Log in

Properties of Foam Concrete During Their Dispersed Reinforcement with Synthetic and Carbon Fibers

Number of journal: 9-2022
Autors:

Morgun V.N.,
Morgun L.V.

DOI: https://doi.org/10.31659/0585-430X-2022-806-9-50-54
УДК: 691.323.333

 

AbstractAbout AuthorsReferences
The relevance of expanding the range of products made of gas-filled concrete is reflected. It is shown that the differences in the list of types of products made of autoclave silicate and non-autoclave foam concrete are based on their individual performance properties, which in equally dense concretes differ significantly in crack resistance and tensile strength during bending. The reasons for the growing demand for energy-efficient building materials are listed. The results of experimental studies of the effect of polypropylene and carbon fibers of various lengths on the ultimate extensibility and the initial modulus of tensile elasticity during bending of non-autoclaved foam concrete of the D700 brand are presented. It is established that high-modulus carbon fibers allow improving the structural properties of foam concrete and do not fundamentally change the nature of the destruction of the material under the action of bending and tensile loads. Polypropylene dispersed reinforcement is able to effectively control the parameters of the ultimate extensibility of foam concrete and contribute to a significant increase in the energy intensity of their destruction. The achieved results make it possible to predict an increase in the durability of operation of foam concrete dispersed reinforced with polypropylene fibers intended for use as wall materials.
V.N. MORGUN1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
L.V. MORGUN2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Southern Federal University (105/42, Bolshaya Sadovaya Street, Rostov-on-Don, 344006, Russian Federation)
2 Don State Technical University (1, Gagarin Square, Rostov-on-Don, 344001, Russian Federation)

1. Mehlhart G., Bakas I., Herczeg M., Strosser P., Rynikiewicz C. Agenais study on the energy saving potential of increasing resource efficiency. Final Report. Luxembourg: Publications Office of the European Union. 2016. 86 p. http://ec.europa.eu/environment/enveco/resource_efficiency/pdf/final_report.pdf
2. Federal Law No. 261-FZ of November 23, 2009 “On Energy Conservation and on Improving Energy Efficiency”.(In Russian)
3. Vishnevsky A.A., Grinfeld G.I., Smirnova A.S. Production of autoclaved aerated concrete in Russia. Stroitel’nye Materialy [Construction Materials]. 2015. No. 6, pp. 52–54. (In Russian).
4. Davidyuk A.A., Fiskind E.S., Gusar’ O.A., Balakireva V.V. Advantages in production and application of cellular concrete blocks. Stroitel’nye Materialy [Construction Materials]. 2018. No. 12, pp. 41–43. DOI: https://doi.org/10.31659/0585-430X-2018-766-12-41-43 (In Russian).
5. Paruta V.A. Mechanics of destruction of the system “aerated concrete masonry – plaster coating”. Magazine of Civil Engineering. 2014. No. 3, pp. 48–55. (In Russian).
6. Album of technical solutions for the use of autoclaved aerated concrete products trademark “N +N” in the construction of residential, public and industrial buildings. Materials for design and working drawings of nodes. SPb. 2019. 152 p. https://www.hplush.ru/documents/20562/55438/albom_H%2BH_Redaction02-2019.pdf/1401b576-14f7-4dda-aae0-2791e4ec26f8 (In Russian)
7. Falikman V.R., Sorokin Yu.V., Kalashnikov O.O. Construction and technical properties of especially high-strength fast-hardening concrete. Beton i Zhelezobeton [Concrete and Reinforced Concrete]. 2004. No. 4, pp. 5–10. (In Russian).
8. Bonakdar A., Babbitt F., Mobasher B. Physical and mechanical characterization of Fiber-Reinforced Aerated Concrete (FRAC). Cement and Concrete Composites. 2013. Vol. 38, pp. 82–91. https://doi.org/10.1016/j.cemconcomp.2013.03.006
9. Morgun V.N., Morgun L.V., Nagorskiy V.V. Diversive particles filler forms influence on mechanical properties foam concrete mixutes. IOP Conference Series: Materials Science and Engineering. Vol. 698. Iss. 2. 022088. https://iopscience.iop.org/article/10.1088/1757-899X/698/2/022088
10. Morgun V.N., Morgun L.V. Substantiation of one of the methods for improving the structure of foam concretes. Stroitel’nye Materialy [Construction Mate-rials]. 2018. No. 5, pp. 24–26. DOI: https://doi.org/10.31659/0585-430X-2018-759-5-24-26 (In Russian).
11. Morgun V., Morgun L., Votrin D., Nagorskiy V. Analysis of the synthetic fiber influence on the cement stone new formations composition in foam concrete. Materials Science Forum. 2021. Vol. 1043, pp. 43–48.
12. Patent RF No. 2714541 Bullet-absorbing material (fiber foam concrete) and method for its manufacture. Votrin D.A., Morgun L.V., Visnap A.V., Morgun V.N. Declareted 25.07.2019. Published 18.02.2020. (In Russian).
13. Certificate of fire safety SSPB. RU. OP034. N 00037. “Fibro-foam concrete products” according to TU 5767-033-02069119–2003 comply with fire safety requirements established in NPB 244–97: non-combustible material according to GOST 30244–94 “Building materials. Methods of testing for combustibility”. (In Russian).

For citation: Morgun V.N., Morgun L.V. Properties of foam concrete during their dispersed reinforcement with synthetic and carbon fibers. Stroitel’nye Materialy [Construction Materials]. 2022. No. 9, pp. 50–54. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-806-9-50-54

Influence of Composition on the Properties and Structure of Modified Cement Composites

Number of journal: 9-2022
Autors:

Lesovik V.S.,
Fediuk R.S.,
Lisejcev Ju.L.,
Panarin I.I.,
Voronov V.V.

DOI: https://doi.org/10.31659/0585-430X-2022-806-9-39-49
УДК: 622.245.422.2

 

AbstractAbout AuthorsReferences
The development of civilization leads to an increase in the loads on buildings and structures. The design of materials for is possible to carry out only from the standpoint of a transdisciplinary approach, taking into account the modern achievements of geonics (geomimetics) by controlling the processes of structure formation. Cement composites based on a modified polymineral binder have been developed using enriched aluminosilicates obtained from hydraulically removed ash and slag mixtures, as well as hydrothermal nanosilicon in two types (sol and nanopowder). A technology has been developed for extracting aluminosilicates from a hydraulically removed ash and slag mixture, which includes five stages: disintegration, flotation, two-stage magnetic separation and drying. Microstructural analysis using scanning electron microscopy, X-ray phase analysis and energy dispersive spectroscopy showed that the modified cement stone has a denser structure with a large amount of low-basic calcium hydrosilicates, while in the non-additive cement matrix there are more high-alkaline hydrosilicates and hexagonal portlandite plates are present.
V.S. LESOVIK1,2, Doctor of Sciences (Engineering), Corresponding Member of RAACS;
R.S. FEDIUK3, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
Ju.L. LISEJCEV3, Engineer,
I.I. PANARIN3, Head of the Military Department of the Faculty of Military Training;
V.V. VORONOV1, Candidate of Sciences (Engineering)

1 Belgorod State Technological University named after V.G. Shukhov (46, Kostyukova Street, Belgorod, 308012, Russian Federation)
2 Central Research and Design Institute of the Ministry of Construction and Housing and Utilities of the Russian Federation (29, Vernadskogo Avenue, Moscow, 119331, Russian Federation)
3 Far Eastern Federal University (10, Ajax, Russky Island, Vladivostok, 690922, Russian Federation)

