Log in

Frost Resistance of the Walls of Buildings Made of Light Concrete

Number of journal: 11-2022
Autors:

Bessonov I.V.,
Zhukov A.D.,
Bazhenova S.I.,
Konyukhov M.A.

DOI: https://doi.org/10.31659/0585-430X-2022-808-11-4-9
УДК: 536.485:666.973

 

AbstractAbout AuthorsReferences
In Russia, autoclave-hardened cellular concrete blocks are actively used in frame buildings as self-supporting external walls (in some cases with external insulation), as well as in low-rise frameless construction. The operational durability of these blocks is determined by the properties of concrete and is associated with such characteristics as water resistance, capillary suction and frost resistance. The purpose of the research was to experimentally study the resistance of masonry fragments to cyclic temperature and humidity influences during unilateral freezing and to develop recommendations for assessing frost resistance. For the first time, as the normalized parameters for assessing the frost resistance of light concrete masonry, it is proposed to use the following indicators: the adhesion strength of blocks with plaster mortar, the tear strength of chemically fixed anchors (destructive methods), as well as the speed of passage of an ultrasonic pulse through the masonry thickness (non-destructive method). The physicomechanical and thermophysical characteristics of thermal insulation and structural concrete are obtained. The dependences of heat-protective qualities on the degree of moisture content of the material, as well as strength on the conditions of thawing of samples in water and in air are established. The features of conducting tests on fragments of masonry, in the process of cyclic temperature and humidity effects during unilateral freezing are worked out. The results are applicable in the development and updating of regulatory, technical, organizational and methodological documents for the design of wall masonry made of light concrete blocks, in particular, in the development of the national standard “Wall masonry made of light concrete blocks. Methods for determining frost resistance”.
I.V. BESSONOV1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.D. ZHUKOV2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
S.I. BAZHENOVA2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
M.A. KONYUKHOV2, Master student(This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Research Institute of Building Physics, Russian Academy of Architecture and Construction Sciences (21, Lokomotivny Driveway, Moscow, 127238, Russian Federation)
2 National Research Moscow State University of Civil Engineering (26, Yaroslavskoye Highway, Moscow, 129337, Russian Federation)

1. Yarmakovsky V.N., Pustovgar A.P. The scientific basis for the creation of a composite binders class characterized of the low heat conductivity and low sorption activity of cement stone. Procedia Enginee-ring. 2015. No. 5, pp. 12–17. DOI: 10.1016/j.proeng.2015.07.160
2. Ферронская А.В. Долговечность конструкций из бетона и железобетона. М.: АСВ, 2006. 336 с.
2. Ferronskaya A.V. Dolgovechnost’ konstrukcij iz betona i zhelezobetona [Durability of concrete and reinforced concrete structures]. Moscow: ASV. 2006. 336 p.
3. Spitzner I. A review of the development of lightweight aggregates – history and actual survey. International Symposium on structural lightweight aggregate concrete. Sandefjord. Norway. June 1995, pp. 22–32.
4. Ярмаковский В.Н., Кадиев Д.З. Физико-хими-ческие основы стойкости бетонов к воздействию низких отрицательных температур (Ч. 2) // Строительство и реконструкция. 2020. № 5 (91). С. 133–144. https://doi.org/10.33979/2073-7416-2020-91-5-133-144
4. Yarmakovsky V.N., Kadiev D.Z. Physical basis of concrete durability at low subzero temperatures. Part 2. Stroitel’stvo i rekonstruktsiya. 2020. No. 5, рр. 133–144. (In Russian). https://doi.org/10.33979/2073-7416-2020-91-5-133-144
5. Ву К.З., Баженова С.И., Танг В.Л., Фан Х.Х. Влияние входных факторов на свойства пенобетона // Строительство и реконструкция. 2021. № 2 (94). С. 86–95. DOI: 10.33979/2073-7416-2021-94-2-86-95
5. Vu K.D., Bazhenova S.I., Tang V.L., Phanh Kh.Kh. Influence of imput factors on the foam concrete proprieties. Stroitel’stvo i rekonstruktsiya. 2021. No. 2 (94), рр. 86–95. (In Russian). DOI: 10.33979/2073-7416-2021-94-2-86-95
6. Ярмаковский В.Н., Карпенко Н.И. Особенности технологии, структуры и механики высокопрочных конструкционных легких бетонов для морских гидротехнических сооружений в условиях Арктического континентального шельфа: Труды Международной конференции «Полярная механика–2016». г. Владивосток. 2016. С. 24–32.
6. Yarmakovsky V.N., Karpenko N.I. Features of technology, structure and mechanics of high-strength structural lightweight concrete for marine hydraulic structures in the Arctic continental shelf. Proceedings of the International Conference «Polar Mechanics–2016». Vladivostok. 2016, pp. 24–32. (In Russian).
7. Bessonov I.V., Bulgakov B.I., Zhukov A.D., Gradov V.A., Ivanova N.A., Kodzoev M-B.Kh. Lightweight concrete based on crushed foam glass aggregate. IOP Conference Series: Materials Science and Engineering. Vol. 1083. International Scientific Conference «Construction and Architecture: Theory and Practice of Innovative Development» (CATPID 2020). 16–17 December 2020. Nalchik. DOI: 10.1088/1757-899X/1083/1/012038
8. Ushakov A.U., Zhukov A.D., Zinkevich E.S., Bessonov I.V. Modern materials and wooden housing construction technologies. International Science and Technology Conference (FarEastСon 2020). IOP Conference Series: Materials Science and Engineering. 2021. Vol. 1079. 022072. DOI: 10.1088/1757-899X/1079/2/022072
9. Жуков А.Д., Боброва Е.Ю., Бессонов И.В., Медведев А.А., Демисси Б.А. Применение статистических методов для решения задач строительного материаловедения // Нанотехнологии в строительстве: научный интернет-журнал. 2020. Т. 12. № 6. С. 313–319. DOI: 10.15828/2075-8545-2020-12-6-313-319
9. Zhukov A.D., Bobrova E.Yu., Bessonov I.V., Medvedev A.A., Demissi B.A. Application of statistical methods for solving problems of building materials science. Nanotechnologii v stroitel’stve: scientific online journal. 2020. Vol. 12. No. 6, pp. 313–319. (In Russian).
10. Ху Шугуан, Ван Фа Чжоу. Легкие бетоны: Монография / Пер. Го Ли. М.: АСВ, 2016. 299 с.
10. Hu Shuguang, Wang Fa Zhou. Legkie betony: monografiya [Lightweight concrete: a monograph]. Moscow: ASV. 2016. 299 p.
11. Bessonov I.V., Ushakov A.Yu, Zhukov A.D., Vidiborenko V.G. Assessment of light concrete frost resistance. International Science and Technology Conference (FarEastСon 2020). IOP Conference Series: Materials Science and Engineering. 2021. Vol. 1079. 022078. DOI: 10.1088/1757-899X/1079/2/022078
12. Yarmakovski V.N. New types of the porous slag aggregates and lightweight concretes and their application. International Symposium on structural lightweight aggregate concrete. Sandefjord. Norway. 1995, pp. 363–373.
13. Карпенко С.Н., Ярмаковский В.Н., Ерофеев В.Т. О современных методах обеспечения долговечности железобетонных конструкций // Academia. Архитектура и строительство. 2015. № 1. С. 93–102.
13. Karpenko S.N., Yarmakovsky V.N., Erofeev V.T. On modern methods of ensuring the durability of reinforced concrete structures. Academia Architectura i stroitel’stvo. 2015. No. 1, pp. 93–102. (In Russian).
14. Александровский С.В. Долговечность наружных ограждающих конструкций. М.: НИИСФ РААСН, 2004. 333 с.
14. Alexandrovsky S.V. Dolgovechnost’ naruzhnykh ograzhdayushchikh konstruktsii [Durability of external enclosing structures]. Moscow: NIISF RAASN. 2004. 333 p.
15. Vu K.D., Bazhenova S.I. Modeling the influence of input factors on foam concrete properties. Magazine of Civil Engineering. 2021. Vol. 103 (3). 10311. DOI: 10.34910/MCE.103.11
16. Vu K.D. Effect of aluminum powder on light-weight aerated concrete proprieties. Journal of Physics: Conference Series. Vol. 1425. Modelling and Methods of Structural Analysis. 13–15 November 2019. Moscow. DOI: https://doi.org/10.1088/1742-6596/1425/1/012199
17. Tang V.L., Vu K.D., Ngo X.H., Vu D.T., Bulgakov B.I., Bazhenova S.I. Effect of aluminum powder on light-weight aerated concrete properties. E3S Web of Conferences. 22nd International Scientific Conference on Construction the Formation of Living Environment, FORM 2019. 2019. 02005. DOI: 10.1051/e3sconf/20199702005

