-65-72

Numerical-Analytical Method for Reducing Problems of Non-Stationary Heat Conduction with Boundary Conditions of the III Kind to Problems with Conditions of the I Kind

Number of journal: 12-2022
Autors:

Fedosov S.V.,
Fedoseev V.N.,
Voronov V.A.

DOI: https://doi.org/10.31659/0585-430X-2022-809-12-59-62
УДК: 536.2

 

AbstractAbout AuthorsReferences
In the technological problems of construction, problems often arise associated with the development of mathematical models for the processes of heat treatment of solids. It should be noted that the solution to the problems of developing mathematical models of such processes and the development of methods for optimizing the operation of equipment is the formulation and solution of boundary value problems of non-stationary heat and moisture transfer in the “gas-solid body” system. Modern software and hardware systems will make it possible to create mathematical models of building structures of complex geometric shapes. At the same time, simplification of both mathematical models of complex systems and calculation methods becomes acceptable. With this approach, complex geometric shapes such as two-layer cylinders and spheres, which are technological equipment, can be considered as a plate for modeling purposes, since the ratio of the thickness of the material layer to the radius of the cylinder (ball) is less than 0.5. It should also be noted that in real heat treatment processes, all thermophysical characteristics depend on temperature and, accordingly, change their values during the process. The thermophysical characteristics of the environment in which the material is processed (temperature and humidity parameters) also change with the time of the process. An approach is outlined below, the essence of which is to use the numerical-analytical method of “microprocesses”. The main advantage of the proposed approach in relation to the problem under consideration is the “avoidance” of the need to search for the roots of the transcendental characteristic equation, since the roots of the characteristic equations acquire a simplified form.
S.V. FEDOSOV1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
V.N. FEDOSEEV2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.A. VORONOV2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)
2 Ivanovo State Polytechnic University (21, Sheremetevsky Avenue, Ivanovo, 153000, Russian Federation)

1. Lykov A.V., Mikhailov Yu.A. Teoriya perenosa energii i veshchestva [Theory of energy and substance transfer] Minsk: Acad. Sciences of the BSSR. 1959. 332 p.
2. Lykov A.V. Teoriya teploprovodnosti [Theory of thermal conductivity]. Moscow: Higher school, 1967. 600 p.
3. Rudobashta S.P. Mass transfer in a solid phase system [Mass transfer in a system with a solid phase]. Moscow: Khimiya. 1980. 248 p.
4. Rudobashta S.P., Kartashov E.M. Diffuziya v khimiko-tekhnologicheskikh protsessakh [Diffusion in chemical-technological processes]. Moscow: KolosS, 2010. 478 p.
5. Kartashov E.M. Analiticheskie metody v teorii teploprovodnosti tverdykh tel [Analytical methods in the theory of thermal conductivity of solids]. Moscow: Vysshaya shkola. 2001. 480 p.
6. Fedosov S.V. Teplomassoperenos v tekhnologicheskikh protsessa stroitel’noy industrii: monografiya [Heat and mass transfer in the technological process of the construction industry]. Ivanovo: IPK “PresSto”. 2010. 363 p.
7. Carslow G., Eger R. Teploprovodnost’ tverdykh tel [Thermal conductivity of solids]. Moscow: Nauka. 1964. 488 p.
8. Kudinov I.V., Stefanuk E.V. Teoreticheskie osnovy teplotekhniki. Chast’ 1. Termodinamika: uchebnoe posobie. [Theoretical foundations of heat engineering. Part 1. Thermodynamica: textbook]. Samara: SGASU. 2013. 172 p.
9. Fedosov S.V., Bakanov M.O. Modeling of non-stationary heat conduction and diffusion processes in canonical bodies using the “microprocesses” method. Collection of scientific papers of the International Scientific and Technical Symposium of the III International Kosygin Forum “Modern problems of engineering sciences”. Moscow. 2021, pp. 25–30.
10. Fedosov S.V., Bakanov M.O Modeli i metody vysokotemperaturnoy termicheskoy obrabotki v tekhnologii penostekla [Models and methods of high-temperature heat treatment in foam glass technology]. Moscow: Sputnik+, 2021. 302 p.

For citation: Fedosov S.V., Fedoseev V.N., Voronov V.A. Numerical-analytical method for reducing problems of non-stationary heat conduction with boundary conditions of the III kind to problems with conditions of the I kind. Stroitel’nye Materialy [Construction Materials]. 2022. No. 12, pp. 59–62. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-809-12-59-62

Development of Principles for the Creation of Reinforced Composites for 3D Additive Construction Technologies

Number of journal: 12-2022
Autors:

Slavcheva G.S.,
Artamonova O.V.

DOI: https://doi.org/10.31659/0585-430X-2022-809-12-52-58
УДК: 678

 

AbstractAbout AuthorsReferences
The theoretical principles of creating a new class of building materials – reinforced cement composites obtained by 3D printing extrusion technology are discussed. A feature of reinforced structural composites for construction 3D printing will be that a rigid aluminosilicate (based on cement and fillers of various composition and dispersion) matrix will be reinforced with fibers with high tensile strength during printing. Theoretical approaches to the formation of the structure and properties of reinforced composites are determined, based on the regulation of the composition, visco-plastic properties of the mixture and the physical and mechanical properties of the matrix after its hardening; properties of reinforcing fibers; adhesion parameters “aluminosilicate (cement) matrix – reinforcing fiber” in the unit cell of the composite. The geometrical, physico-mechanical and physico-chemical means of regulating the selected groups of factors and the technological conditions for their implementation are substantiated. The formation of a set complex of physical and mechanical properties is planned to be ensured by a rational combination of the material composition and geometry of the matrix layer in the composite structure; type, diameter, quantity, location of reinforcing fibers in the volume of the composite, creating a strong adhesive matrix – fiber connection.
G.S. SLAVCHEVA, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
O.V. ARTAMONOVA, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Voronezh State Technical University (84, 20-letiya Oktayabrya Street, Voronezh, 394006, Russian Federation)