1. Лесовик В.С. Cтроительные материалы. Настоящее и будущее // Вестник МГСУ. 2017. № 1. С. 9–16.
1. Lesovik V.S. Construction Materials. Present and future. Vestnik MGSU. 2017. No. 1, pp. 9–16. (In Russian).
2. Лесовик В.С., Фомина Е.В., Айзенштадт А.М. Некоторые аспекты техногенного метасоматоза в строительном материаловедении // Строительные материалы. 2019. № 1–2. С. 100–106. DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-100-106
2. Lesovik V.S., Fomina E.V., Ayzenshtadt A.M. Some aspects of technogenic metasomatosis in construction material science. Stroitel’nye Materialy [Construction Materials]. 2019. No. 1–2, pp. 100–106. DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-100-106 (In Russian).
3. Ramakrishnan K., Depak S.R., Hariharan K.R., Abid S.R., Murali G., Cecchin D., Fediuk R., Mugahed Amran Y.H., Abdelgader H.S., Khatib J.M. Standard and modified falling mass impact tests on preplaced aggregate fibrous concrete and slurry infiltrated fibrous concrete. Construction and Building Materials. 2021. Vol. 298. 153857. https://doi.org/10.1016/j.conbuildmat.2021.123857
4. Лесовик В.С. Геоника (геомиметика). Примеры реализации в строительном материаловедении. Белгород: Изд-во БГТУ им. В.Г. Шухова, 2016. 287 с.
4. Lesovik V.S. Geonika (geomimetika). Primery realizacii v stroitel’nom materialovedenii [Geonics (geomimetics). Examples of implementation in building materials science]. Belgorod: Publishing house of BSTU named after V.G. Shukhov. 2016. 287 p.
5. Баженов Ю.М., Прошин А.П., Еремкин А.И., Королев Е.В. Сверхтяжелый бетон для защиты от радиации // Строительные материалы. 2005. № 8. С. 6–8.
5. Bazhenov Yu.M., Proshin A.P., Yeremkin A.I., Korolev Ye.V. Extra heavy concrete for radiation protection. Stroitel’nye Materialy [Construction Materials]. 2005. No. 8, pp. 6–8 (In Russian).
6. Королев Е.В., Очкина Н.А., Баженов Ю.М., Прошин А.П. Радиационно-защитные свойства особотяжелых растворов на основе высокоглиноземистого цемента // Строительные материалы. 2006. № 4. С. 54–56.
6. Korolev Ye.V., Ochkina N.A., Bazhenov Yu.M., Proshin A.P. Radiation-protective properties of very heavy mortars based on high-alumina cement. Stroitel’nye Materialy [Construction Materials]. 2006. No. 4, pp. 54–56 (In Russian).
7. Страхов В.Л., Гаращенко А.Н. Огнезащита строительных конструкций: современные средства и методы оптимального проектирования // Строительные материалы. 2002. № 6. C. 2–5.
7. Strakhov V.L., Garashchenko A.N. Fire protection of building structures: modern means and methods of optimal design. Stroitel’nye Materialy [Construction Materials]. 2002. No. 6, pp. 2–5. (In Russian).
8. Каприелов С.С., Травуш В.И., Карпенко Н.И., Шейнфельд А.В., Кардумян Г.С., Киселева Ю.А., Пригоженко О.В. Модифицированные высокопрочные бетоны классов В80 и В90 в монолитных конструкциях. Ч. II // Строительные материалы. 2008. № 3. С. 9–13.
8. Kaprielov S.S., Travush V.I., Karpenko N.I., Sheinfeld A.V., Kardumyan G.S., Kiseleva Yu.A., Prigozhenko O.V. Modified high-strength concretes of B80 and B90 classes in monolithic structures. Part II. Stroitel’nye Materialy [Construction Materials]. 2008. No. 3, pp. 9–13 (In Russian).
9. Constantinides G., Ulm F.-J., Van Vliet K.J. On the use of nanoindentation for cementitious materials. Materials and Structures. 2003. Vol. 36, pp. 191–196.
10. Constantinides G., Ulm F.-J. The effect of two types of C–S–H on the elasticity of cement-based materials: Results from nanoindentation and micromechanical modeling. Cement and Concrete Research. Vol. 2004. No. 34, pp. 67–80. https://doi.org/10.1016/S0008-8846(03)00230-8
11. Cheng Y.T. Cheng C.M. Scaling relationships in conical indentation of elastic perfectly plastic solids. International Journal of Solids Structures. 1999. Vol. 36, pp. 1231–1243. https://doi.org/10.1016/S0020-7683(97)00349-1
12. Ganneau F.P., Constantinides, G., Ulm F.-J. Dual-indentation technique for the assessment of strength properties of cohesive-frictional materials. International Journal of Solids Structures. 2006. Vol. 43, pp. 1727–1745. https://doi.org/10.1016/j.ijsolstr.2005.03.035
13. Donev A. Cisse I., Sachs D., Variano E.A., Stillinger F.H., Connely R., Torquato S., Chaikin P.M. Improving the density of jammed disordered packings using ellipsoids. Science. 2004. Vol. 303. Iss. 5660, pp. 990–993. DOI: 10.1126/science.1093010
14. Sloane. N.J.A. Kepler’s conjecture confirmed. Nature. 1998. Vol. 395, pp. 435–436. https://doi.org/10.1038/26609
15. Oliver W.C. Pharr G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research. 1992. Vol. 7 (6), pp. 1564–1583. https://doi.org/10.1557/JMR.1992.1564
16. Гридчин А.М., Баженов Ю.М., Лесовик В.С., Загороднюк Л.Х., Пушкаренко А.С., Василенко А.В. Строительные материалы для эксплуатации в экстремальных условиях. М.: АСВ, 2008. 537 с.
16. Gridchin A.M., Bazhenov Yu.M., Lesovik V.S., Zagorodnyuk L.Kh., Pushkarenko A.S., Vasilenko A.V. Stroitel’nye materialy dlja jekspluatacii v jekstremal’nyh uslovijah [Construction materials for operation in extreme conditions]. Мoscow: ASV. 2008. 573 p.
17. Володченко А.А., Лесовик В.С., Чхин С. Повышение эксплуатационных характеристик стеновых материалов // Вестник Белгородского государственного технологического университета им. В.Г. Шухова. 2014. № 3. С. 29–34.
17. Volodchenko A.A., Lesovik V.S., Chkhin S. Improving the performance of wall materials. Vestnik of the Belgorod State Technological University named after V.G. Shukhov. 2014. No. 3, pp. 29–34. (In Russian).
18. Strokova V.V., Markova I.Yu., Markov A.Yu., Stepanenko M.A., Nerovnaya S.V., Bondarenko D.O., Botsman L.N. Properties of a composite cement binder using fuel ashes. Key Engineering Materials. 2022. No. 909, pp. 184–190. https://doi.org/10.4028/p-tm4y4j
19. Vatin N., Barabanshchikov Y., Usanova K., Akimov S., Kalachev A., Uhanov A. Cement-based materials with oil shale fly ash additives. IOP Conference Series: Earth and Environmental Science. XVII-th International youth science and environmental Baltic region countries forum «Ecobaltica» 16–17 July 2020. Saint-Petersburg. Russian Federation. 2020 Vol. 17. 012043.
20. Яковлев Г.И., Первушин Г.Н., Пудов И.А., Полянских И.С., Саидова З.С. Об опыте применения метакаолина в качестве структурирующей добавки в цементных композитах // Вестник ВСГУТУ. 2021. № 2 (81). С. 58–68.
20. Yakovlev G.I., Pervushin G.N., Pudov I.A., Polyanskikh I.S., Saidova Z.S. On the experience of using metakaolin as a structuring additive in cement composites. Vestnik of the ESSTU. 2021. No. 2 (81), pp. 58–68. (In Russian).
21. Chen J.J., Sorelli L., Vandamme M., Ulm F.-J., Chanvillard G. A coupled nanoindentation/SEM-EDS study on low water/cement ratio Portland cement paste: Evidence for C–S–H/Ca(OH)2 nanocomposites. Journal of American Ceramic Society. 2010. Vol. 93, pp. 1484–1493. DOI: 10.1111/j.1551-2916.2009.03599.x
22. Salemi N., Behfarnia K. Effect of nano-particles on durability of fiber-reinforced concrete pavement. Construction and Building Materials. 2013. Vol. 48, pp. 934–941. https://doi.org/10.1016/j.conbuildmat.2013.07.037
23. Adetukasi A.O., Fadugba O.G., Adebakin A.O., Adetukasi I.H., Omokungbe O. Strength characteristics of fibre-reinforced concrete containing nano-silica. Materials Today: Proceedings. 2021. Vol. 38. P. 2, pp. 584–589. https://doi.org/10.1016/j.matpr.2020.03.123.
24. Konkol J., Prokopski G. Fracture toughness and fracture surfaces morphology of metakaolinite-modified concrete. Construction and Building Materials. 2016. Vol. 123, pp. 638–648. https://doi.org/10.1016/j.conbuildmat.2016.07.025
25. De Jong M.J., Ulm F.-J. The nanogranular behavior of C–S–H at elevated temperatures (up to 700 degrees C). Cement and Concrete Research. 2007. Vol. 37, pp. 1–12. DOI: 10.1016/j.cemconres.2006.09.006
26. Potapov V., Efimenko Yu., Fediuk R., Gorev D., Kozin A., Liseitsev Yu. Modification of Cement Composites with Hydrothermal Nano-SiO2. Journal of Materials in Civil Engineering. 2021. DOI: 10.1061/(ASCE)MT.1943-5533.0003964
27. Zhdanok S.A., Potapov V.V., Polonina E.N., Leonovich S.N. Modification of cement concrete by admixtures containing nanosized materials. Journal of Engineering Physics and Thermophysics. 2020. Vol. 93, pp. 648–652. https://doi.org/10.1007/s10891-020-02163-y
28. Potapov V., Efimenko Y., Fediuk R., Gorev D. Effect of hydrothermal nanosilica on the performances of cement concrete. Construction and Building Materials 2021. 269. 121307. https://doi.org/10.1016/j.conbuildmat.2020.121307
29. Пыкин А.А., Лукутцова Н.П. Оценка экологической безопасности наномодифицирующих добавок для строительных композитов. Среда, окружающая человека: природная, техногенная, социальная. Материалы X Международной научно-практической конференции. Брянск, 2021. С. 305–309.
29. Pykin A.A., Lukutsova N.P. Ecological safety assessment of nano-modifying additives for building composites. Human environment: natural, technogenic, social. Materials of the X International Scientific and Practical Conference. Bryansk. 2021. pp. 305–309. (In Russian).
30. Sobolev K., Ferrara M. How nanotechnology can change the concrete word-Part 1. American Ceramic Bulletin. 2005. Vol. 84, pp. 15–17.
31. Логанина В.И., Зайцева М.В. Репрезентативность выборки при оценке качества строительных материалов // Строительные материалы, оборудование, технологии XXI века. 2022. № 1 (270). С. 67–70.
31. Loganina V.I., Zaitseva M.V. Representativeness of the sample in assessing the quality of building materials. Stroitel’nye materialy, oborudovanie, tehnologii XXI veka. 2022. No. 1 (270), рр. 67–70. (In Russian).

For citation: Lesovik V.S., Fediuk R.S., Lisejcev Ju.L., Panarin I.I., Voronov V.V. Influence of composition on the properties and structure of modified cement composites. Stroitel’nye Materialy [Construction Materials]. 2022. No. 9, pp. 39–49. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-806-9-39-49

Structural Modification of Saponite-Containing Material During its Mechanical Dispersion

Number of journal: 9-2022
Autors:

Malygina M.A.,
Ayzenshtadt A.M.,
Drozdyuk T.A.,
Frolova M.A.,
Pozhilov M.A.