For citation: Bessonov I.V., Zhukov A.D., Bazhenova S.I., Konyukhov M.A. Frost resistance of the walls of buildings made of light concrete. Stroitel’nye Materialy [Construction Materials]. 2022. No. 11, pp. 4–9. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-808-11-4-9

Waterproofing Material for Main Pipelines Based on Polyethylene Modified in Gliding Arc Plasma

Number of journal: 10-2022
Autors:

Khagleev A.N.,
Urkhanova L.A.,
Mokeev M.A.,
Demin K.A.

DOI: https://doi.org/10.31659/0585-430X-2022-807-10-79-84
УДК: 627.8.034.93

 

AbstractAbout AuthorsReferences
The results of studies of the effect of gliding arc plasma on the physical and mechanical properties of polyethylene films are presented. It is established that the modification of films in the plasma of the gliding arc increases the adhesion of the surface depending on the modification time, which makes it possible to obtain a waterproofing material with improved performance properties. When modifying the surface of films with a duration of 10 seconds, the maximum separation force of the adhesive seam increases by 18% and the elongation decreased by 31% compared to the original samples. Functional groups were found on the surface of the modified films in comparison with the original ones: hydroxyl OH–, C–O and ν(C–C) groups, confirmed by the results of infrared spectroscopy. On the surface of modified polyethylene films, scanning electron microscopy revealed an increase of supramolecular structures in crystalline regions, up to 2 times, with the formation of morphological structures acting as electron traps. Based on the above, the developed method of modifying the surface of polymer films in the plasma of a gliding arc is promising in the field of production of the base material of waterproofing materials with improved adhesive properties for main pipeline systems.
A.N. KHAGLEEV1,2, Research Assistant (Postgraduate) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
L.A. URKHANOVA1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
M.A. MOKEEV1,2, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
K.A. DEMIN1,2, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 East Siberia State University of Technology and Management (40 B, Structure 1, Klyuchevskaya Street, 670013, Ulan-Ude, Russian Federation)
2 Institute of Strength Physics and Materials Science of Siberian Branch Russian Academy of Sciences(6, Sakhyanova street, 670047, Ulan-Ude, Russian Federation)

1. Abdullin N.V., Rafikov S.K., Korobkova V.M. Determination of the composition of bitumen insulation coating for pipeline insulation repair. Transport i khranenie nefteproduktov i uglevodorodnogo syr’ya. 2021. No. 4, pp. 60–63. (In Russian). DOI: https://doi.org/10.24412/0131-4270-2021-4-60-63
2. Kudyashova R.A., Istyukova A.D. Features of properties and applications of materials for pipe waterproofing. University science in modern conditions: collection of materials of the 55th Scientific and Technical Conference. Ulyanovsk. 2021. Vol. 2, pp. 44–47. (In Russian).
3. Kuzmin V.V., Zhivotov D.A. Justification of the choice of technology for the reconstruction of waterproofing of underground parts of buildings and structures of nuclear power plants. Colloquium-journal. 2020. No. 8, pp. 33–40. (In Russian). DOI: https://doi.org/10.24411/2520-6990-2020-11526
4. Davydov A.N., Ivanov V.A., Serebrennikov D.A., Berg V.I. Definition dependence of the properties of the insulation coating on the operating conditions pipeline. Gornyi informatsionno-analiticheskii byulleten’. 2014. No. 4, pp. 169–173. (In Russian).
5. Knyazev V.K., Sidorov N.A. Obluchennyi polietilen v tekhnike [Irradiated polyethylene in engineering]. Moscow: Khimiya. 1974. 374 p.
6. Chernigovskaya M.A. The analysis of operation of the foaming apparatus operation for chemically contaminated water treatment. Vestnik of the Angarsk State Technical University. 2019. No. 13, pp. 101–105. (In Russian).
7. Gil’man A.B. Plasmochemical modification of the surface of polymer materials. School of Plasma Chemistry for young scientists from Russia and CIS countries. https://www.isuct.ru/conf/plasma/LECTIONS/Gilman_lection.html (Date of access 18.06.2022). (In Russian).
8. Dmitriev Ya.V. Features of flexographic printing with UV-curable inks on non-absorbent surfaces. Moscow. Cand. Diss. (Engineering). 2013. 151 p. (In Russian).
9. Urkhanova L.A., Khagleev A.N., Mokeev M.A., Demin K.A., Agnaev S.S. Modification of polyethylene films in low-temperature gliding discharge plasma to create roll waterproofing. Vestnik of ESSTUM. 2021. No. 4, pp. 72–98. (In Russian). DOI: https://doi.org/ 10.53980/2413-1997-2021-4-72
10. Mustafin F.A. Sooruzhenie i remont truboprovodov s primeneniem gidrofobizirovannykh gruntov [Construction and repair of pipelines using hydrophobized soils]. Moscow: Nedra. 2003. 233 p.
11. Kharisov R.A. Improving the technology of pipeline insulation with polymer tape coatings with a double-sided sticky layer. Cand. Diss. (Engineering). Ufa. 2011. 246 p. (In Russian).
12. Ancharov A.A., Vityaz’ P.A., Vorsina I.A. Mekhano-kompozity –prekursory dlya sozdaniya materialov s novymi svoistvami [Mechanocomposites are precursors for creating materials with new properties]. Novosibirsk. Publishing house of Siberian Branch of the Russian Academy of Sciences. 2010. 432 p.
13. Lebedev D.V. Molecular mobility in near-surface nanolayers of polymers. Molecular mobility in near-surface nanolayers of polymers. Saint Petersburg. Cand. Diss. (Physics and Mathematics). 2011. 191 p. (In Russian).
14. Karimov I.A. The influence of the composition, conditions for the production and processing of polyolefin composite materials on their electret properties. Cand. Diss. (Engineering). Kazan. 2015. 149 p. (In Russian).
15. Galikhov M.F. Polymer composite crown portraits. Cand. Diss. (Engineering). Kazan. 2009. 399 p. (In Russian).