1. Bos F., Wolfs R., Ahmed Zand Salet T. Additive manufacturing of concrete in construction: potentials and challenges of 3D concrete printing. Virtual and Physical Prototyping. 2016. No. 11 (3), pp. 209–225. dx.doi.org/10.1080/17452759.2016.1209867
2. Toutou Z., Roussel N., Lanos C. The squeezing test: A tool to identify firm cement-based material’s rheological behaviour and evaluate their extrusion ability. Cement and Concrete Research. 2005. No. 35 (10), pp. 1891–1899. dx.doi.org/10.1016/j.cemconres.2004.09.007
3. Perrot A., Rangeard D., Pierre A. Structural built-up of cement-based materials used for 3D-printing extrusion techniques. Materials and Structures. 2016. No. 49, pp. 1213–1220. dx.doi.org/10.1617/s11527-015-0571-0
4. Perrot A., Rangeard D., Mélinge Y., Estellé P., Lanos C. Extrusion criterion for firm cement-based materials. Applied Rheology. 2009. No. 19, pp. 111–127. dx.doi.org/10.3933/ApplRheol-19-53042
5. Perrot A., Mélinge Y., Rangeard D., Micaelli F., Estellé P., Lanos C., Estellé P. Use of ram extruder as a combined rheo-tribometer to study the behaviour of high yield stress fluids at low strain rate. Rheologica Acta. Springer Verlag. 2012. No. 51(8), pp. 743–754.
6. Ma S., Qian Y., Kawashima S. Experimental and modeling study on the non-linear structural build-up of fresh cement pastes incorporating viscosity modifying admixtures. Cement and Concrete Research. 2018. No. 108, pp. 1–9. dx.doi.org/10.1016/j.cemconres.2018.02.022
7. Perrot A., Pierre A., Nerella V.N., Wolfs R.J.M., Keita E., Nair S.A.O., Neithalath N., Roussel N., Mechtcherine V.. From analytical methods to numerical simulations: A process engineering toolbox for 3D concrete printing. Cement and Concrete Composites. 2021. No. 122. 104164. https://doi.org/10.1016/j.cemconcomp.2021.104164
8. Feng P., Menga X., Chenb J., Yea L. Mechanical properties of structures 3D printed with cementitious powders. Construction and Building Materials. 2015. No. 93, pp. 486–497. dx.doi.org/10.1016/j.conbuildmat.2015.05.132
9. Shakor P., Sanjayan J., Nazari A., Nejadi S. Modified 3D printed powder to cement-based material and mechanical properties of cement scaffold used in 3D printing. Construction and Building Materials. 2017. No. 138, pp. 398–409. dx.doi.org/10.1016/j.conbuildmat.2017.02.037
10. Tay Y.W., Panda B, Chandra S. Paul S.C., Ming Jen Tan M.J., Qian S. Leong K.F., Chua C.K. Processing and properties of construction materials for 3D printing. Materials Science Forum. 2016. Vol. 861, pp. 177–181. dx.doi.org/10.4028/www.scientific.net/MSF.861.177
11. Paul S.C., Tay Y.W.D., Panda B., Tan M.J. Fresh and hardened properties of 3D printable cementitious materials for building and construction. Archives of Civil and Mechanical Engineering. 2018. No. 18 (1), pp. 311–319. dx.doi.org/j.acme.2017.02.008
12. Ngo T.D. Kashani A., Imbalzano G., Nguyen K., Hui D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering. Vol. 143. 103 p. dx.doi.org/10.1016/j.compositesb.2018.02.012
13. Lin J.C., Wu X., Yang W., et al. Application of P.O and R-SAC mortar for 3D printing in construction. IOP Conference Series: Materials Science and Engineering. 2017. Vol. 292. No. 1, pp. 1–7. dx.doi.org/10.1088/1757-899X/292/1/012070
14. Malaeb Z., Hachem H., Tourbah A., et al. 3D Concrete Printing: machine and mix design. International Journal of Civil Engineering and Technology. 2015. Vol. 6 (4), pp. 14–22.
15. Poluektova V.A., Shapovalov N.A. Concrete chemicalization for digital printing: control of rheology and structure formation. Lecture Notes in Civil Engineering. 2021. No. 95, pp. 59–65.
16. Perrot A., Jacquet Y., Rangeard D., Courteille E., Sonebi M. Nailing of layers: a promising way to reinforce concrete 3D printing structures. Materials. 2020. No. 13. 1518. https://doi.org/10.3390/ma13071518
17. Bester F., van den Heever M., Kruger J., Cho S., van Zijl G. Steel fiber links in 3D printed concrete. In Proceedings of the Second RILEM International Conference on Concrete and Digital Fabrication. Eindhoven, Netherlands. 2020, pp. 398–406.
18. Geneidy O., Kumarji S., Dubor A., Sollazzo A. simultaneous reinforcement of concrete while 3D printing. In Proceedings of the Second RILEM International Conference on Concrete and Digital Fabrication. Eindhoven, Netherlands. 2020, pp. 895–905.
19. Marchment T., Sanjayan J. Penetration reinforcing method for 3D concrete printing. In Proceedings of the Second RILEM International Conference on Concrete and Digital Fabrication. Eindhoven, Netherlands. 2020, pp. 680–690.
20. Hass L., Bos F. Bending and pull-out tests on a novel screw type reinforcement for extrusion-based 3d printed concrete. In Proceedings of the Second RILEM Inter-national Conference on Concrete and Digital Fabrication. Eindhoven, Netherlands. 2020, pp. 632–645.
21. Mechtcherine V., Grafe J., Nerella V.N., Spaniol E., Hertel M., Füssel U. 3D-printed steel reinforcement for digital concrete construction – manufacture, mechanical properties and bond behaviour. Construction and Building Materials. 2018. No. 179, pp. 125–137. https://doi.org/10.1016/j.conbuildmat.2018.05.202
22. Weger D., Baier D., Straβer A., Prottung S., Kränkel T., Bachmann A., Gehlen C., Zäh M. Reinforced particle-bed printing by combination of the selective paste intrusion method with wire and arc additive manufacturing – a first feasibility study. In Proceedings of the Second RILEM International Conference on Concrete and Digital Fabrication. Eindhoven, Netherlands. 2020, pp. 978–987.
23. Katzer J., Szatkiewicz T. Properties of concrete elements with 3-D printed formworks which substitute steel reinforcement. Construction and Building Materials. 2019. No. 210, pp. 157–161. https://doi.org/10.1016/j.conbuildmat.2019.03.204
24. Bos F.P., Ahmed Z.Y., Jutinov E.R., Salet T.A.J.M. Experimental exploration of metal cable as reinforcement in 3D printed concrete. Materials. 2017. No. 10 (11). 1314. doi: 10.3390/ma10111314
25. Mechtcherine V., Michael A., Liebscher M., Schmeier T. Extrusion-based additive manufacturing with carbon reinforced concrete: concept and feasibility study. Materials. 2020. No. 132568. DOI: 10.3390/ma13112568
26. Ducoulombier N., Demont L., Chateau C., Bornert M., Caron J.-F. Additive manufacturing of anisotropic concrete: a flow-based pultrusion of continuous fibers in a cementitious matrix. Procedia Manufacturing. 2020. Vol. 47, pp. 1070–1077. https://doi.org/10.1016/j.promfg.2020.04.117
27. Lim J.H., Panda B., Pham Q.-C. Improving flexural characteristics of 3D printed geopolymer composites with in-process steel cable reinforcement. Construction and Building Materials. 2018. No. 178, pp. 32–41. https://doi.org/10.1016/j.conbuildmat.2018.05.010
28. Ma G., Li Z., Wang L., Wang F., Sanjayan J. Mechanical anisotropy of aligned fiber reinforced composite for extrusion-based 3D printing. Construction and Building Materials. 2019. No. 202, pp. 770–783. https://doi.org/10.1016/j.conbuildmat.2019.01.008
29. Ding T., Xiao J., Zou S., Zhou X. Anisotropic behavior in bending of 3D printed concrete reinforced with fibers. Composite Structure. 2020. No. 254. 112808. https://doi.org/10.1016/j.compstruct.2020.112808
30. Славчева Г.С., Артамонова О.В. Реологическое поведение дисперсных систем для строительной 3D-печати: проблема управления на основе возможностей арсенала «нано» // Нанотехнологии в строительстве: научный интернет-журнал. 2018. Т. 10 (3). С. 107–122. https:// dx.doi.org/10.15828/2075-8545-2018-10-3-107-122
30. Slavcheva G.S., Artamonova O.V. The rheological behavior of disperse systems for 3D printing in constrcution: the problem of control and possibility of «nano» tools application. Nanotekhnologii v stroitel’stve: nauchnyy internet-zhurnal. 2018. Vol. 10, No. 3, pp. 107–122. (In Russian). https:// dx.doi.org/10.15828/2075-8545-2018-10-3-107-122
31. Патент РФ 2729085 C1. Двухфазная смесь на основе цемента для композитов в технологии строительной 3D-печати / Славчева Г.С., Артамонова О.В., Бритвина Е.А., Бабенко Д.С., Ибряева А.И. Заявл. 21.10.2019. Опубл. 04.08.2020.
31. Patent RF 2729085 C1. Dvukhfaznaya smes’ na osnove tsementa dlya kompozitov v tekhnologii stroitel’noi 3D-pechati [Two-phase cement-based mixture for 3d building printable composites]. Slavcheva G.S., Artamonova O.V., Britvina E.A., Babenko D.S., Ibryaeva A. Declared 21.10.2019. Published 04.08.2020. (In Russian).
32. Патент РФ 2729086 C1. Двухфазная смесь на основе цемента для композитов в технологии строительной 3D-печати / Славчева Г.С., Артамонова О.В., Шведова М.А., Бритвина Е.А. Заявл. 21.10.2019. Опубл. 04.08.2020.
32. Patent RF 2729086 C1. Dvukhfaznaya smes’ na osnove tsementa dlya kompozitov v tekhnologii stroitel’noi 3D-pechati [Two-phase cement-based mixture for 3D building printable composites]. Slavcheva G.S., Artamonova O.V., Shvedova M.A., Britvina E.A. Declared 21.10.2019. Published 04.08.2020. (In Russian).
33. Патент РФ 2729220 C1. Двухфазная смесь на основе цемента для композитов в технологии строительной 3D-печати / Славчева Г.С., Артамонова О.В., Шведова М.А., Бритвина Е.А. Заявл. 21.10.2019. Опубл. 04.08.2020.
33. Patent RF RF2729220 C1. Dvukhfaznaya smes’ na osnove tsementa dlya kompozitov v tekhnologii stroitel’noi 3D-pechati [Two-phase cement-based mixture for 3d building printable composites]. Slavcheva G.S., Artamonova O.V., Shvedova M.A., Britvina E.A. Declared 21.10.2019. Published 04.08.2020. (In Russian).
34. Патент РФ 2729283 C1. Двухфазная смесь на основе цемента для композитов в технологии строительной 3D-печати / Славчева Г.С., Артамонова О.В., Бритвина Е.А., Бабенко Д.С., Ибряева А.И. Заявл. 21.10.2019. Опубл. 05.08.2020.
34. Patent RF 2729283 C1. Dvukhfaznaya smes’ na osnove tsementa dlya kompozitov v tekhnologii stroitel’noi 3D-pechati [Two-phase cement-based mixture for 3d building printable composites]. Slavcheva G.S., Artamonova O.V., Britvina E.A., Babenko D.S., Ibryaeva A. Declared 21.10.2019. Published 05.08.2020. (In Russian).
35. Патент РФ 2767643 C1. Наномодифицированный цементный композит для строительной 3D-печати / Артамонова О.В., Славчева Г.С., Шведова М.А., Бритвина Е.А., Бабенко Д.С. Заявл. 20.08.2021. Опубл. 18.03.2022.
35. Patent RF 2767643 C1. Nanomodifitsirovannyi tsementnyi kompozit dlya stroitel’noi 3D-pechati [Nano-modified cement composite for 3D build printing]. Artamonova O.V., Slavcheva G.S., Shvedova M.A., Britvina E.A., Babenko D.S. Declared 20.082021. Published 18.03.2022. (In Russian).

For citation: Slavcheva G.S., Artamonova O.V. Development of principles for the creation of reinforced composites for 3D additive construction technologies. Stroitel’nye Materialy [Construction Materials]. 2022. No. 12, pp. 52–58. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-809-12-52-58

The Effect of Carbon Black and Silica Fume on the Properties of Self-Compacting Concrete

Number of journal: 12-2022
Autors:

Karpova E.A.,
Yakovlev G.I.,
Averkiev I.K.,
Volkov M.A.,
Kuzmina N.V.,
Knyazeva S.A.

DOI: https://doi.org/10.31659/0585-430X-2022-809-12-45-51
УДК: 666.965:541.182

 

AbstractAbout AuthorsReferences
In the course of the study, experiments were carried out to modify the self-compacting concrete (SCC)-mixture with silica fume in combination with carbon black dispersion. The purpose of the work was to study the technological parameters of the modified mixtures and the physical and mechanical properties of the mixtures in the hardened state. Based on the evaluation of the technological parameters of the studied SCC mixtures, the optimal composition containing 0.25% carbon black and 5% microsilica by weight of cement was established. The following parameters were set for this mixture: normal cone flow equal to 680 mm; t500=3.1 s; solution separation 11.46%; visual stability index of the mixture – VSI0; lack of water separation; retention of properties for 120 minutes from the start of mixing the mixture (the flow of the cone changed from 680 mm to 510 mm). For a sample modified with microsilica and technical carbon in the amount of 5% and 0.25% of the cement mass, respectively, an increase in compressive strength by 17.1% on 28 days of hardening was also found compared to the control sample, due to the compaction of the concrete structure due to the introduction of fine particles and the manifestation of the pozzolan effect of microsilica.
Е.А. КARPOVA1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
G.I. YAKOVLEV1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
I.К. AVERKIEV2, PhD student (This email address is being protected from spambots. You need JavaScript enabled to view it.);
М.А. VOLKOV1, PhD student (This email address is being protected from spambots. You need JavaScript enabled to view it.),
N.V. KUZMINA1, PhD student (This email address is being protected from spambots. You need JavaScript enabled to view it.),
S.A. KNYAZEVA1, master (postgraduate student) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Kalashnikov Izhevsk State Technical University (7, Studencheskaya Street, Izhevsk, 426000, Russian Federation)
2 Udmurt Federal Research Center (132, Kirova Street, Izhevsk, 426000, Russian Federation)