DOI: https://doi.org/10.31659/0585-430X-2022-806-9-32-38
УДК: 625.06

 

AbstractAbout AuthorsReferences
Environmental issues related to the rational use of natural resources are one of the few priority areas for the development of science, technology and technic in Russia. The solution of environmental problems is impossible without new mineral resources. An urgent task is to involve in the production of raw materials from technogenic waste of mining enterprises, which amounts to hundreds of thousands of tons, and continues to increase constantly, which leads to environmental pollution and complication of the environmental situation as a whole. Such a waste, for example, is a saponite-containing material obtained during the enrichment of kimberlite ores of the diamond deposit named after M.V. Lomonosov, Arkhangelsk Diamond Province. Modification of this waste for the purpose of its further use in the building materials industry is a promising area of research. The paper analyzes the process of mechanical dispersion of saponite-containing material as one of the possible ways of its modification, leading to the synthesis of serpentine group minerals from active oxide compounds formed during the destruction of the crystal lattice. As an information parameter that makes it possible to obtain a quantitative characteristic of this synthesis, it is proposed to use the value of the thermal effect of saponite modification at a temperature of 820оC. It is revealed that the preliminary settling of the recycled water suspension makes it possible to isolate a solid phase with a saponite content of up to 85% by the method of electrolyte coagulation. The fact of the presence of an amorphous phase in the test samples was established, and, despite the increase in the specific surface of the powders with an increase in the duration of grinding to 60 min, the degree of amorphization of the surface of the studied disperse systems has a practically constant value.
M.A. MALYGINA, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.M. AYZENSHTADT, Doctor of Sciences (Chemistry), (This email address is being protected from spambots. You need JavaScript enabled to view it.),
T.A. DROZDYUK, Head of Laboratory (This email address is being protected from spambots. You need JavaScript enabled to view it.),
M.A. FROLOVA, Candidate of Sciences (Chemistry),
M.A. POZHILOV, Student, (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Northern (Arctic) Federal University named after M.V. Lomonosov (17, Severnaya Dvina Embankment, Arkhangelsk, 163002, Russian Federation)

1. Apanskaya D.E., Sukhikh P.N., Karpyuk L.Y., Borodin D.O., Eromasov R.G., Vasilyeva M.N., Nikiforova E.M. Expansion of the raw material base for the production of effective ceramic building materials. Fundamental’nye issledovanija. 2018. No. 12–2, pp. 197–202. (In Russian).
2. Fundamentals of the state policy in the field of environmental development of the Russian Federation for the period up to 2030: approved President RF of 30.04.2012. http://www.consultant.ru/document/cons_doc_LAW_129117 (date of appeal: 11.04.2022). (In Russian).
3. Shpilevaya (Verzhak) D.V., Garanin K.V. Diamond deposits of the Arkhangelsk region and environmental problems of their development Vestnik Moskovskogo universiteta. Serija 4: Geologiya. 2005. No. 6, pp. 18–26. (In Russian).
4. Tutygin A.S., Shinkaruk A.A., Ayzenshtadt A.M., Frolova M.A., Makhova T.A. Clarification of saponite-containing suspension by electronic coagulation. Voda: himija i jekologija. 2013. No. 5, pp. 93–99. (In Russian).
5. Posukhova T.V., Dorofeev S.A., Garanin K.V., Gao S. Waste of the diamond mining industry: mineral composition and methods of utilization Vestnik Moskovskogo universiteta. Serija 4: Geologiya. 2013. No. 2, pp. 38–48. (In Russian).
6. Viani A., Gualtieri A., Artioli G. The nature of disorder in montmorillonite by simulation of X-ray powder patterns. American Mineralogist. 2002. Vol. 87, pp. 966–975. https://doi.org/10.2138/am-2002-0720.
7. Khudyakova L.I. Use of mining waste in the production of building materials. XXI vek. Tehnosfernaja bezopasnost’. 2017. Vol. 2. No. 2, pp. 45–56. (In Russian).
8. Morozova M.V., Ayzenshtadt A.M., Makhova T.A. Application of saponite-containing material for production of frost-resistant concretes. Promyshlennoe i grazhdanskoe stroitel’stvo. 2015. No. 1, pp. 28–31. (In Russian).
9. Drozdyuk T. A., Ayzenshtadt A. M., Tutygin A. S., Frolova M. A. Inorganic binder for mineral insulation. Stroiel’nyе Materialy [Construction Materials]. 2015. No. 5, pp. 86–89. (In Russian).
10. Drozdyuk T.A., Ayzenshtadt A.M., Frolova M.A. Effect of thermal modification of saponite-containing material on energy properties of its surface. Journal of Physics: Conference Series. 2019. Vol. 1400. 077053. DOI: 10.1088/1742-6596/1400/7/077056
11. Zyryanova V.N., Berdov G.I. Magnesia binders from brusite waste. Stroiel’nyе Materialy [Construction Materials]. 2006. No. 4, pp. 61–64. (In Russian).
12. Kotsupalo N.P., Ryabtsev A.D., Zyryanova V.N., Berdov G.I., Vereshchagin V.I. Magnesia binding materials from natural highly mineralized polycomponent brines. Himiya i himicheskaya tehnologiya. 2009. Vol. 11. No. 2, pp. 65–72. (In Russian).
13. Averina G.F., Chernykh T.N., Orlov A.A., Kramar L.Ya. Revealing possibilities to use magnesia wastes of mineral processing plant for manufacturing binders. Stroitel’nye Materialy [Construction Materials]. 2017. No. 5, pp. 86–89. (In Russian)
14. Koshelev V.A., Averina G.F., Zimich V.V., Kramar L.Ya. Development of compositions of magnesia foam concrete modified with crystalline seeds. Vestnik of the South Ural State University. Series: Building and architecture. 2018. Vol. 18. No. 4, pp. 65–70. (In Russian).
15. Kramar L.Ya. The influence of impurities on the features of firing high-magnesia rocks in order to obtain a construction magnesia binder. Cement i ego primenenie. 2007. No. 3–4, pp. 86–89. (In Russian).
16. Berdov G.I., Zyryanova V.N., Mashkin A.N., Khritankov V.F. Nanoprocesses in construction materials technology Stroitel’nye Materialy [Construction Materials]. 2008. No. 7, pp. 2–6. (In Russian).
17. Strokova V.V., Nelyubova V.V., Altynnik N.I., Zhernovskaya I.V., Osadchiy E.G. Phase formation in the cement-lime-silica system under hydrothermal conditions using a nanostructured modifier. Stroitel’nye Materialy [Construction Materials]. 2013. No. 9, pp. 30–32. (In Russian).
18. Morozova M.V. Surface activity of highly dispersed systems based on saponite-containing waste from the diamond mining industry. Bulletin of BSTU named after V.G. Shukhov. 2018. No. 2, pp. 5–11. (In Russian).
19. Drozdyuk T.A., Ayzenshtadt A.M., Korolev E.V. High-temperature modification of saponite-containing material. Stroitel’nye Materialy [Construction Materials]. 2021. No. 11, pp. 30–35. DOI: https://doi.org/10.31659/0585-430X-2021-797-11-30-35. (In Russian).
20. Kozaru T.V. Forsterite ceramics based on natural calcium magnesium silicates. Konstrukcii iz kompozicionnyh materialov. 2006. No. 4, pp. 107–109. (In Russian).
21. Tutygin A.S., Ayzenshtadt A.M., Shinkaruk A.A. Isolation of saponite-containing material from mining waste. Prikladnaja nauka. 2012. No. 2 (33), pp. 82–83. (In Russian).
22. Tutygin A.S., Aizenshtadt M.A., Aizenshtadt A.M., Makhova T.A. Influence of the nature of the electrolyte on the process of coagulation of a saponite-containing suspension Geojekologiya. 2012. No. 5, pp. 379–383. (In Russian).
23. Veshnyakova L.A., Aizenshtadt A.M. Optimization of the granulometric composition of mixtures for obtaining fine-grained concrete. Promyshlennoe i grazhdanskoe stroitel’stvo. 2012. No. 10, pp. 19–22. (In Russian).
24. Zapolsky A.K., Kogan A.A. Koaguljanty i flokuljanty v processah ochistki vody: svojstva. Poluchenie. Primenenie [Coagulants and flocculants in water purification processes: properties. Receipt. Application]. Leningrad: Chemistry. 1987. 208 p.
25. Khovakov G.S. Fizika izmel’cheniya [Physics of grinding]. Moscow: Nauka. 1972. 307 p.
26. Tretyakov Yu.D. Tverdofaznyye reaktsii [Solid state reactions]. Moscow: Chemistry. 1978. 360 p.

For citation: Malygina M.A., Ayzenshtadt A.M., Drozdyuk T.A., Frolova M.A., Pozhilov M.A. Structural modification of saponite-containing material during its mechanical dispersion. Stroitel’nye Materialy [Construction Materials]. 2022. No. 9, pp. 32–38. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-806-9-32-38

Ecology, Metallurgy, Mineral Binders and Building Materials Industry

Number of journal: 9-2022
Autors:

Rakhimov R.Z.