For citation: Khagleev A.N., Urkhanova L.A., Mokeev M.A., Demin K.A. Modification of the surface of a polyethylene film in a gliding arc plasma for the production of waterproofing material. Stroitel’nye Materialy [Construction Materials]. 2022. No. 10, pp. 79–84. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-807-10-79-84

The Use of Galvanic Sludge as Additives in Building Materials

Number of journal: 10-2022
Autors:

Voytovich V.A.,
Khryapchenkova I.N.

DOI: https://doi.org/10.31659/0585-430X-2022-807-10-73-78
УДК: 621.357

 

AbstractAbout AuthorsReferences
The paper highlights the current situation in Russia with galvanic sludge – waste of hazard class I. They represent the greatest danger in that their leakage inevitably leads to irreparable damage in the biosphere, which requires total monitoring of the formation and movement of galvanic sludge. The authors reviewed the developed domestic and foreign technologies for the use of galvanic sludge. Most researchers propose to extract metals from galvanic sludge. The method of processing galvanic sludges, which consists in mixing them with pyrocatechin for 48 hours and separating the precipitate by filtration, in which pyrocatechin metal complexes are formed, is technologically simple, but pyrocatechin is an expensive and scarce substance, the use of pyrocatechin complexes is problematic. Most modern techniques usually include high-temperature (1000°C and above) processing of galvanic sludge. The use of the technologies for processing galvanic sludge proposed today is limited by their high cost, complexity and high environmental hazard. The authors propose methods for the disposal of galvanic sludge in cement mixtures, asphalt concrete, ceramics and other building materials under the following conditions: exclusion of the formation of new waste, reducing the cost of capital construction and equipment, exclusion of the possibility of leaching of non-ferrous metal ions from the obtained materials and products under the influence of acid rain and other possible causes.
V.A. VOYTOVICH, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
I.N. KHRYAPCHENKOVA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Nizhny Novgorod State University of Architecture and Civil Engineering (65, Ilyinskaya Street, Nizhny Novgorod, 603950, Russian Federation)

1. Federal project «Infrastruсture for the waste management of the first and second hazard classes». https://vyvoz.org/blog/federalnyy-proekt-infrastruktura-dlya-obrashcheniya-s-othodami-1-2-klassov-opasnosti/ (Date of access 25.01.22). (In Russian).
2. Stojković A., Stanisavljević M., Krstić N., Đorđević D., Miltojević A., Krstić I. Inactivation of toxic metals from waste galvanic sludge by other hazardous waste. Safety Engineering. 2020. No. 1, pp. 123–129. DOI: http://doi.org: 10.5937/SE200103S
3. Patent RF 2235795. Sposob pererabotki galvanoshla-mov [Method of galvanic sludge treatment]. Belyaev I.V., Fomin A.I., Lonsky V.B. Declared 25.12.2002. Publi-shed 10.09.2004. Bulletin No. 2. (In Russian).
4. Patent RF 2535110. Sposob pererabotki mednogo galvanoshlama [Method of the copper galvanic sludge treatment]. Gostishev V.V., Ree Hossen, Komkov V.I. Declared 05.07.2013. Published 12.10.2014. Bulletin No. 1. (In Russian).
5. Patent RF 2572680. Sposob pererabotki galvanicheskich shlamov [Method of galvanic sludge treatment]. Klimov E.S., Buzaeva M.V., Zavalzeva O.A. and others. [Method of galvanic sludge treatment]. Declared 20.03.2014. Published 20.01.2016. Bulletin No. 2. (In Russian).
6. Patent RF 2690797. Sposob utilisazii galvanoshlama [Method of galvanic sludge treatment]. Makarov V.M., Kalaeva S.Z., Dubov A.Y. Declared 09.07.2018. Published 05.06.2019. Bulletin No. 1. (In Russian).
7. Muhamedov K.G., Nasirova N.K. Stadying the possibility of application of water treatment sludges from galvanizing productions in the production of building composite materials. Universum: Tehnicheskie nauki. 2020. No. 12–4 (81), pp. 5–9. DOI: http://doi.org/10.32743/UniTech.2020.81.12-4.5-9
8. Pérez-Villarejo L., Martínez-Martínez S., Carrasco-Hurtado B., Eliche-Quesada D., Ureña-Nieto C., Sánchez-Soto P.J. Valorization and inertization of galvanic sludge waste in clay bricks. Applied Clay Science. 2015. Vol. 105–106, pp 89–99. https://doi.org/10.1016/j.clay.2014.12.022
9. Patent RF 968046. Asfaltobetonnaya smes’ [Asphalt concrete mixture]. Borodkin A.S., Vinogradov M.A., Naidenko V.V. Declared 10.02.1982. Pablished 21.12.1982. Bulletin No. 1. (In Russian).
10. Levitsky I.A., Pavlukevich Y.G. Application of galvanic sludge for ceramic bricks production. Steklo I keramika. 2013. No. 3, pp. 7–13. (In Russian).
11. Bogdan E.O., Levitsky I.A. About possibility of using galvanic waste in the construction ceramics production. Stroitelnaya nauka i tehnika. Minsk. 2009. No. 3, pp. 17–21.
12. Voitovich V.A., Khriapchenkova I.N. Galvanic sludge: reprocessing or using? Vse materialy. Enziklopedicheskyi spravochnik. 2019. No. 5, pp. 41–44. DOI: http:// doi.org/ 10.31044/1994-6260-2019-0-5-41-44
13. Urkhanova L.A., Berezovsky P.V., Arkhincheeva N.V. Modification of cement stone with microadditives of inorganic salts. Stroitel’nye Materialy [Construction Materials]. 2021. No. 1–2, pp. 22–29. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-788-1-2-22-29

For citation: Voytovich V.A., Khryapchenkova I.N. The use of galvanic sludge as additives in building materials. Stroitel’nye Materialy [Construction Materials]. 2022. No. 10, pp. 73–78. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-807-10-73-78

Half a Century of Experience in the Operation of Reinforced Concrete Structuresof the Kislaya Guba Tidal Power Station in the Barents Sea

Number of journal: 10-2022
Autors:

Usachev I.N.,
Rozental N.K.