1. Okamura Hajime, Ouchi Masahiro. Self-compacting concrete. Journal of advanced concrete technology. 2003. No. 1 (1), pp. 5–15. https://doi.org/10.1002/pse.2260010406
2. Фаликман В.Р., Денискин В.В., Калашников О.О., Сорокин В.Ю. Отечественный опыт производства и применения самоуплотняющегося бетона // Национальная ассоциация ученых. 2015. № 2–3 (7). С. 68–73.
2. Falikman V.R., Deniskin V.V., Kalashnikov O.O., Sorokin V.Yu. Domestic experience in the production and use of self-compacting concrete. Nacional’naya associaciya uchenyh. 2015. No. 2–3 (7), pp. 68–73. (In Russian).
3. Комаринский М.В., Смирнов С.И., Бурцева Д.Е. Литые и самоуплотняющиеся бетонные смеси // Строительство уникальных зданий и сооружений. 2015. № 11 (38). С. 106–118.
3. Komarinskiy M.V., Smirnov S.I., Burceva D.E. Cast and self-compacting concrete mixes. Stroitel’stvo unikal’nyh zdanij i sooruzhenij. 2015. No. 11 (38), pp. 106–118. (In Russian).
4. Adeyemi Adesina, Paul Awoyera. Overview of trends in the application of waste materials in self-compacting concrete production. SN Applied Sciences. 2019. No. 1, p. 962.
5. Nikita Gupta, Rafat Siddique, Rafik Belarbi. Sustainable and greener self-compacting concrete incorporating industrial by-products: a review. Journal of Cleaner Production. 2021. No. 284.124803. https://doi.org/10.1016/j.jclepro.2020.124803
6. Ha Thanh Le, Matthias Müller, Karsten Siewert, Horst-Michael Ludwig. The mix design for self-compacting high performance concrete containing various mineral admixtures. Materials & Design. 2015. Vol. 72, pp. 51–62. https://doi.org/10.1016/j.matdes.2015.01.006
7. Harvinder Singh, Rafat Siddique. Utilization of crushed recycled glass and metakaolin for development of self-compacting concrete. Construction and Building Materials. 2019. Vol. 348. 128659. https://doi.org/10.1016/j.conbuildmat.2022.128659
8. Abhishek Jain, Sandeep Chaudhary, Rajesh Gupta. Mechanical and microstructural characterization of fly ash blended self-compacting concrete containing granite waste. Construction and Building Materials. Part A. 2022. Vol. 314. 125480. https://doi.org/10.1016/j.conbuildmat.2021.125480
9. Abhishek P., Ramachandra P., Niranjan P.S. Use of recycled concrete aggregate and granulated blast furnace slag in self-compacting concrete. Materials Today Proceedings. 2021. No. 42 (2), pp. 479–486. https://doi.org/10.1016/j.matpr.2020.10.239
10. Alyhya W.S.S., Alameer S.A.A., Mahmmod L.M.R. Experimental investigation on self-compacting concrete with waste carbon black. International Journal of Engineering & Technology. 2018. No. 7 (4.20), pp. 414–419. DOI:10.14419/ijet.v7i4.20.26233
11. Wajde Shober Saheb Alyhya, Sara Alaa Abed Alameer, Laith Mohammed Ridha Mahmmod. Experimental investigation on self-compacting concrete with waste car-bon black. International Journal of Enginee-ring&Technology. 2018. No. 7 (4.20), pp. 414–419.
12. Жданок С.А., Полонина Е.Н., Леонович С.Н., Хрусталев Б.М., Коледа Е.А. Влияние пластифицирующей добавки, содержащей углеродный наноматериал, на свойства самоуплотняющегося бетона // Вестник гражданских инженеров. 2018. № 6. С. 76–85.
12. Zhdanok S.A., Polonina E.N., Leonovich S.N., Hrustalev B.M., Koleda E.A. Effect of plasticizing additive containing carbon nanomaterial on the properties of self-compacting concrete. Vestnik grazhdanskih inzhenerov. 2018. No. 6, pp. 76–85. (In Russian).
13. Javier Puentes, Gonzalo Barluenga, Irene Palomar. Effects of nano-components on early age cracking of self-compacting concretes. Construction and Building Materials. 2014. Vol. 73, pp. 89–96. https://doi.org/10.1016/j.conbuildmat.2014.09.061
14. Mansour Ghalehnovi, Elyas Asadi Shamsabadi, Ali Khodabakhshian, Farbod Sourmeh, Jorge de Brito. Self-compacting architectural concrete production using red mud. Construction and Building Materials. 2019. Vol. 226, pp. 418–427. DOI: 10.1016/j.conbuildmat.2019.07.248
15. Соловьев А.К., Соловьев К.А., Стекольников Н.В. Самоуплотняющийся бетон в архитектурных конструкциях // Architecture and Modern Information Technologies. 2018. № 2 (43). С. 171–184.
15. Solov’ev A.K., Solov’ev K.A., Stekol’nikov N.V. Self-compacting concrete in architectural structures. Architecture and Modern Information Technologies. 2018. No. 2 (43), pp. 171–184.
16. López A., Tobes J.M., Giaccio G., Zerbino R. Advantages of mortar-based de-sign for coloured self-compacting concrete. Cement & Concrete Composites. 2009. Vol. 31 (10), pp. 754–761. https://doi.org/10.1016/j.cemconcomp.2009.07.005
17. Фаликман В.Р., Соболев К.Г. Простор за пределом, или Как нанотехнологии могут изменить мир бетона. Ч. 1 // Нанотехнологии в строительстве: научный интернет-журнал. 2010. № 2 (6). С. 17–31.
17. Falikman V.R., Sobolev K.G. Space beyond the limit, or how nanotechnology can change the world of concrete. Part 1. Nanotekhnologii v stroitel’stve: nauchniy internet-zhurnal. 2010. No. 2 (6), pp. 17–31. (In Russian).
18. TrezzaM.A. Hydration study of ordinary Portland cement in the presence of zinc ions. Materials Research. 2007. No. 10 (4), pp. 331–334. https://doi.org/10.1590/S1516-14392007000400002
19. Shi T., Gao Y., Corr D.J., Shah S.P. FTIR study on early-age hydration of carbon nanotubes-modified cement-based materials. Advances in Cement Research. 2019. Vol. 31 (8), pp. 353–361. DOI: 10.1680/jadcr.16.00167
20. Parveen S., Rana S., Fanqueiro R., Paiva M.C. Microstructure and mechanical properties of carbon nanotube reinforced cementitious composites developed using a novel dispersion technique. Cement and Concrete Research. 2015. No. 73, pp. 215–227. https://doi.org/10.1016/j.cemconres.2015.03.006

For citation: Karpova E.A., Yakovlev G.I., Averkiev I.K., Volkov M.A., Kuzmina N.V., Knyazeva S.A. The effect of carbon black and silica fume on the properties of self-compacting concrete. Stroitel’nye Materialy [Construction Materials]. 2022. No. 12, pp. 45–51. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-809-12-45-51

Structure and Properties of Nanodispersed Silica Synthesized by the Sol-Gel Method

Number of journal: 12-2022
Autors:

Nelubova V.V.,
Kuzmin E.O.,
Strokova V.V.

DOI: https://doi.org/10.31659/0585-430X-2022-809-12-38-44
УДК: 666.965:541.182

 

AbstractAbout AuthorsReferences
It is substantiated that among the whole variety of pozzolanic additives of various origin and composition, one of the most effective is nanodispersed silica. This is due to its high activity and the possibility of using it in small dosages. At the same time, the simplest method of its teaching in terms of instrumentation is sol-gel synthesis. The effectiveness of the author’s modernized production of aqueous solutions of silica nanoparticles has been proven. Structural and topological parameters (shape and size of individual particles and their agglomerates) of nanodispersed silica synthesized by the modernized sol-gel method are shown. Comparison of industrially produced silica with synthesized was made. Differences in the structure of powders obtained by various methods are substantiated, taking into account the type of surfactant. The physicochemical features of nanodispersed silica synthesized using various surfactants are shown. The principal possibility of obtaining structurally stable nanodispersed silica with high dispersity, ultra-small sizes of individual particles and their regular shape during the formation of a powdery substance with high activity is shown. It is substantiated that the selection of stabilizers and additional components of the raw mixture makes it possible to control the synthesis of a substance with the formation of the required structural parameters (morphology and particle size) and physicochemical properties.
V.V. NELUBOVA, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
E.O. KUZMIN, Engineer, postgraduate student (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.V. STROKOVA, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Belgorod State Technological University named after V.G. Shukhov (46, Kostyukova Street, Belgorod, 308012, Russian Federation)

1. Rumyantsev E.V., Bayburin A.Kh., Solov’ev V.G., Ahmed’yanov R.M., Bessonov S.V. Technological parameters of the quality of self-compacting fine-grained fresh concrete for winter concreting. Stroitel’nye Materialy [Construction Materials]. 2021. No. 5, pp. 4–14. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-791-5-4-14
2. Fedosov S.V., Ibragimov A.M., Red’kina A.S., Nesterov S.A. Determination of technological parameters of mechanomagnetic activation of water systems with a plasticizing additive. Stroitel’nye Materialy [Construction Materials]. 2010. No. 3, pp. 49–51. (In Russian).
3. Politaeva A.I., Eliseeva N.I., Jakovlev G.I., Pervushin G.N., Gavranek I., Mihajlova O.Ju. The role of microsilica in the structure formation of the cement matrix and the formation of efflorescence in vibropressed products. Stroitel’nye Materialy [Construction Materials]. 2015. No. 2, pp. 49–55. (In Russian).
4. Panina A.A., Kornilov A.V., Lygina T.Z., Permjakov E.N. Activated dispersed mineral fillers for Portland cement. Stroitel’nye Materialy [Construction Materials]. 2013. No. 12, pp. 74–75. (In Russian).
5. Stepanova V.F., Rozental’ N.K., Chekhnii G.V., Baev S.M. Determination of the corrosion resistance of shotcrete as a protective coating for concrete and reinforced concrete structures. Stroitel’nye Materialy [Construction Materials]. 2018. No. 8, pp. 69–72. (In Russian).
6. Rusina V.V., Korda E.V., Lvova S.A. Corrosion resistance of fine-grained concretes based on technogenic raw materials. Stroitel’nye Materialy [Construction Materials]. 2011. No. 8, pp. 29–31. (In Russian).
7. Chaika T.V. Effect of tungsten carbide nanopowder agglomerates on the properties of cement. Vestnik of the Belgorod State Technological University named after V.G. Shukhova. 2021. No. 7, pp. 8–16. (In Russian).
8. Netsvet D.D., Nelyubova V.V., Strokova V.V. Coposite binder with mineral additives for non-autoclaved foam concrete. Vestnik of the Belgorod State Technological University named after V.G. Shukhova. 2019. No. 4, pp. 122–131. (In Russian).
9. Bondarenko D.O. Selection and analysis of raw materials for the protective and decorative layer of a composite material. Vestnik of the Belgorod State Technological University named after V.G. Shukhova. 2021. No. 12, pp. 27–33. (In Russian).
10. Urkhanova L.A., Dorzhieva E.V., Gonchikova E.V., Yakovlev A.P. Synthesis of a colloid additive based on aluminosilicate rocks for cement stone modification. Stroitel’nye Materialy [Construction Materials]. 2022. No. 1–2, pp. 50–56. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-799-1-2-50-56
11. Urkhanova L.A., Rozina V.E. High-strength concrete using fly ash and microsilica. Vestnik of the Irkutsk State Technical University. 2011. No. 10 (57), pp. 97–100. (In Russian).
12. Potapov V.V., Gorev D.S. Comparative results of increasing the strength of concrete by introducing nanosilica and microsilica. Sovremennye naukoemkie tekhnologii. 2018. No. 9, pp. 98–102. (In Russian).
13. Singh M.R., Lipson R.H. Transport and optical properties of nanomaterials. Proc. of the Intern. Conf. Ser: AIP Conf. Proc./Mater. Phys. and Appl. Ser. 2009. P. 1147.
14. Potapov V.V. Application of membrane methods for purification of hydrothermal solutions from silica. Prirodoobustroistvo. 2008. No. 3, pp. 49–58. (In Russian).
15. Bardakhanov S.P., Korchagin A.I., Kuksanov N.K. Obtaining nanopowders by evaporation of initial substances on an electron accelerator at atmospheric pressure. Doklady Akademii nauk. 2006. Vol. 409. No. 3, pp. 320–323. (In Russian).
16. Ivanchik N.N. Evaluation of the use of silicon waste processing products as ultrafine activating fluxes for arc welding. Vestnik of the Irkutsk State Technical University. 2016. No. 12 (119), pp. 165–172. (In Russian).
17. Boguslavsky L.Z. Electric explosion of conductors for obtaining nanosized carbides and deposition of functional nanocoatings. Elektronnaya obrabotka materialov. 2019. Vol. 55. No. 5, pp. 10–23. (In Russian).
18. Potapov V.V. and others. Nanosilica: increasing the strength of concrete. Nanoindustriya. 2013. No. 3, pp. 40–49. (In Russian).
19. Patent RF 2701911. Sposob polucheniya gidrozolya monodispersnogo nanokremnezema dlya izgotovleniya betona [Method for producing monodisperse nanosilica hydrosol for concrete production]. Baskakov P.S., Strokova V.V., Kuzmin E.O. Declared 20.03.2019. Published 02.10.2019. Bulletin No. 28. (In Russian).
20. Shangina N.N. On the effect of surface properties of components on the rheological properties of structured disperse systems. Resursosberegayushchie tekhnologii i upravlenie kachestvom v proizvodstve stroitel’nykh materialov, izdelii i konstruktsii. 2004, pp. 24–29. (In Russian).

