Influence of Composition on the Properties and Structure of Modified Cement Composites

Number of journal: 9-2022
Autors:

Lesovik V.S.,
Fediuk R.S.,
Lisejcev Ju.L.,
Panarin I.I.,
Voronov V.V.

DOI: https://doi.org/10.31659/0585-430X-2022-806-9-39-49
УДК: 622.245.422.2

 

AbstractAbout AuthorsReferences
The development of civilization leads to an increase in the loads on buildings and structures. The design of materials for is possible to carry out only from the standpoint of a transdisciplinary approach, taking into account the modern achievements of geonics (geomimetics) by controlling the processes of structure formation. Cement composites based on a modified polymineral binder have been developed using enriched aluminosilicates obtained from hydraulically removed ash and slag mixtures, as well as hydrothermal nanosilicon in two types (sol and nanopowder). A technology has been developed for extracting aluminosilicates from a hydraulically removed ash and slag mixture, which includes five stages: disintegration, flotation, two-stage magnetic separation and drying. Microstructural analysis using scanning electron microscopy, X-ray phase analysis and energy dispersive spectroscopy showed that the modified cement stone has a denser structure with a large amount of low-basic calcium hydrosilicates, while in the non-additive cement matrix there are more high-alkaline hydrosilicates and hexagonal portlandite plates are present.
V.S. LESOVIK1,2, Doctor of Sciences (Engineering), Corresponding Member of RAACS;
R.S. FEDIUK3, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
Ju.L. LISEJCEV3, Engineer,
I.I. PANARIN3, Head of the Military Department of the Faculty of Military Training;
V.V. VORONOV1, Candidate of Sciences (Engineering)

1 Belgorod State Technological University named after V.G. Shukhov (46, Kostyukova Street, Belgorod, 308012, Russian Federation)
2 Central Research and Design Institute of the Ministry of Construction and Housing and Utilities of the Russian Federation (29, Vernadskogo Avenue, Moscow, 119331, Russian Federation)
3 Far Eastern Federal University (10, Ajax, Russky Island, Vladivostok, 690922, Russian Federation)