DOI: https://doi.org/10.31659/0585-430X-2022-807-10-68-72
УДК: 666.972.524

 

AbstractAbout AuthorsReferences
In the 1960s, in the Barents Sea, for the first time in the world practice of hydropower, the first Russian tidal power plant, the L.B. Bernstein Kislogubskaya TPS, was built by floating method, which has been successfully operating up to the present time. Construction by floating method made it possible to reduce the construction estimate by 30% and speed up the construction period by half. As a result, the structure is recognized in the world as “one of the outstanding structures of the 20th century, the only durable large reinforced concrete structure in the Arctic and a Monument of Science and Technology of the Russian Federation.” The data on the study of the properties of a reinforced concrete fragment in the form of a slab, imitating the wall of the TPS building, are given.
I.N. USACHEV, Candidate of Sciences (Engineering), Honored Worker and Honorary Hydropower Engineer of the Energy Industry of the Russian Federation(This email address is being protected from spambots. You need JavaScript enabled to view it.),
N.K. ROZENTAL, Doctor of Sciences (Engineering), Professor (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Research Center of Construction JSC (6 2nd Institutskaya Street, Moscow, 109428, Russian Federation)

1. Usachev I.N., Rosenthal N.K. Pioneer Russian tidal power plant – a monument of science and technology of Russia. Energetik. 2019. No. 2, pp. 19–25. (In Russian).
2. Usachev I.N. Morskaya energetika (prilivnye elektrostantsii i morskie energeticheskie ustanovki) [Marine power engineering (tidal power plants and marine power plants)]. Moscow: AO VNIIG im. B.E. Vedeneeva. 2022. 292 p.
3. Usachev I.N. The experience of creation and half-century operation of the Kmslogubskaya tidal power plant – the basis for the development of the Arctic and the Northern Sea Route. Gidrotechnika. 2021. No. 4, pp. 73–75. (In Russian).
4. Moskvin V.M., Kapkin M.M., Savitsky A.N., Yarmakovsky V.N. Beton dlya stroitel’stva v surovykh klimaticheskikh usloviyakh [Concrete for construction in harsh climatic conditions]. Leningrad: Stroyizdat. 1973. 172 p.
5. Kaprielov S.S., Steinfeld A.V., Kardumyan G.S. Novye modifitsirovannye betony [New modified concretes]. Moscow: OOO «Printing house «Paradise». 2010. 258 p.

For citation: Usachev I.N., Rozental N.K. Half a century of experience in the operation of reinforced concrete structures of the Kislaya Guba tidal power station in the Barents sea. Stroitel’nye Materialy [Construction Materials]. 2022. No. 10, pp. 68–72. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-807-10-68-72

Hanging Structures

Number of journal: 10-2022
Autors:

Eremeev P.G.

DOI: https://doi.org/10.31659/0585-430X-2022-807-10-62-67
УДК: 624.91.024.7

 

AbstractAbout AuthorsReferences
Various design solutions of modern hanging systems are considered. The scope of application of hanging systems is determined. The main issues of structural and static schemes, the shape of the plan and geometry of the coating surface, stabilization of hanging coatings, options for transferring the strut forces from the span structure to the support contour are reflected. The designs and materials of load-bearing stretched elements are presented. The characteristics of anchor devices, connecting elements used in hanging structures are given. Special attention is paid to the ropes – “monostrends”. The justification of their advantages in comparison with traditional ropes is given. The problems of their anticorrosive protection, anchor devices, and pre-stressing are presented.
P.G. EREMEEV, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Research Institute of Building Constructions (TSNIISK) named after V.A. Koucherenko. Research Center of Construction JSC(6, 2nd Institutskaya Street, Moscow, 109428, Russian Federation)

1. Еремеев П.Г. Пространственные металлические конструкции покрытий. Moscow: АСВ, 2020. 508 с.
1. Eremeev P.G. Prostranstvennye metallicheskie konstruktsii pokrytii [Spatial metal structures of coatings]. M.: ASV, 2020. 508 p.
2. Gonzalez Quelle I. Cable roofs. Evolution, classification and future trends. Proc. of the IASS Symposium. Valencia. 2009, pp. 264–275.
3. Kim H. Structural Performance of Spoke Wheel Roof Systems. Massachusetts: Massachusetts Institute of Technology, 2017. 66 p.
4. Seidel М. Tensile Surface Structures: A Practical Guide to Cable and Membrane Construction. Wiley, 2009
5. Goppert K., Stern M., Stockhuse R., Balz M. International stadium projects each unique and easy to recognize. Proceedings IASS Symposium, Acapulco-Mexico, 2008.
6. Burkhardt R. W.A. Practical guide to tensegrity design. USA: Cambridge, 2008. 212 р.
7. Еремеев П.Г. Пространственные тонколистовые металлические конструкции покрытий. М.: АСВ, 2006. 560 с.
7. Eremeev P.G. Prostranstvennye tonkolistovye metallicheskie konstruktsii pokrytii [Spatial thin-sheet metal structures of coatings]. Moscow: ASV, 2006. 560 p.
8. Mollaert M., Forster B. European design guide for tensile surface structures. Brussel: Tensinet, 2004. 354 p.
9. Le Cuyer A. ETFE: Technology and Design. Berlin: Birkhuser, 2008. 160 p.
10. Tao Yu, Yanhui Zhu. Applied Research of ETFE membrane gas pillow structure in modern stadiums. Research Journal of Applied Sciences. Engineering and Technology. 2013. No. 5 (13), pp. 3654–3660.

For citation: Eremeev P.G. Hanging structures. Stroitel’nye Materialy [Construction Materials]. 2022. No. 10, pp. 62–67. (In Russian).DOI: https://doi.org/10.31659/0585-430X-2022-807-10-62-67

Construction Roofing Diffusion Membranes: Types and Characteristics, Direction of Scientific Research

Number of journal: 10-2022
Autors:

Fedosov S.V.,
Markelov A.V.,
Lapidus A.A.,
Topchy D.V.

DOI: https://doi.org/10.31659/0585-430X-2022-807-10-55-61
УДК: 692.23

 

AbstractAbout AuthorsReferences
In the technological tasks of construction, there are often problems of creating coatings that protect the structures of buildings and structures from wind, moisture and dust, as well as providing them with additional sealing. One of the ways to solve this problem is the use of vapor-permeable diffusion membranes in the construction of multilayer heated roofs. Foreign and domestic industry produces a wide variety of pseudo-diffusion and diffusion roofing materials with various operational thermophysical properties. The main thermal technical characteristics of ventilated frame walls and insulated roofs are: thermal conductivity, air permeability, vapor permeability, resistance to deformation, mechanical strength. In addition, the mandatory conditions for the effective use of such structures is the compatibility of structural elements and the quality of installation work. In this regard, there is a need to conduct a number of theoretical and experimental studies in order to develop scientifically sound methods and recommendations for the construction of ventilated facades and insulated attic rooms. The main objectives of research in this direction are: the study of the use of various diffusion materials in different climatic conditions to save energy; prospects for the use of diffusion membranes as gas separation systems that support indoor microclimate; development of methods for organizing the construction of multilayer ventilated walls and insulated attic rooms.
S.V. FEDOSOV1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.V. MARKELOV2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.A. LAPIDUS1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
D.V. TOPCHY1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 National Research Moscow State University of Civil Engineering (NRU MGSU) (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)
2 Yaroslavl State Technical University (88, Moskovsky Avenue, Yaroslavl, 150023, Russian Federation)