For citation: Nelubova V.V., Kuzmin E.O., Strokova V.V. Structure and properties of nanodispersed silica synthesized by the sol-gel method. Stroitel’nye Materialy [Construction Materials]. 2022. No. 12, pp. 38–44. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-809-12-38-44

Thermal Conductivity of The Gravel Pavement Layer

Number of journal: 12-2022
Autors:

Galkin A.F.,
Pankov V.Yu.,
Zhirkova E.O.

DOI: https://doi.org/10.31659/0585-430X-2022-809-12-33-37
УДК: 625.7

 

AbstractAbout AuthorsReferences
Among the important parameters determining the technical solutions in design of roads in the permafrost area is the thermal resistance of the structural layers of road pavement and the road foundation. The purpose of the present research was to quantify the effect of the degree to which pores in the in the gravel bedding of the road structure are filled with ice or sand on the value of the thermal conductivity coefficient of the ice-gravel and sand-gravel mixture. For the analysis, the classical formula for calculating the thermal conductivity coefficient (K. Lichtenecker’s formula) of a three-component mixture was used. Cases of filling the pores in the gravel bedding with ice and sand of different humidity were considered. It is shown that by selecting a particular filler of the pores of the gravel bedding, it is possible to significantly alter the thermal resistance of the structural layer of the road foundation or structure. This, in turn, allows to regulate the temperature regime of the roads without resorting to the creation of new structural layers. The results of numerical calculations are presented in the form of 2D and 3D graphs which allows to visually assess the effect of the material and the degree of filling of the pores on the thermal conductivity coefficient of the mixture. The graph allows to quickly assess the possible variation in the thermal conductivity coefficient of the structural layer and to select a correct, reasonable technical solution during the design. For example, to justify the need for the use of a special thermal protection layer in the pavement.
A.F. GALKIN1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
V.Yu. PANKOV2, Candidate of Sciences (Geology and Mineralogy) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
Е.О. ZHIRKOVA2, Graduate Student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Melnikov Permafrost Institute Siberian Branch Russian Academy of Sciences (36, Merzlotnaya Street, Yakutsk, 677010, Russian Federation)
2 North-Eastern Federal University (58, Belinskogo Street, Yakutsk, 677027, Russian Federation)

1. Shats M.M. The current state of the city infrastructure of Yakutsk and ways to improve its reliability. Georisk. 2011. No. 2, pp. 40–46. (In Russian).
2. Serikov S.I., Shats M.M. Frost-breaking cracking of soils and its role in the state of the surface and infrastructure of Yakutsk. Vestnik of the Perm National Research Polytechnic University. Applied Ecology. Urbanistics. 2018. No. 1, pp. 56–69. (In Russian). DOI: 10.15593/2409-5125/2018.01.04
3. Shesternev D.M., Litovko A.V. Comprehensive studies on the detection of deformations on the Amur highway. Proceedings of the Fourteenth All-Russian Scientific and Practical Conference and Exhibition of Research Organizations “Prospects for the Development of Engineering Research in Construction in the Russian Federation”. Moscow. 2018, pp. 309–314. (In Russian).
4. Zheleznyak M.N., Shesternev D.M., Litovko A.V. Problems of stability of highways in the cryolithozone. Proceedings of the Fourteenth All-Russian Scientific and Practical Conference and Exhibition of Research Organizations “Prospects for the Development of Engineering Research in Construction in the Russian Federation”. Moscow. 2018, pp. 223–227. (In Russian).
5. Kondratiev V.G., Kondratiev S.V. How to protect the Federal highway “Amur” Chita – Khabarovsk from dangerous geocryological engineering processes and phenomena. Inzhenernaya geologiya. 2013. No. 5, pp. 40–47. (In Russian).
6. Galkin А.F., Kurta I.V., Pankov V.Yu. Calculation of thermal conductivity coefficient of thermal insulation mixtures. IOP Conference Series: Materials Science and Engineering. VIII International Scientific Conference Transport of Siberia. 2020. Vol. 918. Novosibirsk, Russia. DOI: 10.1088/1757-899X/918/1/012009
7. Galkin A.F., Zheleznyak M.N., Zhirkov A.F. Increasing the thermal stability of the embankment in permafrost regions. Stroitel’nye Materialy [Construction Materials]. 2021. No. 7, pp. 26–31. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-793-7-26-31
8. Bessonov I. V., Zhukov A.D., Bobrova E.Yu., Govryakov I.S., Gorbunova E.A. Analysis of design solutions depending on the type of insulating materials in road surfaces in permafrost soils. Transportnoe stroitel’stvo. 2022. No. 1, pp. 14–17. (In Russian).
9. Galkin A.F., Kurta I.V., Pankov V.Yu., Potapov A.V. Evaluation of the effectiveness of the use of layered thermal protection structures in the construction of roads in the cryolithozone. Energobezopasnost’ i energosberezhenie. 2020. No. 4, pp. 24–28. (In Russian). DOI: 10.18635/2071-2219-2020-4-24-28
10. Dulnev G.N., Zarichnyak Yu.P. Teploprovodnost’ smesey i kompozicionnyh materialov [Thermal conductivity of mixtures and composite materials]. Leningrad: Energiya. 1974. 264 p.
11. Sobol V.R., Homan P.N., Yanut V.I. Numerical approximation of the thermal conductivity of green moss with varying its density. Proceedings of the twentieth scientific and technical conference “Security Systems – 2011”. Moscow: Academy of GPS of the Ministry of Emergency Situations of Russia. 2011, pp. 18–20. (In Russian). http://ipb.mos.ru/sb/2011/section-1
12. Lichtenecker K. Zur Widerstands berech ung misch kristall freier Legier ungen. “Physika lische Zeitschrift”, Bd. 30, 1929, No. 22, SS. 805-810 mit.Abb. (Cited in [10]).
13. Tavangar R., Molina J.M., Weber L. Assessing predictive schemes for thermal conductivity against diamond-reinforced silver matrix composites at intermediate phase contras. Scripta Materialia. 2007. Vol. 56. Iss. 5, pp. 357–360.
14. Dulnev G.I. Thermal conductivity of wet porous materials. ITZH. 1989. Vol. 56. No. 2, pp. 261–291. (In Russian).

For citation: Galkin A.F., Pankov V.Yu., Zhirkova E.O. Coefficient of thermal conductivity of the gravel pavement layer. Stroitel’nye Materialy [Construction Materials]. 2022. No. 12, pp. 33–37. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-809-12-33-37

Rheology of Soil-Concrete Mixtures Based on a Polymer-Organic Binder with a Mineral Modifier

Number of journal: 12-2022
Autors:

Sokolova Yu.V.,
Nelubova V.V.,
Ayzenshtadt A.M.,
Strokova V.V.

DOI: https://doi.org/10.31659/0585-430X-2022-809-12-26-32
УДК: 631.327

 

AbstractAbout AuthorsReferences
The development of the Arctic zone, characterized by unfavorable natural-climatic and engineering-geological conditions, which significantly complicate the development of this territory, in particular the modernization of transport infrastructure, is among the priorities of the state policy of Russia. One of the effective ways to construct a roadbed is to use base soils, reinforced or stabilized with binders and active additives, with the formation of a soil-concrete structure with specified physical and mechanical characteristics. Preliminary executed works substantiate the possibility of using a polymer-organic binder with a mineral modifier (organo-mineral stabilizer) as a complex hardener for clay soils. The studies were carried out on a model soil system obtained by mixing sand and saponite-containing material. The model soil system corresponded to the properties and composition of sandy loam. A complex consisting of glyoxal, carbide sludge and bark was used as an organo-mineral stabilizer. A hypothesis has been put forward about the mechanism of structure formation of the developed multicomponent soil concrete system based on a model soil, consisting in the physicochemical interaction of individual components of the system with a gradual transition from a plastic to a solid state and the formation of a periodic colloidal structure resistant to external temperature and humidity influences and having the rheological characteristics required in the initial period of manufacture. In this regard, the purpose of this work was to evaluate the structural and mechanical features of model systems with an organo-mineral stabilizer, namely, rheological parameters as informative and sensitive indicators of structural transformations of a colloidal system depending on its composition, as well as physical and mechanical properties. Rheotechnological parameters were determined using a rotary viscometer. To establish patterns of structure formation, the Herschel-Bulkley model was chosen as a rheological model. The results obtained showed that all the studied dispersed systems are characterized by a thixotropic flow type and have intermediate structural and mechanical properties close to Bingham solid systems. The regularities of the influence of individual components of the soil-concrete mixture on the rheological properties of the model clay soil have been established. It has been proven that a polymer-organic binder based on mechanically activated bark and glyoxal has a dominant effect on the processes of structure formation. At the same time, an increase in the content of an aqueous dispersion medium has practically no effect on the stability of these systems in the initial period: the structural strength of the coagulation contacts formed as a result of the physicochemical interaction of the active components of the system is ensured. It is shown that the strengthening of the model clay soil with an organo-mineral complex provides a two-fold decrease in the optimal moisture content of the system with the formation of soil concrete with a high margin of safety. Thus, as a result of a complex of studies, theoretical ideas about the structure formation of complex soil-concrete systems have been supplemented.
Yu.V. SOKOLOVA1, Engineer, Senior Lecturer (This email address is being protected from spambots. You need JavaScript enabled to view it.);
V.V. NELUBOVA2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.M. AYZENSHTADT1, Doctor of Sciences (Chemistry) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
V.V. STROKOVA2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Northern (Arctic) Federal University named after M.V. Lomonosov (17, Severnaya Dvina Embankment, Arkhangelsk, 163002, Russian Federation)
2 Belgorod State Technological University named after V.G. Shukhov (46, Kostukov Street, Belgorod, 308012, Russian Federation)