DOI: https://doi.org/10.31659/0585-430X-2022-806-9-26-31
УДК: 625.06

 

AbstractAbout AuthorsReferences
Environmental pollution by production and consumption waste is a negative result and one of the most important problems of the present and future activities of mankind. This problem in the last half of the last century led to a revision of the development strategy, which is based on the principles of resource saving and environmental protection, which have become the basis of the national programs of many countries. Since 2019, the national project “Ecology” has been implemented in Russia. One of the main sources of environmental pollution is the metallurgical industry, slags and slurries of which are used in the production and modification of mineral binders. Increasing the use of industrial waste at the same time is one of the directions for solving the environmental problem and developing the building materials industry.
R.Z. RAKHIMOV, Doctor of Sciences (Engineering), Corresponding Member of RAACS

Kazan State University of Architecture and Engineering (1, Zelenaya Street, Kazan, 420043, Republic of Tatarstan, Russian Federation)

1. The future of the world economy. Report of the UN group of experts headed by V.Leontiev. Moscow: International relations. 1979. 212 p. (In Russian).
2. Bozhenov P.I. Kompleksnoe ispol’zovanie mineral’nogo syr’ja dlja proizvodstva stroitel’nyh materialov [Integrated use of mineral raw materials for the production of building materials]. Moscow: Gosstroyizdat. 1963.
3. Volzhenskiy A.V., Burov Yu.S., Vinogradov B.N., Gladkikh V.I. Betony i izdelija iz shlakovyh i zol’nyh materialov [Concretes and products based on slag and ash materials]. Moscow: Gosstroyizdat. 1969.
4. Glukhovskiy V.D., Pakhomov V.A. Shlakoshhelochnye vjazhushhie i betony [Alkali-activated slag cements and concretes]. Kiev: Budivel’nik. 1978. 184 p.
5. Rahman R.O.A., Rakhimov R.Z., Rakhimova N.R., Ojovan M.I. Cementitious materials for nuclear wastes immobilization, Wiley. 2015. 231 p.
6. Bloshenko T.A., Gilyarova A.A., Goncharova L.I., Knysh V.A., Larichkin F.D., Melik-Gaikazov I.V., Nevskaya M.A., Novosel’tseva V.D., Perein V.N., Fedoseev S.V. Racional’noe ispol’zovanie vtorichnyh mineral’nyh resursov v uslovijah jekologizacii i vnedrenija dostupnyh tehnologij [Rational use of secondary mineral resources in conditions of greening and introduction of available technologies]. Apatity: FITs KNTs RAN. 2019. 252 p.
7. Barkhatov V.N., Dobrovol’skii I.P., Kapkaev Yu.M. Othody proizvodstva i potreblenija – rezerv stroitel’nyh materialov [Production and consumption wastes – reserve of construction materials]. Chelyabinsk: Chelyabinsk State University Publishing House. 2017. 477 p.
8. Dolgarev A.V. Vtorichnye syr’evye resursy v proizvodstve stroitel’nyh materialov: Fiziko-himicheskij analiz. Spravochnoe posobie [Secondary raw materials in the production of building materials: Physical and chemical analysis]. Moscow: Stroyizdat. 1990. 456 p.
9. Rusina V.V. Mineral’nye vjazhushhie veshhestva na osnove mnogotonnazhnyh promyshlennyh othodov [Mineral binders based on multi-tonnage industrial wastes]. Bratsk: BrGU. 2007. 224 p.
10. Rakhimova N.R., Rakhimov R.Z. Reaction products, structure and properties of alkali-activated metakaolin cements incorporated with supplementary materials. Journal of materials research and technology. 2018. No. 6, pp. 364–373.
11. Rakhimova N.R., Rakhimov R.Z. Toward clean cement technologies: A review on alkali-activated fly-ash cements incorporated with supplementary materials. Journal of Non-Crystalline Solids. 2019. No. 509, pp. 31–41.
12. Rakhimova N.R. Recent advances in blended alkali-activated cements: a review. European Journal of Environmental and Civil Engineering. 2020. DOI: 10.1080/19648189.2020.1858170
13. Rakhimova N.R., Rakhimov R.Z. Mechanism of borate saline solutions solidification by alkali-activated slag cements. Tsement i ego primenenie. 2016. No. 3, pp. 96–99. (In Russian).
14. Pavlenko S.I., Lukhanin M.V., Myshlyaev L.P., Avvakumov E.G., Korneeva E.V. Malocementnye i bescementnye vjazhushhie i melkozernistye betony razlichnogo naznachenija iz vtorichnyh mineral’nyh resursov [Low-clinker and clinker-free cementitious and fine-grained concretes for various purposes from secondary mineral resources]. Novosibirsk: SO RAN. 2010. 322 p.
15. Rakhimov R.Z., Magdeev U.Kh., Yarmakovskii V.N. Ecology, scientific achievements and innovations in the production of building materials based on and using technogenic raw materials. Stroitel’nye Materialy [Construction Materials]. 2009. No. 12, pp. 3–5. (In Russian).
16. Khozin V.G., Khritankov V.F,, Pichugin AP. A Role of the building industry in the development of a circular economy of industrial regions of Russia. Stroitel’nye Materialy [Construction Materials]. 2021. No. 1–2, pp. 6–9. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-788-1-2-6-12
17. Technical regulation problem in construction within 100+Technobuild. Stroitel’naya gazeta. 2021. No. 39. (In Russian).
18. Shcheglov A. An effective response to the rise in the cost of building materials has not yet been found. Stroitel’naya gazeta. 2021. No. 27. (In Russian).
19. Rakhimov R.Z. Gypsum in construction from ancient times to modern times. Academia. Arkhitektura i stroitel’stvo. 2021. No. 4, pp. 170–175. (In Russian).
20. Semenov A.A. Semenov A.A. Overview of the Russian market of commercial lime: results of 2019 and forecast for 2020. Stroitel’nye Materialy [Construction Materials]. 2020. No. 4–5, pp. 4–7. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-780-4-5-4-7
21. Vitt O.S. The current state of the local cement industry and the problems of its competitiveness. Strategiya razvitiya ekonomiki. 2011. No. 17 (110), pp. 48–51. (In Russian).
22. Shevchenko I.V., Grigor’eva E.A. Restructuring of enterprises and industries of the Krasnoyarsk Territory (based on materials from the cement industry). Strategiya razvitiya ekonomiki. 2011. No. 17 (110), pp. 52–55. (In Russian).
23. Skoblo L.I. Cement industry in the post-Soviet space today. Review. Tsement i ego primenenie. 2018. No. 1, pp. 26–28. (In Russian).
24. Vasilik Sh.Yu., Eremina E.M. Cement industry in 2020. Tsement i ego primenenie. 2020. No. 6, pp. 3–10. (In Russian).

For citation: Rakhimov R.Z. Ecology, metallurgy, mineral binders and building materials industry. Stroitel’nye Materialy [Construction Materials]. 2022. No. 9, pp. 26–31. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-806-9-26-31

Additive Manufacturing in Construction: the Research of the Anisotropy Concrete Strength Effect

Number of journal: 9-2022
Autors:

Adamtsevich A.O.,
Pustovgar A.P.

DOI: https://doi.org/10.31659/0585-430X-2022-806-9-18-24
УДК: 693.5

 

AbstractAbout AuthorsReferences
On the one hand, additive manufacturing in construction or 3D concrete printing is the development of existing technologies for concrete pouring in monolithic housing construction, on the other, it creates the prerequisites for the transition to a fundamentally new level of labor productivity in construction, which is based on automated execution construction operations and a reduction in the share manual labor while reducing material consumption and increasing the flexibility of architectural and space-planning design of buildings and structures. To reduce barriers to the wide application of additive manufacturing in construction, it is necessary to develop reasonable approaches to the design and calculation of buildings and structures erected using this technology, based on the features of printed concrete structures and an empirical assessment of possible differences in their operational properties from similar ones created using traditional molding technologies. This article discusses the results of the research and development work stage carried out by the authors. The main aim of the research was to obtain an experimental data for the development of recommendations for the design of buildings concrete structures created using the technology of additive manufacturing in construction, in terms of studying the effect of anisotropy of some strength characteristics concrete products made using a construction 3D concrete printer by layer-by-layer extrusion with vertical screw feeding of a dispersion-reinforced concrete mix.
A.O. ADAMTSEVICH, Candidate of Sciences (Engineering), Senior Researcher, NII SM&T (Research Institute of Building Materials and Technologies) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.P. PUSTOVGAR, Candidate of Sciences (Engineering), Scientific Supervisor, NII SM&T (Research Institute of Building Materials and Technologies) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Moscow State University of Civil Engineering (National Research) (NRU MGSU) (26, Yaroslavskoye Shosse, Moscow, 129337, Russian Federation)