1. Матвеев Е.П. Реконструкция жилых зданий с надстройкой этажей из объемных блоков // Жилищное строительство. 1999. № 8. С. 12–13.
1. Matveev E.P. Reconstruction of residential buildings with superstructure of floors from volumetric blocks. Zhilishchnoe Stroitel’stvo [Housing Construction]. 1999. No. 8, pp. 12–13. (In Russian).
2. Jean-Pierre Babelon et Claude Mignot. François Mansart. Le génie de l’architecture. Encyclopaedia Universalis, 2017. p. 18. URL: https://books.google.nl/books?id=Jm8qDwAAQBAJ&printsec=frontcover&hl=ru#v=onepage&q&f=false
3. Овчинникова Е. Подкровельная пленка: ее характеристики, виды пленки // Идеи вашего дома. Электронный ресурс. Режим доступа: https://www.ivd.ru/stroitelstvo-i-remont/krovla/dysi-krysa-dysi-9334
3. Ovchinnikova E. Underlay film: its characteristics, types of film. Idei vashego doma. https://www.ivd.ru/stroitelstvo-i-remont/krovla/dysi-krysa-dysi-9334 (In Russian)
4. Горбунов Г.И., Жуков А.Д. Научные основы формирования структуры и свойств строительных материалов. М.: НИУ МГСУ, 2016. 555 с.
4. Gorbunov G.I., Zhukov A.D. Nauchnye osnovy formirovaniya struktury i svojstv stroitel’nykh materialov [Scientific foundations of the formation of the structure and properties of building materials]. Moscow: NIU MGSU. 2016. 555 p.
5. Zhukov A.D., Bobrova Ye.Yu., Smirnova T.V. Evaluation of durability of mineral wool products. Advanced Materials, Structures and Mechanical Engineering. 2014. Vol. 1077, pp. 109–112. URL: https://doi.org/10.4028/www.scientific.net/AMR.1077.109
6. Абелешев В.И. Исследование некоторых теплотехнических аспектов эффективного устройства мансард // Энергосбережение. Энергетика. Энергоаудит. 2012. № 10 (104). C. 57–63.
6. Abeleshev V.I. Investigation of some thermophysical aspects of the effective arrangement of attics. Energosberezhenie. Energetika. Energoaudit. 2012. No. 10 (104), pp. 57–63. (In Russian).
7. Денисова Ю.В., Тарасенко В.Н., Лесовик Р.В. Диффузионные мембраны в современном строительстве // Вестник БГТУ им. В.Г. Шухова. 2016. № 8. C. 42–46.
7. Denisov Yu.V., Tarasenko V.N., Lesovik R.V. Diffusion membranes in modern construction. Vestnik BSTU named after V.G. Shukhov. 2016. No. 8, pp. 42–46. (In Russian)
8. ГОСТ 25898–2012. Материалы и изделия строительные. Методы определения паропроницаемости и сопротивления паропроницанию. М.: Стандартинформ, 2014. 15 с.
8. GOST 25898–2012. Building materials and products. Methods for determining vapor permeability and vapor permeability resistance. Moscow: Standartinform. 2014. 15 p. (In Russian).
9. ГОСТ 32318–2012. Материалы кровельные и гид-роизоляционные гибкие битумно-содержащие и полимерные (термопластичные или эластомерные). Метод определения паропроницаемости. М.: Стандартинформ, 2014. 12 с.
9. GOST 32318–2012 Flexible roofing and waterproofing materials containing bitumen and polymer (thermoplastic or elastomeric). Method for determining vapor permeability. Moscow: Standartinform. 2014. 12 p. (In Russian).
10. Боровиков А.М., Уголев Б.Н. Справочник по древесине / Под ред. Б.Н. Уголева. М.: Лесная промышленность, 1989. 296 с.

For citation: Fedosov S.V., Markelov A.V., Lapidus A.A., Topchy D.V. Construction roofing diffusion membranes: types and characteristics, direction of scientific research. Stroitel’nye Materialy [Construction Materials]. 2022. No. 10, pp. 55–61. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-807-10-55-61

Optimization of Concrete Technology Parameters to Ensure Thermal Crack Resistance of Massive Foundations

Number of journal: 10-2022
Autors:

Kaprielov S.S.,
Sheinfeld A.V.,
Chilin I.A.

DOI: https://doi.org/10.31659/0585-430X-2022-807-10-41-51
УДК: 691.32

 

AbstractAbout AuthorsReferences
Information on the optimal parameters of the technology of concreting massive foundation slabs, which ensures the thermal crack resistance of structures is provided. The parameters are optimized taking into account the specifics and experience of concrete work during the construction of a complex of high-rise buildings at the Moscow City sites. Sixteen foundation slabs with volumes from 4.4 to 45.8 thousand m3 of concrete of classes from B40 to B60 with rebar consumption from 128 to 336 kg/m3 were concreted in whole or in separate blocks with the use of highly flowability or self-compacting mixtures. The technology did not provide for the processes of pre-cooling of concrete mixtures in batching plants and forced temperature reduction on construction sites after concreting structures using water cooling systems. Instead, the emphasis is placed on the use of modified concrete mixtures with low exo-thermal potential – with a minimized cement content (i.e. “low-cement concretes”) and slowing down hydration, as well as ensuring natural heat exchange between the structure and the environment in the initial period (1,5–2 days after concreting) and regulating the cooling rate using thermal insulation materials afterwards. When concreting using highly flowability or self-compacting concrete mixtures with a cement content, in terms of clinker, no more than 350 kg/m3 and the temperature of the mixtures no higher than 20oC, the maximum temperature in the core of a massive structure does not exceed 65oC. With an increase in the proportion of clinker in cement for every 10 kg/m3 and the temperature of the mixtures by 1oC, the maximum temperature in the core of the structure increases by 0,8–1,2oC. Regardless of the value of the maximum temperature in the core, the cooling rate of structures with a surface modulus of less than 2 m-1 and and reinforcement consumption of at least 128 kg/m3 should not exceed 3oC/day.
S.S. KAPRIELOV1, Doctor of Sciences (Engineering)), Academic RAACS,
A.V. SHEINFELD1, Doctor of Sciences (Engineering) Adviser of RAACS,
I.A. CHILIN2, Engineer

1 Research Institute of Concrete and Reinforced Concrete (NIIZHB) named after A.A. Gvozdev (6, bldg. 5, 2-nd Institutskaya Street, Moscow,109428, Russian Federation)
2 “Master Concrete Enterprise” LTD (31, Saratovskaya Street, Moscow, 109518, Russian Federation)