1. Ivashchenko Yu.G., Mameshov R.T., Eminov R.N., Magomedov Sh.M. Structuration of building composite materials based on local raw materials by modifying polyfunctional assignment additives. Tekhnicheskoe regulirovanie v transportnom stroitel’stve. 2019. No. 6 (39), pp. 306–311. (In Russian).
2. Kosenko S.A., Kotova I.A., Akimov S.S. Feasibility studies of protective sub-ballast soil-cement layers at heavy-train traffic. Vestnik of the Tomsk State University of Architecture and Civil Engineering. 2021. Vol. 23. No. 1, pp. 161–174. (In Russian). DOI: 10.31675/1607-1859-2021-23-1-161-174
3. Pichugin A.P., Chesnokov R.A., Tamarova V.S., Pivkina A.D. Strengthening of road soil bases with mineral binders with dispersed additives. Dal’nii Vostok: problemy razvitiya arkhitekturno-stroitel’nogo kompleksa. 2021. Vol. 1. No. 1, pp. 178–183. (In Russian).
4. Romanenko I.I., Petrovnina I.N., Pint E.M., Sharipkov A.D. Features of the technology of building a road base. Dnevnik nauki. 2020. No. 2 (38), pp. 12. (In Russian).
5. Dolev A.A., Alekseev V.A., Bazhenova O.Yu. Selection of concrete formulations for the creation of soil-cement piles in difficult engineering and geological conditions. Stroitel’stvo i rekonstruktsiya. 2022. No. 1 (99), pp. 110–119. (In Russian). DOI: 10.33979/2073-7416-2022-99-1-110-119
6. Sokolova Yu.V., Ayzenshtadt A.M. Evaluation of dispersion interaction in aluminum silicate system under the influence of organic additive. Fizika i khimiya obrabotki materialov. 2017. No. 4, pp. 83–88. (In Russian).
7. Sokolova Yu.V., Aizenshtadt A.M., Korolev E.V., Chibisov A.A. Evaluation of the influence of prescription factors on the structure formation of polymer-organic binder. Stroitel’nye Materialy [Construction Materials]. 2020. No. 9, pp. 27–36. (In Russian). DOI: 10.31659/0585-430X-2020-784-9-27-36
8. Inzhenernaya geologiya Rossii. T. 1. Grunty Rossii. Pod. red. V.T. Trofimova, E.A. Voznesenskogo, V.A. Koroleva [Engineering geology of Russia. Vol. 1. Soils of Russia. Edited by V.T. Trofimov, E.A. Voznesenskii, V.A. Korolev]. Moscow: KDU. 2011. 672 p.
9. Nelyubova V.V., Usikov S.A., Strokova V.V., Netsvet D.D. Composition and properties of self-compacting concrete using a complex of modifiers. Stroitel’nye Materialy [Construction Materials]. 2021. No. 12, pp. 48–54. (In Russian). DOI: 10.31659/0585-430X-2021-798-12-48-54
10. Ni H., Huang Y. Rheological study on influence of mineral composition on viscoelastic properties of clay. Applied Clay Science. 2020. Vol. 187, pp. 105493. DOI: 10.1016/j.clay.2020.105493
11. Morariu S., Teodorescu M., Bercea M. Rheological investigation of polymer/clay dispersions as potential drilling fluids. Journal of Petroleum Science and Engineering. 2022. Vol. 210, pp. 110015. DOI: https://doi.org/10.1016/j.petrol.2021.110015
12. Lin Y., Qin H., Guo J., Chen J. Rheology of bentonite dispersions: Role of ionic strength and solid content. Applied Clay Science. 2021. Vol. 214, pp. 106275. DOI: https://doi.org/10.1016/j.clay.2021.106275
13. Shakeel A., Kirichek A., Chassagne C. Rheology and yielding transitions in mixed kaolinite/bentonite suspensions. Applied Clay Science. 2021. Vol. 211. pp. 106206. DOI: https://doi.org/10.1016/j.clay.2021.106206
14. Tsugawa J.K., de Oliveira Romano R.C., Pileggi R.G., Boscov M.E.G. Review: Rheology concepts applied to geotechnical engineering. Applied Rheology. 2019. No. 29(1), pp. 202–221. DOI: https://doi.org/10.1515/arh-2019-0018
15. Deng S., Kang C., Bayat A., Barr K., Trovato C. Rheological properties of clay-based drilling fluids and evaluation of their hole-cleaning performances in horizontal directional drilling. Journal of Pipeline Systems Engineering and Practice. 2020. No. 11 (3), pp. 04020031. DOI: 10.1061/(ASCE)PS.1949-1204.0000475

For citation: Sokolova Yu.V., Nelubova V.V., Ayzenshtadt A.M., Strokova V.V. Rheology of soil-concrete mixtures based on a polymer-organic binder with a mineral modifier. Stroitel’nye Materialy [Construction Materials]. 2022. No. 12, pp. 26–32. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-809-12-26-32

Ettringite Binder for Strengthening of Road Bases

Number of journal: 12-2022
Autors:

Voronin K.M.,
Khamidulina D.D.,
Nekrasova S.A.

DOI: https://doi.org/10.31659/0585-430X-2022-809-12-22-25
УДК: 625.7/8

 

AbstractAbout AuthorsReferences
Regions with a developed metallurgical industry, whose waste in the form of slag dumps are a source of environmental pollution. One of the directions of utilization of slag dumps is the use of slag for road paving. In the article the issues of application of low-maroon binder on the basis of steel-smelting slag for strengthening the bases of highways are considered. Chemically stabilized Al2(SO4)3.18H2O was used as a β-C2S activator to create reactive minerals in the slag. Сalcium hydrosulfoaluminate formed in the hardening system acts as a crystal seed for crystallization of calcium hydrosilicates. The effect of the amount of activator-additive Al2(SO4)3.18H2O on the strength of slag binder-based samples was studied. As a result of the study conducted the optimum dosage of activator making it possible to obtain the highest physical and mechanical characteristics of samples based on slag-mineral mixtures has been established.
K.M. VORONIN, Candidate of Sciences (Engineering), (This email address is being protected from spambots. You need JavaScript enabled to view it.),
D.D. KHAMIDULINA, Candidate of Sciences (Engineering), (This email address is being protected from spambots. You need JavaScript enabled to view it.),
S.A. NEKRASOVA, Candidate of Sciences (Engineering), (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Magnitogorsk State Technical University named after G.I. Nosov (38, Lenin Avenue, Magnitogorsk, 455000, Russian Federation)

1. Voronin K.M., Hamidulina D.D., Nekrasov S.A., Trubkin I.S. The vibropressed paving elements with use of steel-smelting slags. Stroitel’nye Materialy [Construction Materials]. 2017. No. 12, pp. 71–73. (In Russian).
2. Mayorova T.V., Ponomareva O.S. Technique of assessment of economic assessment of efficiency of ecological management of the enterprises of the metallurgical industryю Vestnik MSU. 2015. No. 4, pp. 112–116. (In Russian).
3. Cherchintsev V.D., Volkova E.A., Serova A.A., Romanova E.Yu. Assessment of an ecological condition of the Magnitogorsk reservoir and dynamics of change of key indicators of his pollution. Vestnik of Magnitogorsk State Technical University. 2014. No. 3, pp. 63–66. (In Russian).
4. Oreshkin D.V. Environmental problems of integrated subsoil development at large-scale utilization technogenic mineral resources and waste in production of construction materials. Stroitel’nye Materialy [Construction Materials]. 2017. No. 8, pp. 55–63. (In Russian).
5. Yushkov B.S., Kalinina E.V., Glushankova I.S. Assessment of ecological danger of construction materials on the basis of domain metallurgical slags Ekologiya i promyshlennost’ Rossii. 2010. No. 8, pp. 38–40. (In Russian).
6. Hudovekova E.A., Garkavi M.S. Formation of nanosystems during slag-alkaline binder hydration. Stroitel’nye Materialy [Construction Materials]. 2015. No. 2, pp. 10–14. (In Russian).
7. Kolesnikov A.S., Serikbayev B.E., Zolkin A.L. etc. Processing of dump slag of nonferrous metallurgy for the purpose of his complex utilization as secondary mineral raw materials. Novye ogneupory. 2021. No. 8, pp. 3–8. (In Russian).
8. Levkovich T.I., Mashchenko T.V., Mevlidinov Z.A., Sinyavsky R.S. About utilization of slags and release of busy urban areas of industrial zones with use of slag in road construction. Biosfernaya sovmestimost’: chelovek, region, tekhnologii. 2017. No. 4 (20), pp. 113–122. (In Russian).
9. Bezruk V.M. Ukreplenie gruntov v dorozhnom i aerodromnom stroitel’stve [Strengthening of soil in road and airfield construction] Moscow: Transport. 1971. 246 p.
10. Zubova O.V., Siletskii V.V., Kukanov S.Yu. etc. Strengthening of foundations of forest roads use of mixes of Ils of washing waters with organic and mineral knitting. Current problems of development of a forest complex. Materials XVI of the International scientific and technical conference. 2019, pp. 147–149. (In Russian).
11. Bezruk V.M. On the use of complexly fortified soils. Avtomobil’nyye dorogi. 1991. No. 4, pp. 11–12. (In Russian).
12. Pimenov A.T., Barakhtenova L.A., Dyakova K.S. Reasons of deformation of foundations of highways and ways of their elimination. The prospects of development of technologies of processing and the equipment in mechanical engineering. The collection of scientific articles of the 6th All-Russian scientific and technical conference with the international participation. Kursk. 2021, pp. 175–179. (In Russian).
13. Ignatova O.A., Dyatchina A.A. Improving the quality of road foundations. Modern automotive materials and technologies (SAMIT – 2020). Collection of articles of the XII International Scientific and Technical Conference dedicated to the 25th anniversary of the Department of Technology of Materials and Transport. Kursk. 2020, pp. 129–134. (In Russian).
14. Usachev S.M., Zagorodnykh K.S. Production of mineral binders based on blast-furnace granulated slags. Veles. 2018. No. 2–2 (56), pp. 45–50. (In Russian).
15. Kopzhasarov B.T., Kopzhasarova G.T., Zaripov Z.M., Serikbaev B.A. Research of the optimal composition of cellular concrete binders based on activated slag and lime Nauchnye trudy YuKGU im. M. Auezova. 2017. No. 3 (42), pp. 52–54. (In Russian).
16. Avtomobil’nye dorogi. Odezhdy iz mestnykh materialov [Highways. Clothing from local materials. Edition 3. Ed. by K.A. Slavutsky]. Moscow: Transport. 1987. 225 p.

For citation: Voronin K.M., Khamidulina D.D., Nekrasova S.A. Ettringite binder for strengthening of road bases. Stroitel’nye Materialy [Construction Materials]. 2022. No. 12, pp. 22–25. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-809-12-22-25

Study of the Processes of Structure Formation of Composite Cement Stone For Soil Strengthening Name

Number of journal: 12-2022
Autors:

Bondarenko S.N.,
Markova I.Yu.,
Yakovlev E.A.,
Lebedev M.S.,
Potapov D.Yu.

