Textile-Reinforced Modified Gypsum Concrete

Number of journal: 8-2022
Autors:

Bessonov I.V.,
Zhukov A.D.,
Gorbunova E.A.,
Govryakov I.S.

DOI: https://doi.org/10.31659/0585-430X-2022-805-8-46-50
УДК: 691.328:691.335

 

AbstractAbout AuthorsReferences
The purpose of the work was to study the properties of textile-reinforced modified gypsum concrete (textile gypsum concrete) and develop a material composition for the manufacture of decorative facade slabs and various small architectural forms with increased weather resistance and bending strength. The use of a reinforcing material (textile canvas made of carbon, basalt, or polyester fibers) allows you to create products of small thickness. Improved water resistance is obtained using additives that modify gypsum. The system of waterproof gypsum binder and reinforcing layer of textile fabric makes it possible to obtain products of complex architectural forms with the possibility of using them under atmospheric conditions. The results obtained can be used in the design of the composition of the material, in applications where architectural expressiveness, high flexural strength and water resistance are needed. The composite can be used to make complex shapes of decorative facade panels, small architectural forms such as park furniture, sculptures, etc.
I.V. BESSONOV1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.D. ZHUKOV2,1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
E.A. GORBUNOVA1,2, Engineer, student (This email address is being protected from spambots. You need JavaScript enabled to view it.),
I.S. GOVRYAKOV1,2, Engineer, student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Research Institute of Building Physics Russian Academy Architecture and Construction sciences (21, Lokomotivniy Driveway, Moscow, 127238, Russian Federation)
2 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Lesovik V.S., Glagolev E.S., Popov D.Y., Lesovik  G.A., Ageeva M.S. Textile-reinforced concrete using composite binder based on new types of mineral raw materials. IOP conference series: Materials science and Engineering. 2018. Vol. 327. 032033 DOI: 10.1088/1757-899X/327/3/032033
2. Lesovik V.S., Popov D.Yu., Glagolev E.S. Textile-concrete – effective reinforced composite of the future. Stroitel’nye Materialy [Construction Materials]. 2017. No. 3, рр. 81–84. (In Russian).
3. Popov D.Yu. Status and prospects for the use of textile concrete. Promyshlennoe i grazhdanskoe stroitel’stvo. 2018. No. 3, pp. 51–57. (In Russian).
4. Volkova A.A., Pajkov A.V., Semenov S.G., Mel’nikov B.E. Structure and properties of textile-reinforced concrete. Inzhenerno-stroitel’niy zhurnal. 2015. No. 7, pp. 50–55. (In Russian).
5. Lesovik V. S., Popov D. Yu. Improving the efficiency of textile concrete. Regional’naya arhitektura i stroitel’stvo. 2017. No. 4, pp. 10–16. (In Russian).
6. Poudel R.S., Bessonov I.V., Zhukov A.D., Gudkov P.K., Gorbunova E.A., Mihaylik E.D. Digital methods for optimizing textile concrete technology. Stroitel’nye Materialy [Construction Materials]. 2022. No. 6, pp. 20–24. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-803-6-20-24
7. Pyataev E.R., Medvedev A.A., Poserenin A.I., Burtseva M.A., Mednikova E.A. and Mukhametzyanov V.M. Theoretical principles of creation of cellular concrete with the use of secondary raw materials and dispersed reinforcement. 2018. MATEC Web Conference. VI International Scientific Conference “Integration, Partnership and Innovation in Construction Science and Education” (IPICSE-2018). DOI: https://doi.org/10.1051/matecconf/20182510101211
8. Scherer, S., Michler, H., Curbach, M. Brücken aus Textilbeton. Handbuch Brücken: Entwerfen, Konstruieren, Berechnen, Bauen und Erhalten (2014), рр. 118–129.
9. Hegger J., Goralksi C., Kulas C. Schlanke fuβgängerbrücke aus textilbeton. Sechsfeldrige Fuβgängerbrücke mit einer Gesamtlänge von 97 m. Beton- und Stahlbetonbau. 2011. Vol. 106. Iss. 2, pp. 64–71.
10. Efimov B., Isachenko S., Kodzoev M.-B., Dosanova G., Bobrova E. Dispersed reinforcement in concrete technology. E3S Web of Conferences. 2019. Vol. 110. 01032. DOI: https://doi.org/10.1051/e3sconf/201911001032
11. Schladitz F., Lorenz E., Jesse F., Curbach M. Verstärkung einer denkmalgeschätzten Tonnenschale mit Textilbeton. Beton- und Stahlbetonbau. 2009. Vol. 104. Iss. 7, рр. 432–437.
12. Mana Halvaei, Masoud Jamshidi, Masoud Latifi, Mojtab Ejtemaei. Experimental investigation and modelling of flexural properties of carbon textile reinforced concrete. Construction and Building Materials. 2020. Vol. 262, pp. 15–25. https://doi.org/10.1016/j.conbuildmat.2020.120877
13. Hadi Bolooki Poorsaheli, Amir Behravan, Seyed TahaTabatabaei Aghda Durability performance of hybrid reinforced concretes (steel fiber + polyolefin fiber) in a harsh marine tidal zone of Persian Gulf. Construction and Building Materials. 2021. Vol. 266, pp. 15–25. https://doi.org/10.1016/j.conbuildmat.2020.121176
14. Strokova V.V. Features of phase formation in composite nanostructure-ridged gypsum, astringent. Stroitel’nye Materialy [Construction Materials]. 2012. No. 7, pp. 9–12. (In Russian).
15. Bessonov I.V. Gypsum of increased water resistance. Collection of reports of the III scientific-practical conference “Problems of building thermal physics and energy saving in buildings”. Moscow: NIISF. 1998, pp. 112–117. (In Russian).
16. Bessonov I.V., Zhukov A.D., Gorbunova E.A. Gypsum-containing modified materials. Stroitel’nye Materialy [Construction Materials]. 2021. No. 8, pp. 18–26. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-794-8-18-26
17. GOST R 70034–2022 Gypsum decorative products for building facades. Specifications. Moscow: Rosstandart, 2022. 18 p.

For citation: Bessonov I.V., Zhukov A.D., Gorbunova E.A., Govryakov I.S. Textile-reinforced modified gypsum concrete. Stroitel’nye Materialy [Construction Materials]. 2022. No. 8, pp. 46–50. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-805-8-46-50


Print   Email