1. Hirozo Mihashi, Joao Paulo de B. Leite. State-of-the-art report on controlling of cracking in early age concrete. Journal of Advanced Concrete Technology. 2004. June. Vol. 2, No. 2, pp. 141–154.
2. Nannan Shi, Jianshu Ouyang, Runxiao Zhang, Dahai Huang. Experimental study on early-age crack of mass concrete under the controlled temperature history. Advances in Materials Science and Engineering. 2014. Article ID 671795, 10 p. doi.org/10.1155/2014/671795
3. ACI 207.1R-05. Guide to Mass Concrete. Report of ACI Committee 207
4. Bisch Philippe. Behavior and assessment of massive structures: cracking and shrinkage. crack width calculation methods for large concrete structures. Nordic Miniseminar. Oslo, Norway. 29–30 august 2017. Workshop Proceedings. No. 12, pp. 11–15.
5. Мчедлов-Петросян О.П. Химия неорганических строительных материалов. M.: Стройиздат, 1988. 304 с.
5. Mchedlov-Petrossian O. P. Khimiya neorganicheskikh stroitel’nykh materialov [Chemistry of Inorganic Building Materials]. Moscow: Stroyizdat. 1988. 304 p.
6. Thermal Properties of Ettringite. Gypsum and Lime. 1968. Vol. 9, pp. 253–269.
7. Yukie Shimada, Francis Young. Thermal stability of ettringite in alkaline solutions at 80oC. Cement and Concrete Research. 2004. December. Vol. 34. Iss. 12, pp. 2261–2268.
8. ACI 207.4R-05. Cooling and Insulating Systems for Mass Concrete. Report of ACI Committee 207.
9. Aitcin P.-C. High-performance concrete. E&FN. London and New York. 1998. 598 p.
10. Каприелов С.С., Травуш В.И., Шейнфельд А.В., Карпенко Н.И., Кардумян Г.С., Киселева Ю.А., Пригоженко О.В. Модифицированные бетоны нового поколения в сооружениях ММДЦ «Москва-Сити» // Строительные материалы. 2006. № 10. С. 8–12.
10. Kaprielov S.S., Travush V.I., Sheynfeld A.V., Karpenko N.I., Kardumyan G.S., Kiselyova Yu.A., Prigozhenko O.V. Modifiered Concretes of a New Generation in Buildings of «Moscow city». Stroitel’nye Materialy [Construction Materials]. 2006. No. 10, pp. 8–12. (In Russian).
11. Каприелов С.С., Шейнфельд А.В., Кардумян Г.С. Новые модифицированные бетоны. М.: ООО «Типография «Парадиз», 2010. 258 с.
11. Kaprielov S.S., Sheynfeld A.V., Kardumyan G.S. Novye modifitsirovannye betony [A New Modifiered Concretes]. Moscow: Paradise. 2010. 258 p. (In Russian).
12. Каприелов С.С., Шейнфельд А.В., Кардумян Г.С., Киселева Ю.А., Пригоженко О.В. Новые бетоны и технологии в конструкциях высотных зданий // Высотные здания. 2007. № 5. С. 94–101.
12. Kaprielov S.S., Sheynfeld A.V., Kardumyan G.S., Kiselyova Yu.A., Prigozhenko O.V. New concretes and technologies in structures of tall buildings. Vysotnye Zdaniya. 2007. No. 5, pp. 94–101. (In Russian).
13. Каприелов С.С., Шейнфельд А.В., Кардумян Г.С., Киселева Ю.А., Пригоженко О.В. Обеспечение термической трещиностойкости массивных фундаментных плит из модифицированных бетонов нового поколения. Проблемы долговечности зданий и сооружений в современном строительстве: Мат. междунар. конф. СПб., 2007. С. 240–245.
13. Kaprielov S.S., Sheynfeld A.V., Kardumyan G.S., Kiselyova Yu.A., Prigozhenko O.V. Providing thermal crack resistance of massive foundation slabs. Problems of Durability of Buildings and Structures in Contmporary Construction. Saint-Petersburg. 2007, pp. 240–245. (In Russian).
14. Каприелов С.С., Шейнфельд А.В., Аль-Омаис Д., Зайцев А.С. Высокопрочные бетоны в конструкции фундаментов высотного комплекса «ОКО» в ММДЦ «Москва-Сити» // Промышленное и гражданское строительство. 2017. № 3. С. 53–57.
14. Kaprielov S.S., Sheynfeld A.V., Al Omais D., Zaitsev A.S. High-strength concretes in foun-dation of tall buildings complex «ÓKO» in «Moscow City» Business Center. Promyshlennoye i Grazhdanskoye Stroitelstvo. 2017. No. 3, pp. 53–57. (In Russian).
15. Шифрин С.А., Кардумян Г.С. Использование органоминеральных модификаторов серии МБ для снижения температурных напряжений в бетонируемых массивных конструкциях // Строительные материалы. 2007. № 9. С. 9–11.
15. Shifrin S.A., Kardumian G.S. The use of organic-mineral modifiers of mb series for re-ducing the thermal stresses in massive concrete structures. Stroitel’nye Materialy [Construction Materials]. 2007. No. 9, pp. 9–11. (In Russian).
16. Каприелов С.С., Шейнфельд А.В. Некоторые особенности механизма действия органоминеральных модификаторов на цементные системы // Сейсмостойкое строительство. Безопасность сооружений. 2017. № 1. С. 40–47.
16. Kaprielov S.S., Sheynfeld A.V. Some features of organic-mineral modifiers action on cement sistems. Seismostoykoye Stroitelstvo. Bezopasnost sooruzheniy. 2017. No.1, pp. 40–47. (In Russian).
17. Bourchy A., Barnes L., Bessette L., Chalencon F., Joron A., Torrenti J-M. Optimization of concrete mix design to account for strength and hydration heat in massive concrete structures. Cement and Concrete Composites. 2019. No. 103, pp. 233–241.
18. Kaprielov S.S., Sheynfeld A.V. Influence of silica fume / fly ash / superplasticizer combinations in powder–like complex modifiers on cement paste porosity and concrete properties. Sixth CANMET/ACI International Conference on Superplasticizers and other Chemical Admixtures in Concrete: Proceedings – Nice. France. 2000, pp. 383–400.
19. Kaprielov S.S., Karpenko N.I., Sheynfeld A.V., Kouznetsov E.N. Influence of multicomponent modifier containing silica fume, fly ash, superplasticizer and air-entraining agent on structure and deformability of high-strength concrete. Seventh CANMET/ACI International Conference on Superplasticizers and other chemical admixtures in concrete. Berlin, Germany. 2003, pp. 99–107.
20. Kaprielov S.S., Karpenko N.I., Sheynfeld A.V. On Controlling Modulus of Elasticity and Creep in High-Strength Concrete with Multicomponent Modifier. Fifth CANMET/ACI International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete: Supplementary Papers. Las Vegas. USA. 2004, pp. 405–421.
21. Odler I. Special Inorganic Cements. E&FN SPON. London – New York. 2000. 395 p.
22. Батраков В.Г. Модифицированные бетоны. Теория и практика. M.: «Astra seven» JSC, 1998. 768 с.
22. Batrakov V.G. Modifitsirovannye betony. Teoriya i praktika [Modified Concrete. Theory and Practice]. Moscow: Astra seven. 1998. 768 p. (In Russian).
23. Каприелов С.С., Шейнфельд А.В., Аль-Омаис Д., Зайцев А.С. Опыт производства и контроля качества высокопрочных бетонов на строительстве высотного комплекса «ОКО» в ММДЦ «Москва-Сити» // Промышленное и гражданское строительство. 2018. № 1. С. 18–24.
23. Kaprielov S.S., Sheynfeld A.V., Al Omais D., Zaitsev A.S. Experience in the Production and Quality Control of High-Strength Concrete in Construction of Tall Buildings Complex «ÓKO» in «Moscow City» Business Center. Promyshlennoye i Grazhdanskoye Stroitelstvo. 2018. No. 1, pp. 18–24.