DOI: https://doi.org/10.31659/0585-430X-2022-809-12-15-21
УДК: 691.33

 

AbstractAbout AuthorsReferences
In road construction, one of the progressive design solutions that increase the durability of road objects is the strengthening of soils for both various structural layers of the pavement and the underlying layer – the roadbed. Priority materials for soil strengthening are binding materials based on Portland cement in combination with additives – stabilizers. Among the variety of stabilizers, additives containing polymers in their composition are of interest, allowing not only to improve the water-physical properties of soil systems, but also to positively affect the strength of the final material. One of these additives is a polymer-mineral additive. This work is devoted to the study of the effect of additives on the structure formation of cement stone. The physicomechanical properties of composite cement were evaluated depending on the method of introduction of the additive and the time of its preparation. The features of the formation of the cement stone structure when using a polymer-mineral additive in the composition of a composite binder are studied. Based on the conducted studies, the mechanism of influence of the additive used has been established, consisting in the involvement of the main components of the polymer-mineral additive (wollastonite, amorphous silica) in the processes of hydration and hardening of the binder due to joint milling. This makes it possible to significantly improve the physical and mechanical characteristics.
S.N. BONDARENKO, senior lecturer (This email address is being protected from spambots. You need JavaScript enabled to view it. ),
I.Yu. MARKOVA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
E.A. YAKOVLEV (This email address is being protected from spambots. You need JavaScript enabled to view it. ), Candidate of Sciences (Engineering),
M.S. LEBEDEV (This email address is being protected from spambots. You need JavaScript enabled to view it.) Candidate of Sciences (Engineering),
D.Yu. POTAPOV, Student

Belgorod State Technological University named after V.G. Shukhov (46, Kostyukov Street, Belgorod, 308012, Russian Federation)

1. Transport strategy of the Russian Federation for the period up to 2030 with a forecast for the period up to 2035. Approved by the Decree of the Government of the Russian Federation dated November 27, 2021. No. 3363-p. 285 p. (In Russian).
2. Igosheva L.A., Grishina A.S. Review of the basic methods of the ground improvement. Vestnik Permskogo nacional’nogo issledovatel’skogo politekhnicheskogo universiteta. Stroitel’stvo i arhitektura. 2016. Vol. 7. No. 2, pp. 5–21. (In Russian). DOI: 10.15593/2224-9826/2016.2.01
3. Abramova T.T., Bosov A.I., Valieva K.E. Soil stabilizers in domestic road and airfield construction. Dorogi i mosty. 2013. No. 2 (30), pp. 60–85. (In Russian).
4. Dmitrieva T.V., Markova I.Yu., Strokova V.V., Bezrodnykh A.A., Kutsyna N.P. Efficiency of stabilizers of various composition for strengthening the soil with a mineral binder. Stroitel’nye materialy i izdeliya. 2020. Vol. 3. No. 1, pp. 30–38. (In Russian).
5. Churilin V.S., Pushkareva G.V. Soil genetics in its complex stabilization. Vestnik Tomskogo gosudarstvennogo arhitekturno-stroitel’nogo universiteta. 2021. Vol. 23. No. 6, pp. 190–200. (In Russian). DOI: https://doi.org/10.31675/1607-1859-2021-23-6-190-200
6. Merentsova G.S., Medvedev N.V., Dobrynina A.A. Soil stabilization of the working layer of the roadbed with the use of polymer-mineral additive “Nicoflok”. Polzunovskij al’manah. 2022. No. 1, pp. 133–135. (In Russian).
7. Bondarenko S.N., Gridchin A.M., Lebedev M.S. Influence of the method of introduction polymer-mineral composition Nicoflok on the characteristics of soil-concrete. Regional’naya arhitektura i stroitel’stvo. 2019. No. 4 (41), pp. 42–47. (In Russian).
8. Gridchin A.M., Zolotykh S.N. PMC Nicoflok research effect as mechanochemical activator on the cement characteristic used in the soil strengthening. Vestnik of Belgorod State Technological University named after V.G. Shukhov. 2018. No. 5, pp. 5–10. (In Russian). DOI: https://doi.org/10.12737/article_5af5a72640c9f7.36216170
9. Uvarov V.A., Shaptala V.G., Shaptala V.V., Ovchinnikov D.A. A new direction of mechanical activation of cement. Vestnik of Belgorod State Technological University named after V.G. Shukhov. 2013. No. 3, pp. 68–73. (In Russian).
10. Prokopets V.S. The effect of mechanical activation on the activity of astringents. Stroitel’nye Materialy [Construction Materials]. 2003. No. 9, pp. 28–29. (In Russian).
11. Golik V.I. Practice of using disintegra tors for mechanochemical activa tion of the binder concrete components. Izvestiya Tul’skogo gosudarstvennogo universiteta. Nauki o Zemle. 2021. No. 2, pp. 155–167 (In Russian).
12. Patent RF 2477659. Sharovaya zagruzka barabannoj mel’nicy [Arrangement of ball mill grinding bodies]. Barbanyagre V.D. Declared 25.05.10. Published 20.03.13. Bulletin No. 8. (In Russian).
13. Butt Yu.M., Timashev V.V. Praktikum po himicheskoj tekhnologii vyazhushchih materialov [Workshop on chemical technology of binding materials]. Moscow: Vysshaya shkola. 1973. 504 p.
14. Yingmin Zhang, Dongxu Liu, Wenwu Chen, Lizhi Sun, Microstructural analysis and multiscale modeling for stiffening and strengthening of consolidated earthen-site soils. Journal of Cultural Heritage. 2022. Vol. 55, pp. 143–148. https://doi.org/10.1016/j.culher.2022.03.005

For citation: Bondarenko S.N., Markova I.Yu., Yakovlev E.A., Lebedev M.S., Potapov D.Yu. Study of the processes of structure formation of composite cement stone for soil strengthening. Stroitel’nye Materialy [Construction Materials]. 2022. No. 12, pp. 15–21. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-809-12-15-21

Complex Processing of Minerals of Chrysotile-Asbestos Deposits

Number of journal: 12-2022
Autors:

Punenkov S.E.
Kozlov Yu.S.

DOI: https://doi.org/10.31659/0585-430X-2022-809-12-10-14
УДК: 622.637.6

 

AbstractAbout AuthorsReferences
The analysis of the state and prospects of development of the chrysotile asbestos industry with a focus on the complex processing of mineral components of the chrysotile asbestos deposit is presented. This is necessary to expand the range of products, reduce the cost of dumping and reclamation, reduce the environmental burden from the industry in the region. The complexity of resource processing will also provide the country’s chrysotile-asbestos industry with an increase in economic efficiency and competitiveness. In this regard, PJSC “Uralasbest” solved the problem of processing one of the valuable rock-forming minerals of the Bazhenov asbestos deposit - gabbro-diabase, which was previously sent to dumps. The purpose of this work was the production of basalt fiber and new products based on it – heat and sound insulation materials for the construction industry, as well as a hydroponic substrate for use in agriculture for the cultivation of vegetable, fruit, ornamental and flower crops.
S.E. PUNENKOV1,2, Candidate of Sciences (Engineering), Сhief Technologist (This email address is being protected from spambots. You need JavaScript enabled to view it.);
Yu.S. KOZLOV3, Student

1 PJSC “Uralasbest” (66, Uralskaya Street, Asbest city, 624260, Russian Federation)
2 Ural State Mining University (30, Kuybysheva Street, Ekaterinburg, 620144, Russian Federation)
3 Ural Federal University named after the first President of Russia B.N. Yeltsin (19, Mira Street, Ekaterinburg, 620002, Russian Federation)

1. Kobzhasov A.K., Abdrakhmanova D.K., Punenkov S.E. Complex processing of chrysotile-asbestos ores in a market economy. Promyshlennost’ Kazakhstana. 2008. No. 2, pp. 24–27. (In Russian).
2. Punenkov S.E. The current state and prospects for the development of the chrysotile-asbestos industry in Brazil. Stroitel’nye Materialy [Construction Materials]. 2011. No. 5, pp. 73–76. (In Russian).
3. Jafarov N.N., Jafarov F.N. Efficient technology for the extraction of useful components is an important factor in the preparation of deposits for industrial development. Gorno-geologicheskii zhurnal. 2017. No. 3–4 (51–52), pp. 7–9. (In Russian).
4. Shkarednaya S.A., Kaskevich T.M. Asbestos-containing products and building materials. Gorno-geologicheskiy zhurnal. 2005. No. 2, pp. 37–39. (In Russian).
5. Ovcharenko E.G. Analiz sostoyaniya rynka teploizolyatsionnykh materialov v Rossii. [Analysis of the state of the market of heat-insulating materials in Russia]. Moscow: Teploproekt. 2017. 101 p.
6. Dzhigiris D.D., Makhova M.F. Osnovy proizvodstva bazal’tovykh volokon i izdeliy [Fundamentals of the production of basalt fibers and products]. Moscow: Teploenergetik. 2002. 416 p.
7. Matyukhin V.I., Yaroshenko Yu.G., Matyukhina A.V., Dudko V.A., Punenkov S.E. The use of natural gas in the heating of cupola-type shaft furnaces to improve the energy efficiency of technological processes of iron smelting. Izvestiya vysshikh uchebnykh zavedeniy. Chernaya metallurgiya. 2017. Vol. 60. No. 8, pp. 629–636. (In Russian).
8. Punenkov S.E., Kozlov Yu.S. Chrysotile-asbestos and resource saving in the chrysotile-asbestos industry. Gornyy zhurnal Kazakhstana. 2022. No. 4, pp. 8–14. (In Russian).
9. Arabov A.R., Polishchuk E.Yu. Thermal insulation and decorative possibilities of thermal panels. Krovel’nyye i izolyatsionnyye materialy. 2020. No. 2, pp. 20–24. (In Russian).
10. Vorobyov A. Phenol-formaldehyde resins. Komponenty i tekhnologii. 2003. No. 7, pp. 176–179. (In Russian).
11. Yartsev V.P., Polyakova A.V. Analysis of temperature distribution over the thickness of structures with expanded polystyrene and mineral wool insulation. Stroitel’nyye materialy, oborudovaniye, tekhnologii XXI veka. 2021. No. 5, pp. 57–63. (In Russian).
12. Petropavlovskaya V.В., Zavad’ko M.Yu., Novichenkova T.B., Petropavlovskii K.S., Buryanov A.F. Gypsum modified compositions with the use of activated basalt filler. Stroitel’nye Materialy [Construction Materials]. 2020. No. 7, pp. 10–17. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-782-7-10-17
13. Dzhigiris D.D., Makhov M.F. Osnovy proizvodstva bazal’tovykh volokon i izdelii [Basics of production of Basalt fibers and products]. Moscow: Teploenergetik. 2002. 416 p. (In Russian).
14. Matyukin V.I., Zemlyanoi K.G., Zhuruavlev S.J., Punenkov S.E. Oxidation kinetics of metallurgical coke in a smelter of cupola Type. Coke and Chemistry. 2021. No. 6, pp. 23–27. https://doi.org/10.3103/S1068364X2106003X
15. Matyukhin V.I., Yaroshenko Yu.G., Matyukhina A.V., Punenkov S.E., Dubko V.A. Improving the energy efficiency of technological processes for smelting cast iron in mine furnaces of the vahranok type. Modern scientific achievements of metallurgical heat engineering and their implementation in industry: a collection of reports of the II International Scientific and Practical Conference dedicated to the 90th anniversary of the merit. Worker of Science and Technology of the Russian Federation Yu.G. Yaroshenko, Yekaterinburg. UrFU. 2018. pp. 131–139.
16. Abdoulaye Diedhiou, Libasse Sow, Adama Dione. Comparative study of physical-chemical characteristics of diack basalt and bandia limestone for use in railway engineering. Geomaterials. 2022. Vol. 12. No. 2, pp. 1450–1454.
17. Bessonov I.V., Starostin A.V., Oskina V.M. On the shape stability of fibrous insulation. Vestnik MGSU. 2011. No. 3, pp. 134–139. (In Russian).