1. Reinventing Construction: a route to higher productivity. McKinsey Global Institute analysis. 2017.
2. Nasir H., Ahmed H., Haas C., Goodrum P.M. An analysis of construction productivity differences between Canada and the United States. Construction Management and Economics. 2013, pp. 595–607, 2013. https://doi.org/10.1080/01446193.2013.848995
3. Mischke J. Reinventing construction: a route to higher productivity. McKinney Global Institute. Construction: Let’s build changes! 2017.
4. Naoum S. Factors influencing labor productivity on construction sites. International Journal of Productivity and Performance Management. 2016. Vol. 65 (3), pp. 401–421. DOI: 10.1108/IJPPM-03-2015-0045
5. Yiwei Wenga, Mingyang Li, Shaoqin Ruan, Teck Neng Wong, Ming Jen Tan, Kah Leong Ow Yeong, Shunzhi Qian. Comparative economic, environmental and productivity assessment of a concrete bathroom unit fabricated through 3D printing and a precast approach. Journal of Cleaner Production. 2020. Vol. 261. 121245. https://doi.org/10.1016/j.jclepro.2020.121245
6. Abhinav Bhardwaj, Scott Z. Jones, Negar Kalantar, Zhijian Pei, John Vickers, Timothy Wangler, Pablo Zavattieri, Na Zou. Additive manufacturing processes for infrastructure construction: a review. Journal of Manufacturing Science and Engineering. 2019. Vol. 141 (9). 091010 (13 pages). https://doi.org/10.1115/1.4044106
7. Paolini A., Kollmannsberger S., Rank E. Additive manufacturing in construction: a review on processes, applications, and digital planning methods. Additive Manufacturing. 2019. Vol. 30. 100894. https://doi.org/10.1016/j.addma.2019.100894
8. Panda B., Tay Y.W.D., Paul S.C., Tan M.J. Current challenges and future potential of 3D concrete printing: aktuelle Herausforderungen und Zukunftspotenziale des 3D-Druckens bei Beton. Materialwissenschaft und Werkstofftechnik. 2018. Vol. 49 (5), pp. 666–673. DOI: 10.1002/mawe.201700279
9. Buswell R.A., Leal de Silva W.R., Jones S.Z., Dirrenberger J. 3D printing using concrete extrusion: a roadmap for research. Cement and Concrete Research. 2018. Vol. 112, pp. 37–49. 10.1016/j.cemconres.2018.05.006.
10 Wangler T., Roussel N., Bos F.P., T.A.M. Salet, R.J. Flatt, «Digital concrete: a review».Cem. Concr. Res., 123 (2019), p. 105780, 10.1016/j.cemconres.2019.105780.
11. Shaodan Hou, Zhenhua Duan, Jianzhuang Xiao, Jun Ye. A review of 3D printed concrete: Performance requirements, testing measurements and mix design. Construction and Building Materials. 2021. Vol. 273. 10.1016/j.conbuildmat.2020.121745
12. Panda B., Chandra Paul S., Jen Tan M. Anisotropic mechanical performance of 3D printed fiber reinforced sustainable construction material. Materials Letters. 2017. Vol. 209, pp. 146–149.
13. Guowei Ma, Zhijian Li, Li Wang. Fang Wang, Jay Sanjayan. Mechanical anisotropy of aligned fiber reinforced composite for extrusion-based 3D printing. Construction and Building Materials. 2019. Vol. 202, pp. 770–783. https://doi.org/10.1016/j.conbuildmat.2019.01.008
14. Hambach M., Volkmer D. Properties of 3D-printed fiber-reinforced Portland cement paste. Cement and Concrete Composites. 2017. Vol. 79, pp. 62–70. https://doi.org/10.1016/j.cemconcomp.2017.02.001
15. Feng P., Meng X., Chen J., Ye L. Mechanical properties of structures 3D printed with cementitious powders. Construction and Building Materials. 2015. Vol. 93, pp. 486–497. https://doi.org/10.1016/j.conbuildmat.2015.05.132
16. Wolfs R.J.M., Bos F.P., Salet T.A.M. Hardened properties of 3D printed concrete: The influence of process parameters on interlayer adhesion. Cement and Concrete Research. 2019. Vol. 119, pp. 132–140. https://doi.org/10.1016/j.cemconres.2019.02.017
17. Le T.T., Austin S.A., Lim S., Buswell R.A., Law R., Gibb A.G.F. Hardened properties of high-performance printing concrete. Cement and Concrete Research. 2012. Vol. 42. Iss. 3, pp. 558–566. https://doi.org/10.1016/j.cemconres.2011.12.003
18. Viktor Mechtcherine, Kim van Tittelboom, Ali Kazemian, Eric Kreiger, Behzad Nematollahi, Venkatesh Naidu Nerella, Manu Santhanam, Geert de Schutter, Gideon Van Zijl, Dirk Lowke, Egor Ivaniuk, Markus Taubert, Freek Bos. A roadmap for quality control of hardening and hardened printed concrete». Cement and Concrete Research. 2022. Vol. 157. 106800. https://doi.org/10.1016/j.cemconres.2022.106800

For citation: Adamtsevich A.O., Pustovgar A.P. Additive manufacturing in construction: the research of the anisotropy concrete strength effect. Stroitel’nye Materialy [Construction Materials]. 2022. No. 9, pp. 18–24. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-806-9-18-24

Dry Building Mixes Market in Russia: Half-Year Results

Number of journal: 9-2022
Autors:

Botka E.N.

DOI: https://doi.org/10.31659/0585-430X-2022-806-9-15-17
УДК: 666.96

 

AbstractAbout AuthorsReferences
The results of the work of the industry of dry building mixes in the first half of 2022 are considered. The market of modified mixes in Russia, despite the difficulties, maintained an increase of 2%. After an increase of 12% in the first quarter, the market contracted by 4% in the second quarter. Exports increased markedly in the first half of the year, while imports declined less than might have been expected. In the whole year, a moderate reduction of the market by 4–6% is expected. Variants of the forecast of market dynamics for 2022–2024 are formulated.
E.N. BOTKA, General Director (This email address is being protected from spambots. You need JavaScript enabled to view it.)

“Stroitelnaya Informatzia” Co. (73, office 320, Ligovskiy Prospect, Saint-Petersburg, 191040, Russian Federation)

For citation: Botka E.N. Dry building mixes market in Russia: half-year results. Stroitel’nye Materialy [Construction Materials]. 2022. No. 9, pp. 15–17. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-806-9-15-17

Comparison of Methods of Testing the Modulus of Elasticity of Concrete According to Russian and Foreign Normative Documents

Number of journal: 9-2022
Autors:

Krylov S.B.,
Arleninov P.D.,
Kalmakova P.S.

DOI: https://doi.org/10.31659/0585-430X-2022-806-9-4-9
УДК: 624.046.4

 

AbstractAbout AuthorsReferences
The main approaches to conducting short-term tests to determine the modulus of elasticity of concrete, which are regulated by GOST 24452–80, which is in force on the territory of the Russian Federation, as well as foreign standards ISO 1920-10:2010, ASTM C469-14, BS EN 12390-10, are analyzed. To determine the fundamental differences in testing to determine the modulus of elasticity of concrete according to Russian and foreign standards. The values of the modulus of elasticity one of the main parameters, obtained from the tests carried out in accordance with the specified standards, are laid down as initial data when performing spatial calculations and given in regulatory documents such as SP, ModelCode, EuroCod, etc., the analysis of which shows the difference in the values of the elastic moduli for the corresponding strength classes of concrete. Materials and methods: the article discusses the dimensions and shapes of the tested samples, the parameters of the measurement base and the type of measuring equipment, loading modes. The analysis of the main stages of testing to determine the modulus of elasticity of concrete given in the article revealed serious differences in the approaches of the Russian GOST 24452–80 and foreign standards (all foreign standards are relatively harmonized among themselves, although there are also differences). The main differences in the parameters of the samples and loading modes. For further harmonization of domestic and foreign regulatory documents, it is necessary to conduct extensive comparative tests of samples of different shapes and sizes with loading modes for each of the standards for each type of samples.
S.B. KRYLOV, Doctor of Sciences (Engineering),
P.D. ARLENINOV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
P.S. KALMAKOVA, Engineer

Research, Design and Technological Institute of Concrete and Reinforced Concrete – NIIZhB named after A.A. Gvozdev, JSC “Research Center “Construction” (building 5, 6, 2nd Institutskaya Street, Moscow, 109428, Russian Federation)

1. ГОСТ 24452–80 Бетоны. Методы определения призменной прочности, модуля упругости и коэффициента Пуассона. Введен постановлением Государственного комитета СССР по делам строительства от 18 ноября 1980 г. № 177 – дата введения 1982-01-01.
1. GOST 24452–80 Concrete. Methods for determining prismatic strength, modulus of elasticity and Poisson’s ratio. Introduced by the Decree of the State Committee of the SSR for Construction of November 18, 1980 No. 177. Date of introduction 1982-01-01. (In Russian).
2. Нажуев М.П., Джамилова П.М., Батаева Ф.А., Бакаев З.И., Кукаев А.Х., Османов А. Влияние режимов виброцентрифугирования на свойства получаемых бетонов // Вестник БГТУ им. В.Г. Шухова. 2021. С. 8–19.
2. Nazhuev M.P., Dzhamilova P.M., Bataeva F.A., Bakaev Z.I., Kukaev A.Kh., Osmanov A. Influence of vibrocentrifugation modes on the properties of the resulting concretes. Vestnik BSTU named after V.G. Shukhov. 2021, pp. 8–19. (In Russian).
3. Свиридов Н.В., Коваленко М.Г., Чесноков В.М. Механические свойства особо прочного цементного камня // Бетон и железобетон. 1991. № 2. С. 7–9.
3. Sviridov N.V., Kovalenko M.G., Chesnokov V.M. Mechanical properties of especially strong cement stone. Beton i Zhelezobeton [Concrete and reinforced concrete]. 1991. No. 2, pp. 7–9. (In Russian).
4. Qirui Luo, Wei Wang, Zhuangzhuang Sun, Bingjie Wang, Shanwen Xu. Statistical analysis of mesoscopic concrete with random elastic modulus. Journal of Building Engineering. 2021.101850. https://doi.org/10.1016/j.jobe.2020.101850
5. Yueyi Gao, Chuanlin Hu, Yamei Zhang, Zongjin Li, Jinlong Pan. Investigation on microstructure and microstructural elastic properties of mortar incorporating fly ash. Cement and Concrete Composites. 2018. Vol. 86, pp. 315–321. https://doi.org/10.1016/j.cemconcomp.2017.09.008
6. Meenakshi Sharma, Shashank Bishnoi. Influence of properties of interfacial transition zone on elastic modulus of concrete: Evidence from micromechanical modelling. Construction and Building Materials. 2020. Vol. 246. 1183814. https://doi.org/10.1016/j.conbuildmat.2020.118381
7. Qinghe Wang, Zhe Li, Yuzhuo Zhang, Huan Zhang, Mei Zhou, Yanfeng Fang. Influence of coarse coal gangue aggregates on elastic modulus and drying shrinkage behaviour of concrete. Journal of Building Engineering. 2020. Vol. 32. 101748 15. https://doi.org/10.1016/j.jobe.2020.101748
8. Nayara S. Klein, Lauri A. Lenz, Wellington Mazer. Influence of the granular skeleton packing density on the static elastic modulus of conventional concretes. Construction and Building Materials. 2020. Vol. 242. 118086 https://doi.org/10.1016/j.conbuildmat.2020.118086
9. ISO 1920-10:2010 «Testing of concrete – Part 10: Determination of static modulus of elasticity in compression». Reviewed and confirmed in 2016. First edition 2010-09-15.
10. BS EN 12390-13:2013 «Testing hardened concrete. Part 13: Determination of secant modulus of elasticity in compression». This British Standard was published under the authority of the Standards Policy and Strategy Committee on 30 November 2013.
11. ASTM C469/C469M-14 «Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression» committee C09 has identified the location of selected changes to this standard since the last issue (C469/C469M-10) that may impact the use of this standard (Approved March 1, 2014).
12. fib Model Code for Concrete Structures 2010. 2013. 434 p.
13. ТКП EN 1992-1-12009 (02250) Еврокод 2 «Проектирование железобетонных конструкций Часть 1-1. Общие правила и правила для зданий». Утвержден и введен в действие Приказом Министерства архитектуры и строительства Республики Беларусь от 10 декабря 2009 г. № 404.
13. TKP EN 1992-1-12009 (02250) Eurocode 2 «Design of reinforced concrete structures Part 1-1. General rules and rules for buildings”. Approved and put into effect by the order of the Ministry of Architecture and Construction of the Republic of Belarus dated December 10, 2009. No. 404.
14. СП 63.13330.2018 «Бетонные и железобетонные конструкции. Основные положения». Утвержден Приказом Министерства строительства и жилищно-коммунального хозяйства Российской Федерации от 19 декабря 2018 г. № 832/пр – дата введения 2019-06-20.
14. SP 63.13330.2018 “Concrete and reinforced concrete structures. Basic Provisions». Approved by Order of the Ministry of Construction, Housing and Communal Services of the Russian Federation dated December 19, 2018 No. 832/pr. Date of introduction 2019-06-20. (In Russian).