For citation: Kaprielov S.S., Sheinfeld A.V., Chilin I.A. Optimization of concrete technology parameters to ensure thermal crack resistance of massive foundations. Stroitel’nye Materialy [Construction Materials]. 2022. No. 10, pp. 41–51. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-807-10-41-51

Decorative and Finishing Powder-Activated Concretes with a Granular Surface Texture

Number of journal: 10-2022
Autors:

Erofeev V.T.,
Maksimova I.N.,
Tarakanov O.V.,
Sanyagina Ya.A.,
Erofeeva I.V.,
Suzdaltsev O.V.

DOI: https://doi.org/10.31659/0585-430X-2022-807-10-25-40
УДК: 666.9.031

 

AbstractAbout AuthorsReferences
It is shown that in recent years, self-compacting concrete mixtures, characterized by high workability without the use of vibration, have been widely used in domestic and world practice. The results of a study on the selection of compositions of decorative and finishing powder-activated concretes with a granular surface texture according to rheological properties are presented. The structural and rheotechnological parameters of powder-activated concretes are calculated. It is shown that from the point of view of rheotechnological indicators, the compositions of self-compacting concretes with a cone draft of 27.4 and 28.5 cm are the most qualitative, which corresponds to the American standard SF2. There is an obvious regularity in achieving close values of conditional rheological matrices (ИВДПт, ИПзВДПт) equal to 1.67–1.97 and 1.78–1.98, respectively, indicating that the volume content of the water-dispersed fine-grained suspension component for self-compacting powder-activated sand concretes should be in the range of 60%. Only at a high content of water-dispersed-fine-grained suspension will absolute self-spreading be ensured. From the obtained values of the conditional rheological criteria of powder-activated concretes, it follows that all of them are much greater than one and characterize a significant excess of the volumes of rheological matrices over the volumes of fine-grained, coarse-grained components that fit into them with large separation of particles and grains. As a result of the studies on strength and frost resistance, high indicators of strength and frost resistance of decorative powder-activated concretes with a granular surface texture were revealed.
V.T. EROFEEV1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
I.N. MAKSIMOVA2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
O.V. TARAKANOV2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
Ya.A. SANYAGINA1, Engineer (postgraduate) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
I.V. EROFEEVA1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
O.V. SUZDALTSEV3, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 National Research N.P. Ogarev Mordovia State University (68, Bolshevistskaya Street, Saransk, Republic of Mordovia, 30005, Russian Federation)
2 Penza State University of Architecture and Civil Engineering (28, Germana Titova Street, Penza, 440028, Russian Federation)
3 Asia Cement LLC (20Б/34, Bakunina/Plekhanova Street, Penza, 440000, Russian Federation)