For citation: Punenkov S.E. Kozlov Yu.S. Complex processing of minerals of chrysotile-asbestos deposits. Stroitel’nye Materialy [Construction Materials]. 2022. No. 12, pp. 10–14. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-809-12-10-14

Local Raw Materials for the Production of Mineral Fiber

Number of journal: 12-2022
Autors:

Khudyakova L.I.,
Buyantuev S.L.,
Buyantuev V.T

DOI: https://doi.org/10.31659/0585-430X-2022-809-12-6-9
УДК: 622.367.6

 

AbstractAbout AuthorsReferences
Solving energy efficiency issues in the construction industry entails an increase in demand for thermal insulation materials made of basalt fiber. However, cost and technological factors have a significant impact on the scale of its application. Therefore, reducing the cost of basalt fiber is an urgent task. This problem can be solved by improving the technological modes of its production or by using local raw materials. The purpose of the research conducted was to study the main characteristics of the basalt raw materials of the Republic of Buryatia and to establish the possibility of using it in the production of mineral fiber. Analysis of the chemical composition of basalt showed that the process of fiber formation will be stable, and the resulting fiber has high chemical and mechanical resistance. The acidity modulus of the rock was calculated, which is 5.9 and indicates that the charge is one-component without the addition of calcium-containing rocks. The substantiated data have been confirmed in practice. A basalt fiber with an average diameter of 7.555 µm and a thermal conductivity of 0.031 W/(m·K) was obtained by the low-temperature plasma method. The conducted studies indicate the suitability of the basalt of the Enkhor deposit of the Republic of Buryatia for the production of mineral fiber. The use of local raw materials will reduce transportation costs for its delivery to the production shop and reduce the cost of fiber and finished products based on it.
L.I. KHUDYAKOVA1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
S.L. BUYANTUEV2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.Т. BUYANTUEV2, Postgraduate, (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Baikal institute of nature management SB RAS (6, Sakhyanovoy Street, Ulan-Ude, 670047, Russian Federation)
2 East Siberia State University of Technology and Management (40V, Kluchevskaya Street, Ulan-Ude, 670013, Russian Federation)

1. Ullegaddi K., Mahesha C.R., Shivanand N.P. Tribological properties of basalt fibers – A Review. Materials Science Forum. 2019. Vol. 969, pp. 335–342. DOI: https:// doi.org/10.4028/www.scientific.net/MSF.969.335
2. Shi F., Su H., Zhao L., Yu X., Li S. Study on the structure and properties of continuous basalt fibres. Fibres and Textiles in Eastern Europe. 2020. Vol. 28. No. 4 (142), pp. 52–56. DOI: https:// doi.org/10.5604/01.3001.0014.0934
3. Tavadi A.R., Naik Y., Kumaresan K., Jamadar N.I., Rajaravi C. Basalt fiber and its composite manufacturing and applications: An overview. International Journal of Engineering, Science and Technology. 2021. Vol. 13. No. 4, pp. 50–56. DOI: https:// doi.org/10.4314/ijest.v13i4.6
4. Yan L., Chu F., Tuo W., Zhao X., Wang Y., Zhang P., Gao Y. Review of research on basalt fibers and basalt fiber-reinforced composites in China (I): Physicochemical and mechanical properties. Polymers and Polymer Composites. 2021. Vol. 29. No. 9. pp. 1612–1624. DOI: https:// doi.org/10.1177/0967391120977396
5. Li Z., Ma J., Ma H., Xu X. Properties and applications of basalt fiber and its composites. IOP Conference Series: Earth and Environmental Science. 2018. Vol. 186. 012052. DOI: https:// doi.org/10.1088/1755-1315/186/2/012052
6. Магеррамова И.А., Ращепкина С.А., Синицына И.Н. Исследование свойств композиционных материалов, наполненных неорганической матрицей // Современные наукоемкие технологии. 2016. № 2. С. 246–250.
6. Magerramova I.A., Raschepkina S.A., Sinitsyna I.N. The study of the properties of composite materials filled with inorganic matrix. Sovremennye naukoemkie tekhnologii. 2016. No. 2, pp. 246–250. (In Russian).
7. Meyyappan P.L., Carmichael M.J. Studies on strength properties of basalt fibre reinforced concrete. Materials Today: Proceedings. 2021. No. 43, pp. 2105–2108. DOI: https:// doi.org/10.1016/j.matpr.2020.11.890
8. Xu L., Song D., Liu N., Tian W. Study on mechanical properties of basalt fiber-reinforced concrete with high content of stone powder at high temperatures. Advances in Materials Science and Engineering. 2021. 7517049. DOI: https://doi.org/10.1155/2021/7517049
9. Шодмонов А.Ю. Изучение свойств базальтового фибробетона // Современное промышленное и гражданское строительство. 2021. Т. 17. № 2. С. 77–84.
9. Shodmonov A. Study of the properties of basalt fiber concrete. Sovremennoe promyshlennoe i grazhdanskoe stroitel’stvo. 2021. Vol. 17. No. 2, pp. 77–84. (In Russian).
10. Харун М., Коротеев Д.Д., Дхар П., Ждеро С., Елроба Ш.М. Физико-механические свойства базальто-волокнистого высокопрочного бетона // Строительная механика инженерных конструкций и сооружений. 2018. Т. 14. № 5. С. 396–403. DOI: https:// doi.org/10.22363/1815-5235-2018-14-5-396-403
10. Kharun M., Koroteev D.D., Dkhar P., Zdero S., Elroba S.M. Physical аnd mechanical properties оf basalt-fibered high-strength concrete. Stroitel’naya mekhanika inzhenernykh konstruktsii i sooruzhenii. 2018. Vol. 14. No. 5, pp. 396–403. (In Russian). DOI: https:// doi.org/10.22363/18155235-2018-14-5-396-403
11. Сарайкина К.А., Голубев В.А., Яковлев Г.И., Сычугов С.В., Первушин Г.Н. Повышение коррозионной стойкости базальтового волокна в цементных бетонах // Строительные материалы. 2016. № 1–2. С. 27–31.
11. Saraykina K.A., Golubev V.A., Yakovlev G.I., Sychugov S.V., Pervushin G.N. The corrosion resistance increase of basalt fiber cement concrete. Stroitel’nye Materialy [Construction Materials]. 2016. No. 1–2, pp. 27–31. (In Russian).
12. Zhang Q., Li S., Gong S., Zhang G., Xi G., Wu Y. Study on flexural properties of basalt fiber textile reinforced concrete (BTRC) sheets including short AR-glass fibers. Frontiers in Materials. 2020. No. 7. 277. DOI: https:// doi.org/10.3389/fmats.2020.00277
13. Tong Y., Wang Y., Zhang S., Chen Y., Li Z., Niu D. Study on mechanical properties of basalt fiber shotcrete in high geothermal environment. Materials. 2021. No. 14. 7816. DOI: https://doi.org/10.3390/ma14247816
14. Vikas G., Sudheer M. A review on properties of basalt fiber reinforced polymer composites. American Journal of Materials Science. 2017. Vol. 7. No. 5, pp. 156–165. DOI: https:// doi.org/10.5923/j.materials.20170705.07
15. Abdiev J., Safarov O., Julanov H. Study of the properties of polymer composites – reinforcement based on glass and basalt fibers. Eurasian Scientific Herald. 2022. Vol. 7. No. 4. pp. 77–88.
16. Kozinetc K.G., Kärki T., Barabanshchikov Yu.G., Lahtela V., Zotov D.K. Mechanical properties of sustainable wooden structures reinforced with basalt fiber reinforced polymer. Magazine of Civil Engineering. 2020. No. 100(8). 10012. DOI: https:// doi.org/10.18720/MCE.100.12
17. Liu Y., Zhang M., Liu H., Tian L., Liu J., Fu C., Fu X. Properties of basalt fiber core rods and their application in composite cross arms of a power distribution network. Polymers. 2022. No. 14. 2443. DOI: https://doi.org/10.3390/polym14122443
18. Jia Y., Zhang J., Wang X., Ding Y., Chen X., Liu T. Experimental study on mechanical properties of basalt fiber-reinforced silty clay. Journal of Central South University. 2022. Vol. 29. No. 6, pp. 1945–1956. DOI: https://doi.org/10.1007/s11771-022-5056-z
19. Охлопкова А.А., Васильев С.В., Гоголева О.В. Исследование влияния базальтового волокна на физико-механические и триботехнические характеристики композитов на основе политетрафтор-этилена. Арктика. XXI век. Технические науки. 2014. № 1 (2). С. 11–19.
19. Okhlopkova A.A., Vasiliev S.V., Gogoleva O.V. Research of basalt fiber on physical-mechanical and tribological characteristics of composites based on polytetrafluoroethylene. Arktika. XXI vek. Tekhnicheskie nauki. 2014. № 1 (2), С. 11–19. (In Russian).
20. Жуковская Е.С., Павлов Ю.В., Попов С.С., Гутников С.И. Стадия ионного обмена в технологии получения непрерывных базальтовых волокон // Международный журнал прикладных и фундаментальных исследований. 2020. № 2. С. 99–103.
20. Zhukovskaya E.S., Pavlov Yu.V., Popov S.S., Gutnikov S.I. Stage of ion exchange in the continuous basalt fibers production technology. Mezhdunarodnyi zhurnal prikladnykh i fundamental’nykh issledovanii. 2020. No. 2, pр. 99–103. (In Russian).
21. Khakberdiev N., Khamidov R. Mineral raw material resources for producing basalt fibers on west and south of Uzbekistan and prospects of their industrial use. International Journal of Geology, Earth and Environmental Sciences. 2018. Vol. 8. No. 2, pp. 54–59.
22. Khudyakova L.I., Buyantuev S.L., Buyantuev V.T. Basalts of the Republic of Buryatia and their suitability for obtaining mineral fibres. IOP Conference Series: Materials Science and Engineering. 2020. Vol. 962. Iss. 2. 022032. DOI: https:// doi.org/10.1088/1757-899X/962/2/022032
23. Regar M.L., Amjad A.I. Basalt fibre – ancient mineral fibre for green and sustainable development. Tekstilec. 2016. Vol. 59. No. 4, pp. 321–334. DOI: https:// doi.org/10.14502/Tekstilec2016.59.321-334
24. Ralph C., Lemoine P., Summerscales J., Archer E., Mcllhagger A. Relationships among the chemical, mechanical and geometrical properties of basalt fibers. Textile Research Journal. 2019. Vol. 89. No. 15, pp. 3056–3066. DOI: https:// doi.org/10.1177/0040517518805376
25. Ходакова Н.Н., Углова Т.К., Фирсов В.В., Татаринцева О.С. Минеральное сырье Кавказа для производства базальтовых волокон // Ползуновский вестник. 2013. № 1. С. 138–142.
25. Khodakova N.N., Uglova T.K., Firsov V.V., Tatarinceva O.S. Mineral raw materials of the Caucasus for the production of basalt fibers. Polzunovskii Vestnik. 2013. No. 1, pp. 138–142. (In Russian).
26. Bauer F., Kempf M., Weiland F., Middendorf P. Structure-property relationships of basalt fibers for high performance applications. Composites Part B. 2018. No. 145, pp. 121–128. DOI: https:// doi.org/10.1016/j.compositesb.2018.03.028
27. Aydaraliev Zh.K., Kaynazarov A.T., Ismanov Yu.Kh., Abdiev M.S., Atyrova R.S., Sopubekov N.A. Superfine fibers on the basis of aleurrolite and basalt produced in Kyrgyzstan. International Journal of Applied and Fundamental Research. 2019. No. 5, pp. 109–114. DOI: https:// doi.org/10.17513/mjpfi.12748
28. Shekhovtsov V.V., Volokitin O.G., Skripnikova N.K., Volokitin G.G., Semenovykh M.A. Thermal plasma in construction industry. IOP Conf. Series: Earth and Environmental Science. 2021. Vol. 688. 012010. DOI: https:// doi.org/10.1088/1755-1315/688/1/012010