1. Лесовик В.С. Cтроительные материалы. Настоящее и будущее // Вестник МГСУ. 2017. № 1. С. 9–16.
1. Lesovik V.S. Construction Materials. Present and future. Vestnik MGSU. 2017. No. 1, pp. 9–16. (In Russian).
2. Лесовик В.С., Фомина Е.В., Айзенштадт А.М. Некоторые аспекты техногенного метасоматоза в строительном материаловедении // Строительные материалы. 2019. № 1–2. С. 100–106. DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-100-106
2. Lesovik V.S., Fomina E.V., Ayzenshtadt A.M. Some aspects of technogenic metasomatosis in construction material science. Stroitel’nye Materialy [Construction Materials]. 2019. No. 1–2, pp. 100–106. DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-100-106 (In Russian).
3. Ramakrishnan K., Depak S.R., Hariharan K.R., Abid S.R., Murali G., Cecchin D., Fediuk R., Mugahed Amran Y.H., Abdelgader H.S., Khatib J.M. Standard and modified falling mass impact tests on preplaced aggregate fibrous concrete and slurry infiltrated fibrous concrete. Construction and Building Materials. 2021. Vol. 298. 153857. https://doi.org/10.1016/j.conbuildmat.2021.123857
4. Лесовик В.С. Геоника (геомиметика). Примеры реализации в строительном материаловедении. Белгород: Изд-во БГТУ им. В.Г. Шухова, 2016. 287 с.
4. Lesovik V.S. Geonika (geomimetika). Primery realizacii v stroitel’nom materialovedenii [Geonics (geomimetics). Examples of implementation in building materials science]. Belgorod: Publishing house of BSTU named after V.G. Shukhov. 2016. 287 p.
5. Баженов Ю.М., Прошин А.П., Еремкин А.И., Королев Е.В. Сверхтяжелый бетон для защиты от радиации // Строительные материалы. 2005. № 8. С. 6–8.
5. Bazhenov Yu.M., Proshin A.P., Yeremkin A.I., Korolev Ye.V. Extra heavy concrete for radiation protection. Stroitel’nye Materialy [Construction Materials]. 2005. No. 8, pp. 6–8 (In Russian).
6. Королев Е.В., Очкина Н.А., Баженов Ю.М., Прошин А.П. Радиационно-защитные свойства особотяжелых растворов на основе высокоглиноземистого цемента // Строительные материалы. 2006. № 4. С. 54–56.
6. Korolev Ye.V., Ochkina N.A., Bazhenov Yu.M., Proshin A.P. Radiation-protective properties of very heavy mortars based on high-alumina cement. Stroitel’nye Materialy [Construction Materials]. 2006. No. 4, pp. 54–56 (In Russian).
7. Страхов В.Л., Гаращенко А.Н. Огнезащита строительных конструкций: современные средства и методы оптимального проектирования // Строительные материалы. 2002. № 6. C. 2–5.
7. Strakhov V.L., Garashchenko A.N. Fire protection of building structures: modern means and methods of optimal design. Stroitel’nye Materialy [Construction Materials]. 2002. No. 6, pp. 2–5. (In Russian).
8. Каприелов С.С., Травуш В.И., Карпенко Н.И., Шейнфельд А.В., Кардумян Г.С., Киселева Ю.А., Пригоженко О.В. Модифицированные высокопрочные бетоны классов В80 и В90 в монолитных конструкциях. Ч. II // Строительные материалы. 2008. № 3. С. 9–13.
8. Kaprielov S.S., Travush V.I., Karpenko N.I., Sheinfeld A.V., Kardumyan G.S., Kiseleva Yu.A., Prigozhenko O.V. Modified high-strength concretes of B80 and B90 classes in monolithic structures. Part II. Stroitel’nye Materialy [Construction Materials]. 2008. No. 3, pp. 9–13 (In Russian).
9. Constantinides G., Ulm F.-J., Van Vliet K.J. On the use of nanoindentation for cementitious materials. Materials and Structures. 2003. Vol. 36, pp. 191–196.
10. Constantinides G., Ulm F.-J. The effect of two types of C–S–H on the elasticity of cement-based materials: Results from nanoindentation and micromechanical modeling. Cement and Concrete Research. Vol. 2004. No. 34, pp. 67–80. https://doi.org/10.1016/S0008-8846(03)00230-8
11. Cheng Y.T. Cheng C.M. Scaling relationships in conical indentation of elastic perfectly plastic solids. International Journal of Solids Structures. 1999. Vol. 36, pp. 1231–1243. https://doi.org/10.1016/S0020-7683(97)00349-1
12. Ganneau F.P., Constantinides, G., Ulm F.-J. Dual-indentation technique for the assessment of strength properties of cohesive-frictional materials. International Journal of Solids Structures. 2006. Vol. 43, pp. 1727–1745. https://doi.org/10.1016/j.ijsolstr.2005.03.035
13. Donev A. Cisse I., Sachs D., Variano E.A., Stillinger F.H., Connely R., Torquato S., Chaikin P.M. Improving the density of jammed disordered packings using ellipsoids. Science. 2004. Vol. 303. Iss. 5660, pp. 990–993. DOI: 10.1126/science.1093010
14. Sloane. N.J.A. Kepler’s conjecture confirmed. Nature. 1998. Vol. 395, pp. 435–436. https://doi.org/10.1038/26609
15. Oliver W.C. Pharr G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research. 1992. Vol. 7 (6), pp. 1564–1583. https://doi.org/10.1557/JMR.1992.1564
16. Гридчин А.М., Баженов Ю.М., Лесовик В.С., Загороднюк Л.Х., Пушкаренко А.С., Василенко А.В. Строительные материалы для эксплуатации в экстремальных условиях. М.: АСВ, 2008. 537 с.
16. Gridchin A.M., Bazhenov Yu.M., Lesovik V.S., Zagorodnyuk L.Kh., Pushkarenko A.S., Vasilenko A.V. Stroitel’nye materialy dlja jekspluatacii v jekstremal’nyh uslovijah [Construction materials for operation in extreme conditions]. Мoscow: ASV. 2008. 573 p.