For citation: Krylov S.B., Arleninov P.D., Kalmakova P.S. Comparison of methods of testing the modulus of elasticity of concrete according to Russian and foreign normative documents. Stroitel’nye Materialy [Construction Materials]. 2022. No. 9, pp. 4–9. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-806-9-4-9

On the Calculation of the Strength of Inclined Sections of Reinforced Concrete Elements with Different Cross-Section Shapes

Number of journal: 8-2022
Autors:

Mukhamediev T.A.,
Zenin S.A.

DOI: https://doi.org/10.31659/0585-430X-2022-805-8-70-74
УДК: 666.972:691.620.192

 

AbstractAbout AuthorsReferences
The current SP 63.13330.2018 contains methods for calculating the strength in inclined sections only for elements with a rectangular cross-section shape. The article considers the issues of calculating the strength of inclined sections of reinforced concrete elements with different shapes of their cross-section. A method for taking into account the shape of the cross-section of elements when calculating them along a concrete strip between inclined sections, when calculating the action of transverse forces and the action of bending moments is described. Dependences are given for calculating elements with a T-bar, I-beam, round, annular and trapezoidal cross-section shape, as well as with a cross-section in the form of a cross. A comparison of the results of calculating the strength of inclined sections of elements made according to different methods, as well as a comparison of the calculation results with experimental data, is presented. In general, the results obtained for calculating the strength of inclined sections of reinforced concrete elements with different cross-sectional shapes are consistent with experimental data.
T.A. MUKHAMEDIEV, Doctor of Sciences (Engineering), (This email address is being protected from spambots. You need JavaScript enabled to view it.),
S.A. ZENIN, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Research Institute of Concrete and Reinforced Concrete (NIIZB) named after A.A. Gvozdev, JSC “Research Center of Construction” (6, bldg. 5, 2nd Institutskaya Street, Moscow, 109428, Russian Federation)

1. Uffe G. Jensen, Linh C. Hoang, Henrik B. Joergensen, Lars S. Fabrin. Shear strength of heavily reinforced concrete members with circular cross section. Engineering Structures. 2010. 32, рр. 617–626.
2. Шиванов В.Н., Ягодин В.К. Определение поперечной силы в изгибаемых железобетонных элементах кольцевого сечения // Бетон и железобетон. 1968. № 1. С. 37–38.
2. Shivanov V.N., Yagodin V.K. Determination of the transverse force in the bent reinforced concrete elements of the annular section. Beton i Zhelezobeton [Concrete and Reinforced Concrete]. 1968. No. 1, pp. 37–38. (In Russian).
3. Изотов Ю.Л. Прочность железобетонных балок. Киев: Будiвельник. 1978. 160 с.
3. Izotov Yu.L. Prochnost ghelezobetonnyh balok [Strength of reinforced concrete beams]. Kiev: Budivelnik, 1978. 160 p.
4. Свердлов Б.М. Совершенствование методов расчета прочности ригелей каркасных зданий: Дис. … канд. техн. наук. Москва, 1989. 149 с.
4. Sverdlov B.M. Improve-ment of methods for calculating the strength of crossbars of frame buildings. Dis... Candidate of Sciences. Moscow. 1989. 149 p. (In Russian).
5. Rendy Thamrin et al. Shear Strength of Reinforced Concrete T-beams without Stirrups. Journal of Engineering Science and Technology. 2016. Vol. 11, No. 4, pp. 548–562.
6. Rendy Thamrin et al. Shear Capacity of Reinforced Concrete Beams with Square Cross Section Subjected to Biaxial Bending. 2020 IOP Conf. Ser.: Mater. Sci. Eng. 713 012029
7. СНиП 2.03.01–84* «Бетонные и железобетонные конструкции». М., 1985.
7. SNiP 2.03.01–84* “Betonnye I Zhelezobetonnye Construksii”. Moscow. 1985.
8. ЕN 1992-1-1:2004 Eurocode 2: Design of concrete structures. Part 1-1: General rules and rules for buildings.
9. Крылов С.Б., Травуш В.И., Крылов А.С. Модель прочности наклонных сечений балок произвольной формы // Вестник НИЦ «Строительство». 2020. № 4 (27). С. 46–64.
9. Krylov S.B., Travush V.I., Krylov A.S. Strength model of inclined sections of beams of arbitrary shape. Vestnik NITS “Stroinelstvo”. 2020. No. 4 (27), pp. 46–64.

For citation: Mukhamediev T.A., Zenin S.A. On the calculation of the strength of inclined sections of reinforced concrete elements with different cross-section shapes. Stroitel’nye Materialy [Construction Materials]. 2022. No. 8, pp. 70–74. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-805-8-70-74

Application of Pyrolytic Chromatography-Mass Spectrometry in Quality Control of Building Polymers and Composites

Number of journal: 8-2022
Autors:

Rudakov O.B.,
Khorokhordin A.M.,
Rudakov Ya.O.,
Khorokhordina E.A.

DOI: https://doi.org/10.31659/0585-430X-2022-805-8-65-69
УДК: 691.175/8

 

AbstractAbout AuthorsReferences
In a brief review, the possibilities of the pyrolytic gas chromatography-mass spectrometry (Py–GC–MS) method in the identification and quality control of polymers and composites based on them used in building materials, in determining the thermal and physical characteristics of high-molecular compounds, their molecular mass distribution, in establishing the structure of the structural units of homo- and heteropolymers, in the identification of additives used in polymer materials, in quality control and safety of polymer products. Pyrolytic cells used in Py–GC–MS allow the suspended sample (both solid and liquid) to be placed in a quartz-coated steel crucible, which can be heated up to 1050оC. Modern Py–GC–MS complexes operate in 6 main modes: analysis in the pyrolysis temperature programming mode; single-stage pyrolysis; thermal desorption; two-stage and multi-stage analysis with chromatographic separation of each thermal zone; and reaction pyrolysis. Examples of the use of the Py–GC–MS method in quality control of polyvinyl chloride, composite materials based on polyethylene, wood-composite materials, fluorocarbon elastomers, compositions of polyurea and polyurethane, inorganic binders are given.
O.B. RUDAKOV, Doctor of Sciences (Chemistry) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.M. KHOROKHORDIN, Head of the Center (This email address is being protected from spambots. You need JavaScript enabled to view it.),
Ya.O. RUDAKOV, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
E.A. KHOROKHORDINA, Candidate of Sciences (Chemistry) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Voronezh State Technical University (84, 20th Anniversary of October Street, Voronezh, 394006, Russian Federation)