For citation: Khudyakova L.I., Buyantuev S.L., Buyantuev V.T. Local raw materials for the production of mineral fiber. Stroitel’nye Materialy [Construction Materials]. 2022. No. 12, pp. 6–9. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-809-12-6-9

Compatibility of Modified Plant Raw Materials with Organopolymer Binders

Number of journal: 11-2022
Autors:

Stepina I.V.,
Sodomon M.

DOI: https://doi.org/10.31659/0585-430X-2022-808-11-92-96
УДК: 691.342

 

AbstractAbout AuthorsReferences
The aim of this work is to calculate the compatibility of modified monoethanolamine (N→B)-trihydroxyborate plant materials (crushed stems of Sosnowski’s hogweed) with some organopolymer binders (polyvinyl acetate, polyurethane and casein). To achieve this goal, the following tasks were solved. Calculation of the cohesion energy and the value of the Van der Waals volume of the elementary link of the modified substrate; calculation of the Hildebrand solubility parameter of the modified substrate and organopolymer binders; determination of the optimal composition of composite materials based on modified plant materials and polymer binders In the course of the work, it was found that the method of calculating mutual solubility can be used to predict the compatibility of modified plant cellulose with organopolymer binders. Based on this method, it was found that the best compatibility is observed when excess casein and polyurethane are used as binders for modified plant materials. Two compositions: casein (excess)-modified cellulose and polyurethane (excess)-modified cellulose can be recommended for creating composite materials based on them.
I.V. STEPINA, Candidate of Sciences (Engineering),
M. SODOMON, Engineer (Graduate student)

National Research Moscow State University of Civil Engineering (26, Yaroslavskoye Highway, Moscow, 129337, Russian Federation)

1. Покровская Е.Н., Портнов Ф.А. Мягкое поверхностное химическое модифицирование – метод создания долговечных огнезащитных материалов. Современные пожаробезопасные материалы и технологии: Сборник материалов Международной научно-практической конференции, посвященной году гражданской обороны. Иваново. 20–21 сентября 2017 г. С. 119–122.
1. Pokrovskaya E.N., Portnov F.A. Soft surface chemical modification – a method for creating durable fireproof materials. Modern fireproof materials and technologies: Collection of materials of the International scientific and practical conference dedicated to the Year of Civil Defense. Ivanovo. September 20–21, 2017, pp. 119–122. (In Russian).
2. Broda M. Natural compounds for wood protection against fungi-A review. Molecules. 2020. Vol. 25. No. 15. DOI 10.3390/molecules25153538.
3. Schmidt O. Wood and tree fungi: Biology, damage, protection, and use. Springer-Verlag. 2006. 336 p. DOI: 10.1007/3-540-32139-X
4. Husaini A.A. Sing N.N., Fun C.S. [et al.] Smart polymer composites for wood protection. Smart Polymer Nanocomposites. Biomedical and Environmental Applications. Woodhead Publishing Series in Composites Science and Engineering. 2021, pp. 377–397. DOI: 10.1016/B978-0-12-819961-9.00014-1
5. Zhu Y. Surface protection of wood with metal acetylacetonates. Coatings. 2021. Vol. 11. No. 8. DOI: 10.3390/coatings11080916
6. Бруяко М.Г., Бессонов И.В., Горбунова Э.А., Говряков И.С. Сорбционные свойства модифицированного борщевика Сосновского // Строительные материалы. 2021. № 10. С. 54–59. DOI: https://doi.org/10.31659/0585-430X-2021-796-10-54-59
6. Bruyako M.G., Bessonov I.V., Gorbunova E.A., Govryakov I.S. Sorption properties of modified Sosnovsky’s hogweed. Stroitel’nye Materialy [Construction Materials]. 2021. No. 10, pp. 54–59. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-796-10-54-59
7. Тагер А.А., Бессонов Ю.С., Сивкова Е.Я., Ануфриев В.А., Выгодский Я.С., Салазкин С.Н. Теплоты растворения кардовых полигетероариленов и вклады в них отдельных группирововк макромолекул // Высокомолекулярные соединения. Серия А. 1979. Т. 21. № 9. С. 2136–2141. http://polymsci.ru/static/Archive/1979/VMS_1979_T21_9/VMS_1979_T21_9_2136-2141.pdf
7. Tager A.A., Bessonov Yu.S., Sivkova E.Ya., Anufriev V.A., Vygodsky Ya.S., Salazkin S.N. Heats of dissolution of carded polyheteroarylenes and the contributions of individual groupings of macromolecules to them. Vysokomolekulyarnyye soyedineniya. Series A. 1979. Vol. 21. No. 9, pp. 2136–2141. http://polymsci.ru/static/Archive/1979/VMS_1979_T21_9/VMS_1979_T21_9_2136-2141.pdf (In Russian).
8. Аскадский А.А., Матвеев Ю.И., Матевосян М.С. О предсказании растворимости полимеров // Высокомолекулярные соединения. Серия А. 1990. Т. 32. № 10. С. 2157–2166.
8. Askadsky A.A., Matveev Yu.I., Matevosyan M.S. On the prediction of the solubility of polymers. Vysokomolekulyarnyye soyedineniya. Series A. 1990. Vol. 32. No. 10, pp. 2157–2166. (In Russian).
9. Аскадский А.А., Болобова А.В., Кондращенко В.И., Щербухин В.Д. Расчетная оценка физических характеристик ряда природных полимеров // Высокомолекулярные соединения. Серия А. 2000. Т. 42. № 3. С. 517–529.
9. Askadskii A.A., Bolobova A.V., Kondrashchenko V.I., Shcherbukhin V.D. Estimation of the physical characteristics of some natural compounds. Vysokomolekulyarnyye soyedineniya. Series A. 2000. Vol. 42. No. 3, pp. 517–529.
10. Белоусов В.П., Морачевский А.Г. Теплоты смешения жидкостей. Л.: Химия, 1999. С. 30.
10. Belousov V.P., Morachevsky A.G. [Heats of mixing of liquids]. Leningrad: Khimiya. 1999, p. 30.
11. Olabisi O. Polymer compatibility by gas-liquid chromatography. Macromolecules. 1975. Vol. 8, pp. 316–322.
12. Walsh D.J., McKeown J. G. Compatibility of polyacrylates and polymethacrylates with poly(vinyl chloride): 1. Compatibility and temperature variation. Polymer. 1980. Vol. 21. Iss. 11, pp. 1330–1334. https://doi.org/10.1016/0032-3861(80)90203-7
13. Wahrmund D.C., Bernstein R.E., Barlow J.W., Paul D.R. Polymer blends containing poly(vinylidene fluoride). Part IV: Thermodynamic interpretations. Polymer Engineering & Science. 1988. Vol. 18, pp. 677. https://doi.org/10.1002/pen.760181607
14. Cruz C.A., Barlow J.W., Paul D.R. The basis for miscibility in polyester- polycarbonate blends. Macromolecules. 1979. Vol. 12. No. 4, pp. 726–731.
15. Askadskii A.A. Computational Materials Science of Polymers. Cambridge, Cambridge International Science Publishing Ltd. 2003. 695 p.
16. Аскадский А.А., Попова М.Н., Кондращенко В.И. Физико-химия полимерных материалов и методы их исследования: Учебное издание. М.: Издательство АСВ, 2015. 408 c.
16. Askadsky A.A., Popova M.N., Kondrashchenko V.I. Fiziko-khimiya polimernykh materialov i metody ikh issledovaniya: Uchebnoye izdaniye [Physical chemistry of polymeric materials and methods for their research: educational edition]. Moscow: ASV. 2015. 408 p.
17. Rowell R. Chemical modification of wood to produce stable and durable composites. Cellulose Chemistry and Technology. 2012. Vol. 46 (7–8), pp. 443–448.
18. Mohamed A.L., Hassabo A.G. Flame Retardant of Cellulosic Materials and Their Composites. 2015. In: Visakh P., Arao Y. (eds) Flame Retardants. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-03467-6_10
19. Kuzub L.I., Irzhak V.I. Kinetics and mechanism of the late stage of microphase separation induced by curing. Colloid Journal. 2000. Vol. 63. Iss. 1, pp. 86–91.
20. Stepina I., Sodomon M., Semenov V. et al. Modifying heracleum sosnowskyi stems with monoethanolamine(N→B)-trihydroxyborate for manufacturing biopositive building materials. Lecture Notes in Civil Engineering. 2022. Vol. 170, pp. 45–52. DOI: 10.1007/978-3-030-79983-0_5
21. Степина И.В., Содомон М., Семенов В.С. и др. Повышение биостойкости стеблей борщевика Сосновского в качестве сырья для производства строительных материалов // Известия высших учебных заведений. Строительство. 2021. № 2 (746). С. 79–91. DOI: 10.32683/0536-1052-2021-746-2-79-91.
21. Stepina I.V., Sodomon M., Semenov V.S. et al. Improving the biostability of Sosnovsky’s hogweed stems as a raw material for the production of building materials. Izvestiya vysshikh uchebnykh zavedeniy. Stroitel’stvo. 2021. No. 2 (746), pp. 79–91. (In Russian). DOI: 10.32683/0536-1052-2021-746-2-79-91

For citation: Stepina I.V., Sodomon M. Compatibility of modified plant raw materials with organopolymer binders. Stroitel’nye Materialy [Construction Materials]. 2022. No. 11, pp. 92–96. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-808-11-92-96

https://www.traditionrolex.com/10