17. Володченко А.А., Лесовик В.С., Чхин С. Повышение эксплуатационных характеристик стеновых материалов // Вестник Белгородского государственного технологического университета им. В.Г. Шухова. 2014. № 3. С. 29–34.
17. Volodchenko A.A., Lesovik V.S., Chkhin S. Improving the performance of wall materials. Vestnik of the Belgorod State Technological University named after V.G. Shukhov. 2014. No. 3, pp. 29–34. (In Russian).
18. Strokova V.V., Markova I.Yu., Markov A.Yu., Stepanenko M.A., Nerovnaya S.V., Bondarenko D.O., Botsman L.N. Properties of a composite cement binder using fuel ashes. Key Engineering Materials. 2022. No. 909, pp. 184–190. https://doi.org/10.4028/p-tm4y4j
19. Vatin N., Barabanshchikov Y., Usanova K., Akimov S., Kalachev A., Uhanov A. Cement-based materials with oil shale fly ash additives. IOP Conference Series: Earth and Environmental Science. XVII-th International youth science and environmental Baltic region countries forum «Ecobaltica» 16–17 July 2020. Saint-Petersburg. Russian Federation. 2020 Vol. 17. 012043.
20. Яковлев Г.И., Первушин Г.Н., Пудов И.А., Полянских И.С., Саидова З.С. Об опыте применения метакаолина в качестве структурирующей добавки в цементных композитах // Вестник ВСГУТУ. 2021. № 2 (81). С. 58–68.
20. Yakovlev G.I., Pervushin G.N., Pudov I.A., Polyanskikh I.S., Saidova Z.S. On the experience of using metakaolin as a structuring additive in cement composites. Vestnik of the ESSTU. 2021. No. 2 (81), pp. 58–68. (In Russian).
21. Chen J.J., Sorelli L., Vandamme M., Ulm F.-J., Chanvillard G. A coupled nanoindentation/SEM-EDS study on low water/cement ratio Portland cement paste: Evidence for C–S–H/Ca(OH)2 nanocomposites. Journal of American Ceramic Society. 2010. Vol. 93, pp. 1484–1493. DOI: 10.1111/j.1551-2916.2009.03599.x
22. Salemi N., Behfarnia K. Effect of nano-particles on durability of fiber-reinforced concrete pavement. Construction and Building Materials. 2013. Vol. 48, pp. 934–941. https://doi.org/10.1016/j.conbuildmat.2013.07.037
23. Adetukasi A.O., Fadugba O.G., Adebakin A.O., Adetukasi I.H., Omokungbe O. Strength characteristics of fibre-reinforced concrete containing nano-silica. Materials Today: Proceedings. 2021. Vol. 38. P. 2, pp. 584–589. https://doi.org/10.1016/j.matpr.2020.03.123.
24. Konkol J., Prokopski G. Fracture toughness and fracture surfaces morphology of metakaolinite-modified concrete. Construction and Building Materials. 2016. Vol. 123, pp. 638–648. https://doi.org/10.1016/j.conbuildmat.2016.07.025
25. De Jong M.J., Ulm F.-J. The nanogranular behavior of C–S–H at elevated temperatures (up to 700 degrees C). Cement and Concrete Research. 2007. Vol. 37, pp. 1–12. DOI: 10.1016/j.cemconres.2006.09.006
26. Potapov V., Efimenko Yu., Fediuk R., Gorev D., Kozin A., Liseitsev Yu. Modification of Cement Composites with Hydrothermal Nano-SiO2. Journal of Materials in Civil Engineering. 2021. DOI: 10.1061/(ASCE)MT.1943-5533.0003964
27. Zhdanok S.A., Potapov V.V., Polonina E.N., Leonovich S.N. Modification of cement concrete by admixtures containing nanosized materials. Journal of Engineering Physics and Thermophysics. 2020. Vol. 93, pp. 648–652. https://doi.org/10.1007/s10891-020-02163-y
28. Potapov V., Efimenko Y., Fediuk R., Gorev D. Effect of hydrothermal nanosilica on the performances of cement concrete. Construction and Building Materials 2021. 269. 121307. https://doi.org/10.1016/j.conbuildmat.2020.121307
29. Пыкин А.А., Лукутцова Н.П. Оценка экологической безопасности наномодифицирующих добавок для строительных композитов. Среда, окружающая человека: природная, техногенная, социальная. Материалы X Международной научно-практической конференции. Брянск, 2021. С. 305–309.
29. Pykin A.A., Lukutsova N.P. Ecological safety assessment of nano-modifying additives for building composites. Human environment: natural, technogenic, social. Materials of the X International Scientific and Practical Conference. Bryansk. 2021. pp. 305–309. (In Russian).
30. Sobolev K., Ferrara M. How nanotechnology can change the concrete word-Part 1. American Ceramic Bulletin. 2005. Vol. 84, pp. 15–17.
31. Логанина В.И., Зайцева М.В. Репрезентативность выборки при оценке качества строительных материалов // Строительные материалы, оборудование, технологии XXI века. 2022. № 1 (270). С. 67–70.
31. Loganina V.I., Zaitseva M.V. Representativeness of the sample in assessing the quality of building materials. Stroitel’nye materialy, oborudovanie, tehnologii XXI veka. 2022. No. 1 (270), рр. 67–70. (In Russian).

For citation: Lesovik V.S., Fediuk R.S., Lisejcev Ju.L., Panarin I.I., Voronov V.V. Influence of composition on the properties and structure of modified cement composites. Stroitel’nye Materialy [Construction Materials]. 2022. No. 9, pp. 39–49. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-806-9-39-49


Print   Email