1. Alekseeva K.V. Piroliticheskaya gazovaya hromatografiya [Pyrolytic gas chromatography]. Moscow: Himiya. 1985. 256 p.
2. Pytskiy I.S., Kuznecova E.S., Buryak A.K. Mass spectrometry as a modern method for the analysis of polymer. Sorbcionnye i hromatograficheskie processy. 2021. Vol. 21. No. 1, pp. 69–76. (In Russian). DOI: 10.17308/sorpchrom.2021.21/3221
3. Tsuge Snin, Ohtani Hajime, Watanabe Chuichi. Pyrolysis-GC/MS Data Book of Synthetic Polymers. Pyrograms, Thermograms and MS of Pyrolyzates. Elsevier. 2011. 390 р.
4. Tae Uk Han, Young-Min Kim, Chuichi Watanabe, Norio Teramae, Young-Kwon Park, Seungdo Kim, Yunhee Lee. Analytical pyrolysis properties of waste medium-density fiberboard and particle board. Journal of Industrial and Engineering Chemistry. 2015. Vol. 32. No. 12, pp. 345–352. DOI: 10.1016/j.jiec.2015.09.008
5. Perova A.N., Brevnov P.N, Usachev S.V. Comparative analysis of thermal and physical-mechanical properties of polyethylene compositions containing microcrystalline and nanofibrillar cellulose. Himicheskaya fizika. 2021. Vol. 40. No. 7, pp. 49–57. (In Russian). DOI 10.31857/S0207401X21070074
6. Vaganov-Vil’kins A.A., Rudnev V.S., Pavlov A.D., Suhoverhov S.V. Composition of composite polymer-oxide coatings on aluminum according to pyrolytic chromatography-mass spectrometry data. Fizikohimiya poverhnosti i zashchita materialov. 2018. Vol. 54. No. 3, pp. 280–286. (In Russian). DOI: 10.7868/S0044185618030099
7. Hiltz J.A. Characterization of fluoroelastomers by various analytical techniques including pyrolysis gas chromatography/mass spectrometry. Journal of analytical and applied pyrolysis. 2014 Vol. 109. No. 9, pp. 283–295. DOI: 10.1016/j.jaap.2013.06.008
8. Hiltz J.A. Analytical pyrolysis gas chromatography/mass spectrometry (py-GC/MS) of poly(ether urethane)s, poly(ether urea)s and poly(ether urethane-urea)s. Journal of analytical and applied pyrolysis. 2015. Vol. 113. No. 5, pp. 248–258. DOI: 10.1016/j.jaap.2015.01.013.
9. Cheknavoryan A.A. New methods of pyrolytic gas chromatography-mass spectrometry for the determination of chemical additives in Portland cement (Part I). ALITinform: Cement. Beton. Suhie smesi. 2013. Vol. 29. No. 2, pp. 76–83. (In Russian).
10. Cheknavoryan A.A. New methods of pyrolytic gas chromatography-mass spectrometry for the determination of chemical additives in Portland cement (Part II). ALITinform: Cement. Beton. Suhie smesi. 2013. Vol. 30. No. 3, pp. 88–95(In Russian).
11. Mai Matsueda, Marco Mattonai, Itsuko Iwai, Atsushi Watanabe, Norio Teramaea, William Robberson, Hajime Ohtani, Young-Min Kim, Chuichi Watanabe. Preparation and test of a reference mixture of eleven polymers with deactivated inorganic diluent for microplastics analysis by pyrolysis-GC–MS. Journal of analytical and applied pyrolysis. 2021. Vol. 154, No. 3. 104993. DOI: 10.1016/j.jaap.2020.104993
12. La Nasa J., Biale G., Fabbri D., Modugno F. A review on challenges and developments of analytical pyrolysis and other thermoanalytical techniques for the quali-quantitative determination of microplastics. Journal of Analytical and Applied Pyrolysis. 2020. Vol. 149. No. 8. 104841. DOI: 10.1016/j.jaap.2020.104841
13. Rudakov O.B., Rudakova L.V. Microplastics are a hot topic of food contamination. Pererabotka molo-ka. 2020. No. 1, pp. 32–35. (In Russian). DOI: 10.33465.2222-5455-2020-01-32-34
14. Rudakov O.B., Rudakova L.V. Plastic nanoparticles are a topical food contaminant. Myasnye tekhno-logii. 2019. No. 10, pp. 36–39. (In Russian). DOI: 10.33465/2308-2941-2019-10-48-51

For citation: Rudakov O.B., Khorokhordin A.M., Rudakov Ya.O., Khorokhordina E.A. Application of pyrolytic chromatography-mass spectrometry in quality control of building polymers and composites. Stroitel’nye Materialy [Construction Materials]. 2022. No. 8, pp. 65–69. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-805-8-65-69

Concrete Recycling: Cooperation in the Field of Environmentally Efficient Technologies

Number of journal: 8-2022
Autors:

Baykina N.V.,
Ayzenshtadt A.M.

DOI: https://doi.org/10.31659/0585-430X-2022-805-8-59-61
УДК: 579.222.2:666.972

 

AbstractAbout AuthorsReferences
New approaches to the audit of waste before demolition and renovation of buildings and management of construction waste are being studied by experts from three countries – Russia, Norway and Finland – within the framework of the international project: “Concrete recycling: cooperation in the field of environmentally efficient technologies in the Arctic zone” / “DeConcrete: Eco-efficient Arctic Technologies Cooperation”. It is important for scientists to understand what hidden possibilities the destroyed concrete contains, how it is possible to initiate physico-chemical processes that contribute to its practical application. The data obtained will be used to create new composite materials based on recycled concrete.
N.V. BAYKINA, Expert (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.M. AYZENSHTADT, Doctor of Sciences (Chemistry) (This email address is being protected from spambots. You need JavaScript enabled to view it.)\

Northern (Arctic) Federal University named after M.V. Lomonosov (17, Severnaya Dvina Emb., Arkhangelsk, 163002, Russian Federation)

1. Vladimirov S.N. Problems of waste processing in the construction industry. Sistemnyye tekhnologii. 2016. No. 2 (19), pp. 101–105. (In Russian).
2. Kaunova A.S., Mikhailova M.A. Modern methods of construction waste disposal. Elektronnyy nauchnyy zhurnal. 2017. No. 1–2 (16), pp. 218–221. (In Russian).
3. Klyueva N.A. Problems of disposal of construction waste. In the collection: The potential of digital transformation of entrepreneurship. Materials of the international scientific-practical conference. 2019, pp. 47–49. (In Russian).
4. Shevtsov V.R., Starikov A.P., Goncharov V.G. The use of industrial waste in the construction of roads. In the collection: Development of the road transport complex and construction infrastructure based on rational environmental management. materials of the VII All-Russian Scientific and Practical Conference (with international participation). 2012, pp. 216–220. (In Russian).
5. Erokhina Ya.Yu., Sergienko A.D., Gerasimova A.V. The use of secondary raw materials in the production of building materials. Days of Student Science. Collection of reports of the scientific and technical conference on the results of research work of students of the Institute of Hydrotechnical and Power Engineering NRU MGSU. Moscow. 2020, pp. 95–106. (In Russian).
6. Zaitseva L.R., Lutsyk E.V., Latypova T.V., Latypov V.M., Fedorov P.A., Popov V.P. Influence of the type of filler from production waste on the corrosion resistance of concrete. Stroitel’nye Materialy [Construction Materials]. 2021. No. 11, pp. 23–29. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-797-11-23-29
7. Lukuttsova N.P., Pykin A.A., Soboleva G.N., Zolotukhina N.V., Obydennaya A.A. Composite aggregate for lightweight concrete using chrysotile cement and ash and slag waste. Stroitel’nye Materialy [Construction Materials]. 2021. No. 8, pp. 53–59. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-794-8-53-59
8. Matar P.Yu., Petropavlovskaya V.B., Barkaya T.R., Baisari M.F., El’-Khasaniie L.S Hollow wall concrete blocks with recycled aggregates and glass. Stroitel’nye Materialy [Construction Materials]. 2016. No. 3, pp. 69–75. (In Russian).
9. Lotov V.A., Suleimenova M.E., Osmonov P.A. The use of man-made waste in the manufacture of building materials. V International Conference-School on Chemical Technology. Collection of abstracts of reports of the satellite conference of the XX Mendeleev Congress on General and Applied Chemistry. 2016, pp. 260–262. (In Russian).
10. Ryazanova G.N., Lukyanova A.O. Evaluation of the problems of development of the process of housing renovation in large cities of Russia. Gradostroitel’stvo i arkhitektura. 2020. Vol. 10. No. 2 (39), pp. 131–138. (In Russian).
11. Asanova A.S., Luzgina E.A. Modern material-saving methods of construction waste processing. Sovremennyye nauchnyye issledovaniya i innovatsii. 2016. No. 11 (67), pp. 181–184. (In Russian).
12. Kalgin A.A., Fakhratov M.A., Sokhryakov V.I. Experience in the use of crushed concrete waste in the production of concrete and reinforced concrete products. Stroitel’nye Materialy [Construction Materials]. 2010. No. 6, pp. 32–33. (In Russian).

For citation: Baykina N.V., Ayzenshtadt A.M. Concrete recycling: cooperation in the field of environmentally efficient technologies. Stroitel’nye Materialy [Construction Materials]. 2022. No. 8, pp. 59–61. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-805-8-59-61

Pozzolanic Constituent Impact on Structure and Properties of Modified Sulfate-Based Composites

Number of journal: 8-2022
Autors:

Gordina A.F.,
Polyanskikh I.S.,
Zhukova N.S.,
Yakovlev G.I.

DOI: https://doi.org/10.31659/0585-430X-2022-805-8-51-58
УДК: 666.913

 

AbstractAbout AuthorsReferences
Size, shape, crystal morphology, interphase state, number and strength of an interaction among hydrated new growths are the main characteristics of gypsum structure and all of that forms physical-technical properties of the material. In this work the impact of mineral additives on structure and properties of gypsum based composites is taken into consideration by using scanning electron microscopy, energy-dispersive X-ray analysis, IR-spectroscopy. Used mineral additives include a mixture of Portland cement and a constituent which is based on different forms of silicium dioxide. As binder gypsum with grade G5 was used, as modifiers mineral additives such metakaolin, dehydrated clay, aleurolite, ceramic dust, fined mineral wool, diabase were used. It was confirmed that a combined use of modifiers improves physical-mechanical properties of gypsum binder, this effect is likely to bring about by new growths formation such as hydrated silicates and calcium aluminate hydrates. These new growths are to fill porous and void spaces in hydrated structure of gypsum binder. Also, while the composite is hardening these mineral additives play role as crystal seeds. Structure, spectral data of functional groups and local composition of new growths have been compared for modified composites with effective amount of additives. Changes in IR spectrums and microstructure have proved a suggestion about pozzolanic constituent impact on structure and properties of modified sulfate-based composites.
A.F. GORDINA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
I.S. POLYANSKIKH, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
N.S. ZHUKOVA, Engineer (postgraduate) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
G.I. YAKOVLEV, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Kalashnikov Izhevsk State Technical University (7, Studencheskaya Street, Izhevsk, 426000, Russian Federation)

1. Belov V.V., Buranov А.F., Yakovlev G.I., Petropavlovskaya V.B., Fisher H.-B., Maeva I.S., Novichenkova Т.B. Modifikatsiya struktury i svoistv stroitel’nykh kompozitov na osnove sul’fata kal’tsiya: monografiya [Modification of the structure and properties of calcium sulfate-based building composites: monography] Мoscow: Publishing house De Nova. 2012. 196 p.
2. Korovyakov V.F. Modern advances in water-resistant gypsum binders. Collection of scientific works. Мoscow: State unitary enterprise NIIMosstroy. 2006. 149 p. (In Russian).
3. Chernysheva N.V., Ageeva М.S., Elyan Issa Zhyamal Issa, Drebezgova М.Yu. Influence of mineral additives of different genesis on microstructure of gypsum cement stone. Vestnik BSTU named after V.G. Shukhov. 2013. No. 4, pp. 12–18. (In Russian).
4. Panteleev А.S., Timashev V.V. Hardening of binders in the presence of crystalline additives of various structures. Stroitel’nye Materialy [Construction Materials]. 1961. No. 12, pp. 32–34. (In Russian).
5. Korolev Е.V. Nanotechnology in building materials science. Status and achievement analysis. Development paths. Stroitel’nye Materialy [Construction Materials]. 2014. No. 11, pp. 47–79. (In Russian).
6. Izotov V.S., Muhametrahimov R.H., Galautdinov А.R. Study of the effect of active mineral additives on the rheological and physical-mechanical properties of gypsum-pozzolan binder. Stroitel’nye Materialy [Construction Materials]. 2015. No. 5, pp. 20–23. (In Russian).
7. Muhametrahimov R.H., Galautdinov А.R. The role of active mineral additives of natural origin in the formation of the structure and properties of gypsum-cement-pozzolan binder. Vestnik of Kazan Technical University. 2017. No. 6, pp. 60–63. (In Russian).
8. Galautdinov А.R., Muhametrahimov R.H. Features of hydration of modified gypsum-cement-pozzolan binder. Stroitel’nye Materialy [Construction Materials]. 2019. No. 10, pp. 58–61. (In Russian). DOI: 10.31659/0585-430X-2019-775-10-58-63
9. Il’icheva О.М., Naumkina N.I., Lygina Т.Z. On the structural perfection of natural and synthetic silica. Vestnik of Kazan Technical University. 2010. No. 8, pp. 459–463. (In Russian).
10. Ignatova А. М. Rules for managing the structure and properties of stone casting material. Vestnik PNIPU. Mashinostroenie, materialovedenie. 2010. No. 3, pp. 94–102. (In Russian).
11. Yakovlev G., Gordina A., Khritankov V. ,et al. Gypsum composition with siltstone-based mineral modifier. Selected papers of the 13th International Conference “Modern Building Materials, Structures and Techniques”. Vilnius: Vilnius Gediminas Technical University. 2019, pp. 217–223. DOI: 10.3846/mbmst.2019.041
12. Khaliullin М.I., Nuriev М.I., Rakhimov R.Z., Gaifullin А.R. Influence of thermoactivated clay additive on properties of composite gypsum binder. Izvestiya KazGASU. 2016. No. 1 (35), pp. 205–210. (In Russian).
13. Petropavlovskaya V.B. Use of mineral ultrafine modifiers based on industrial waste in gypsum composites. Stroitel’nye Materialy [Construction Materials]. 2018. No. 8. pp. 18-23. (In Russian). DOI: 10.31659/0585-430X-2018-762-8-18-23
14. Segodnik D.N., Potapova Е.N. Gypsum-pozzolan binder with active mineral additive metacaolin. Uspekhi v khimii i khimicheskoi tekhnologii. 2014. No. 8 (157), pp. 77–79. (In Russian).
15. Barkovskaya S.V., Pchel’nikova V.А. Development of composite gypsum binders using expanded clay dust and glass cladding. Ekspert: teoriya i praktika. 2022. No. 3 (18), pp. 34–38. (In Russian). DOI: 10.51608/26867818_2022_3_34

For citation: Gordina A.F., Polyanskikh I.S., Zhukova N.S., Yakovlev G.I. Pozzolanic constituent impact on structure and properties of modified sulfate-based composites. Stroitel’nye Materialy [Construction Materials]. 2022. No. 8, pp. 51–58. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-805-8-51-58

Textile-Reinforced Modified Gypsum Concrete

Number of journal: 8-2022
Autors:

Bessonov I.V.,
Zhukov A.D.,
Gorbunova E.A.,
Govryakov I.S.

DOI: https://doi.org/10.31659/0585-430X-2022-805-8-46-50
УДК: 691.328:691.335

 

AbstractAbout AuthorsReferences
The purpose of the work was to study the properties of textile-reinforced modified gypsum concrete (textile gypsum concrete) and develop a material composition for the manufacture of decorative facade slabs and various small architectural forms with increased weather resistance and bending strength. The use of a reinforcing material (textile canvas made of carbon, basalt, or polyester fibers) allows you to create products of small thickness. Improved water resistance is obtained using additives that modify gypsum. The system of waterproof gypsum binder and reinforcing layer of textile fabric makes it possible to obtain products of complex architectural forms with the possibility of using them under atmospheric conditions. The results obtained can be used in the design of the composition of the material, in applications where architectural expressiveness, high flexural strength and water resistance are needed. The composite can be used to make complex shapes of decorative facade panels, small architectural forms such as park furniture, sculptures, etc.
I.V. BESSONOV1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.D. ZHUKOV2,1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
E.A. GORBUNOVA1,2, Engineer, student (This email address is being protected from spambots. You need JavaScript enabled to view it.),
I.S. GOVRYAKOV1,2, Engineer, student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Research Institute of Building Physics Russian Academy Architecture and Construction sciences (21, Lokomotivniy Driveway, Moscow, 127238, Russian Federation)
2 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Lesovik V.S., Glagolev E.S., Popov D.Y., Lesovik  G.A., Ageeva M.S. Textile-reinforced concrete using composite binder based on new types of mineral raw materials. IOP conference series: Materials science and Engineering. 2018. Vol. 327. 032033 DOI: 10.1088/1757-899X/327/3/032033
2. Lesovik V.S., Popov D.Yu., Glagolev E.S. Textile-concrete – effective reinforced composite of the future. Stroitel’nye Materialy [Construction Materials]. 2017. No. 3, рр. 81–84. (In Russian).
3. Popov D.Yu. Status and prospects for the use of textile concrete. Promyshlennoe i grazhdanskoe stroitel’stvo. 2018. No. 3, pp. 51–57. (In Russian).
4. Volkova A.A., Pajkov A.V., Semenov S.G., Mel’nikov B.E. Structure and properties of textile-reinforced concrete. Inzhenerno-stroitel’niy zhurnal. 2015. No. 7, pp. 50–55. (In Russian).
5. Lesovik V. S., Popov D. Yu. Improving the efficiency of textile concrete. Regional’naya arhitektura i stroitel’stvo. 2017. No. 4, pp. 10–16. (In Russian).
6. Poudel R.S., Bessonov I.V., Zhukov A.D., Gudkov P.K., Gorbunova E.A., Mihaylik E.D. Digital methods for optimizing textile concrete technology. Stroitel’nye Materialy [Construction Materials]. 2022. No. 6, pp. 20–24. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-803-6-20-24
7. Pyataev E.R., Medvedev A.A., Poserenin A.I., Burtseva M.A., Mednikova E.A. and Mukhametzyanov V.M. Theoretical principles of creation of cellular concrete with the use of secondary raw materials and dispersed reinforcement. 2018. MATEC Web Conference. VI International Scientific Conference “Integration, Partnership and Innovation in Construction Science and Education” (IPICSE-2018). DOI: https://doi.org/10.1051/matecconf/20182510101211
8. Scherer, S., Michler, H., Curbach, M. Brücken aus Textilbeton. Handbuch Brücken: Entwerfen, Konstruieren, Berechnen, Bauen und Erhalten (2014), рр. 118–129.
9. Hegger J., Goralksi C., Kulas C. Schlanke fuβgängerbrücke aus textilbeton. Sechsfeldrige Fuβgängerbrücke mit einer Gesamtlänge von 97 m. Beton- und Stahlbetonbau. 2011. Vol. 106. Iss. 2, pp. 64–71.
10. Efimov B., Isachenko S., Kodzoev M.-B., Dosanova G., Bobrova E. Dispersed reinforcement in concrete technology. E3S Web of Conferences. 2019. Vol. 110. 01032. DOI: https://doi.org/10.1051/e3sconf/201911001032
11. Schladitz F., Lorenz E., Jesse F., Curbach M. Verstärkung einer denkmalgeschätzten Tonnenschale mit Textilbeton. Beton- und Stahlbetonbau. 2009. Vol. 104. Iss. 7, рр. 432–437.
12. Mana Halvaei, Masoud Jamshidi, Masoud Latifi, Mojtab Ejtemaei. Experimental investigation and modelling of flexural properties of carbon textile reinforced concrete. Construction and Building Materials. 2020. Vol. 262, pp. 15–25. https://doi.org/10.1016/j.conbuildmat.2020.120877
13. Hadi Bolooki Poorsaheli, Amir Behravan, Seyed TahaTabatabaei Aghda Durability performance of hybrid reinforced concretes (steel fiber + polyolefin fiber) in a harsh marine tidal zone of Persian Gulf. Construction and Building Materials. 2021. Vol. 266, pp. 15–25. https://doi.org/10.1016/j.conbuildmat.2020.121176
14. Strokova V.V. Features of phase formation in composite nanostructure-ridged gypsum, astringent. Stroitel’nye Materialy [Construction Materials]. 2012. No. 7, pp. 9–12. (In Russian).
15. Bessonov I.V. Gypsum of increased water resistance. Collection of reports of the III scientific-practical conference “Problems of building thermal physics and energy saving in buildings”. Moscow: NIISF. 1998, pp. 112–117. (In Russian).
16. Bessonov I.V., Zhukov A.D., Gorbunova E.A. Gypsum-containing modified materials. Stroitel’nye Materialy [Construction Materials]. 2021. No. 8, pp. 18–26. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-794-8-18-26
17. GOST R 70034–2022 Gypsum decorative products for building facades. Specifications. Moscow: Rosstandart, 2022. 18 p.

For citation: Bessonov I.V., Zhukov A.D., Gorbunova E.A., Govryakov I.S. Textile-reinforced modified gypsum concrete. Stroitel’nye Materialy [Construction Materials]. 2022. No. 8, pp. 46–50. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-805-8-46-50

https://www.traditionrolex.com/10