1. Salimova T.A., Vatolkina N.Sh. Quality management in the transition to industry 4.0. Standarty i kachestvo. 2018. No. 6, pp. 58–62. (In Russian).
2. Lesovik V.S. Geonika (geomimetika). Primery realizatsii v stroitel’nom materialovedenii. [Geonics (geomimetics). Examples of implementation in building materials science]. Belgorod: BSTU Publishing House. 2016. 287 p.
3. Karpenko N.I., Karpenko S.N., Yarmakovskiy V.N., Erofeev V.T. On modern methods of ensuring the durability of reinforced concrete structures. Academia. Arkhitektura i stroitel’stvo. 2015. No. 1, pp. 93–102 (In Russian).
4. Lesovik V.S., Fomina E.V. A new paradigm for the design of building composites to protect the human environment. Vestnik MGSU. 2019. Vol. 14. No. 10, pp. 1241–1257. (In Russian). DOI: 10.22227/1997-0935.2019.10.1241-1257
5. Salimova T.A., Vatolkina N.Sh., Makolov V.I. QMS development vectors in the transition to industry 4.0. Standarty i kachestvo. 2018. No. 8 (974), pp. 44–48. (In Russian).
6. Slepyan E.I. Ecological risk. Regional’naya ekologiya. 2002. No. 1–2, pp. 62–82 (In Russian).
7. Erofeev V.T., Yamashkin A.A., Smirnov V.F., Svetlov D.A., Vildyaeva M.V., Yamashkin S.A. Biodestructive processes in ecological, social and industrial systems of residential development. Privolzhskiy nauchnyy zhurnal. 2018. No. 3 (47), pp. 70–77 (In Russian).
8. Kaznacheev V.N. Ekologiya cheloveka. Osnovnyye problem [Human ecology. Main problems]. Moscow: Nauka. 1988. 32 p.
9. Balmasov G.F., Meshkov P.I. Influence of chemicals on phase transformations during hardening of cement stone. Stroitel’nye Materialy [Construction Materials]. 2007. No. 3, pp. 56–57. (In Russian).
10. Kalashnikov V.I., Erofeev V.T., Tarakanov O.V. Suspension-filled concrete mixtures for powder-activated concrete of a new generation. Izvestiya vysshikh uchebnykh zavedeniy. Stroitel’stvo. 2016. No. 4, pp. 38–37. (In Russian).
11. Usherov-Marshak A.V. Betonovedeniye: sovremennyye etyudy [Concrete science: modern studies]. Kharkov: Rarities of Ukraine. 2016. 135 p.
12. Maksimova I.N., Makridin N.I., Erofeev V.T., Skachkov Yu.P. Prochnost’ i parametry razrusheniya tsementnykh kompozitov [Strength and fracture parameters of cement composites]. Saransk: Publishing House of Mordovia University. 2015. 360 p.
13. Taylor H.F.W. Khimiya tsementa [Chemistry of cement]. Moscow: Mir. 1996. 560 p.
14. Erofeev V.T., Mitina E.A., Osipov A.A., Matviev-sky A.K., Emelyanov D.V., Yudin P.V. Composite building materials based on activated mixing water. Stroitel’nye Materialy [Construction Materials]. 2007. No. 11, pp. 56–58 (In Russian).
15. Usherov-Marshak A.V. Kalorimetriyatsementa i betona: Izbr. tr. [Calorimetry of cement and concrete: Select. tr.]. Kharkov: Fact, 2002. 183 p.
16. Evdokimov Yu.A., Kolesnikov V.I., Teterin A.I. Planirovaniye i analiz eksperimentov pri reshenii zadach treniya i iznosa [Planning and analysis of experiments in solving problems of friction and wear]. Moscow: Nauka. 1980. 228 p.
17. Kalashnikov V.I., Gulyaeva E.V., Valiev D.M. Influence of the type of super- and hyperplasticizers on the rheotechnological properties of cement-mineral suspensions, powdered concrete mixtures and strength properties of concrete. Izvestiya vysshikh uchebnykh zavedeniy. Stroitel’stvo. 2011. No. 12, pp. 40–45. (In Russian).
18. Kaprielov S.S., Sheinfeld A.V., Krivoborodov Yu.R. Influence of the structure of cement stone with the addition of microsilica and superplasticizer on the properties of concrete. Beton i zhelezobeton. 1992. No. 7, pp. 4–7. (In Russian).
19. Kaprielov S.S., Sheinfeld A.V., Batrakov V.G. Complex concrete modifier brand MB-01. Beton i zhelezobeton. 1997. No. 5, pp. 38–41. (In Russian).
20. Kaprielov S.S., Chilin I.A. Ultra-high-strength self-compacting fiber-reinforced concrete for monolithic structures. Concrete and reinforced concrete – a look into the future: scientific works of the III All-Russian (II International) conference on concrete and reinforced concrete: in 7 volumes. 2014. Vol. 3. Moscow: MGSU, pp. 158–164 (In Russian).
21. Kaprielov S.S., Sheinfeld A.V., Kardumyan G.S. New modified concrete in the construction of high-rise buildings. II International Forum of Architecture, Construction, Urban Reconstruction, Construction Technologies and Materials. Moscow. November 11–13, 2008, pp. 29–38 (In Russian).
22. Piares I., Barbara H., Barragan B., Ramos G. Self-compacting concrete with finely ground calcium carbonate. Mezhdunarodnoe betonnoe proizvodstvo. 2012. No. 1, pp. 34–38. (In Russian).
23. Gulyaeva E.V., Aksenov S.V., Erofeeva I.V., Kalashnikov V.I. Self-compacting concretes with low specific consumption of cement per unit of concrete strength. Science and innovation. Building and architecture: materials of the XII International scientific-practical conference: in 23 volumes. Sofia. 2014. Vol. 10, pp. 38–40. (In Russian).
24. Yakunin Yu.I. Production of self-compacting concrete with the help of SKAKOA/S equipment. Tekhnologii betonov. 2008. No. 4, pp. 38–39. (In Russian).
25. Antonenko M.V., Ogurtsova Y.N., Strokova V.V., Gubareva E.N. et al. The effect of titanium dioxide sol stabilizer on the properties ofphotocatalytic composite material. BUILDINTECH BIT. 2020. LNCE95, pp. 16–22. DOI: 10.1007/978-3-030-54652-6_3
26. Askadskii A.A., Zhdanova T.V., Andreev I.F. [et al.] Connection of water permeability with a number of physical properties of polymers. E3S Web of Conferences. 2021. Vol. 263. 01022. https://doi.org/10.1051/e3sconf/202126301022
27. Shuldyakov K.V., Kramar L.Ya., Trofimov B.Ya., Ivanov I.M. Superplasticizer effect on cement paste structure and concrete freeze-thaw resistance. Advanced Materials in Technology and Construction (AMTC-2015): AIP Conference Proceedings. 2016. 1698. 070011–1–070011–6. https://doi.org/10.1063/1.4937881
28. Erofeev V.T., Fedortsov A.P., Bogatov A.D., Fedortsov V.A. Biocorrosion of cement concretes, features of its development, evaluation and forecasting. Fundamental’nyye issledovaniya. 2014. No. 12–4, pp. 708–716. (In Russian).
29. Erofeev V.T. et al. Zashchita zdaniy i sooruzheniy ot biopovrezhdeniy biotsidnymi preparatami na osnove guanidina [Protection of buildings and structures from biodamage by biocidal preparations based on guanidine / Ed. by Komohov P.G., Erofeev V.T., Afinogentov G.E.]. St. Petersburg: Nauka. 2010. 192 p.
30. Mukhametrakhimov R., Lukmanova L. Influence of the technological properties of cement-sand mortar on the quality of 3D printed products. IOP Conference Series: Materials Science and Engineering. 2020. Vol. 890. 012082. DOI: 10.1088/1757-899X/890/1/012082
31. Erofeev V.T., Elchishcheva T.F., Makarchuk M.V. Epoxy composite with carbon structures in additive manufacturing technology for the textile industry. Tekhnologiya tekstilnoi promyshlennosti. 2022. No. 2 (398), pp. 346–354. (In Russian). DOI: 10.47367/0021-3497_2022_2_346
32. Erofeev V.T., Elchishcheva T.F., Preobrazhenskaya E.M., Makarchuk M.V. Prospects for the use of new materials and approaches of additive technologies in industrial design. Regional’naya arkhitektura i stroitel’stvo. 2019. No. 3 (40), pp. 7–15. (In Russian).
33. Kharkhardin A.N., Strokova V.V., Kozhukhova M.I. Critical size of micro- and nanoparticles, at which their unusual properties are manifested. Izvestiya vysshikh uchebnykh zavedeniy. Stroitel’stvo. 2012. No. 10, pp. 109–115. (In Russian).
34. Chernyshov E.M., Korotkikh D.N. Modification of the structure of cement stone by micro- and nano-sized particles of silica (questions of theory and applications). Stroitel’nyye materialy, oborudovaniye i tekhnologii XXI veka. 2008. No. 5, pp. 30–32. (In Russian).
35. Sheikin A.E., Chekhovskoy Yu.V., Brusser M.I. Struktura i svoystva tsementnykh betonov [Structure and properties of cement concretes]. Moscow: Stroyizdat. 1983. 254 p.
36. Afonin V.V., Erofeeva I.V., Fedortsov V.A., Emelyanov D.V., Podzhivotov N.Yu. Heuristic approach to solving two-criteria optimization problems for composite materials. Vestnik MGSU. 2018. Vol. 13. Iss. 11, pp. 1357–1366. (In Russian). DOI: 10.22227/1997-0935.2018.11.1357-1366
37. Erofeev V.T., Merkulov I.I., Merkulov A.I., Erofeev P.S. Optimizatsiya sostavov betonov s primeneniyem chislennogo modelirovaniya [Optimization of concrete compositions using numerical simulation]. Saransk: Publishing House of Mordovia University. 2006. 100 p.
38. Kalashnikov V.I. Calculation of the compositions of high-strength self-compacting concrete. Stroitel’nye Materialy [Construction Materials]. 2008. No. 10, pp. 4–6. (In Russian).
39. Erofeev V.T., Tyuryakhin A.S., Smirnov I.V., Maksimova I.N. The optimal composition of the composite according to the criterion of its strength. Stroitel’naya mekhanika i raschet sooruzheniy. 2016. No. 3 (266), pp. 6–16. (In Russian).
40. Kalashnikov V.I., Erofeev V.T., Tarakanov O.V. Technical and economic efficiency of the introduction of architectural and decorative powder-activated carbonate sand concretes. Izvestiya vysshikh uchebnykh zavedeniy. Stroitel’stvo. 2016. No. 6 (690), pp. 39–46. (In Russian).
41. Vovk A.I. Superplasticizers in concrete: analysis of process chemistry. Tekhnologii betonov. 2007. No. 2, pp. 8–9; No. 3, pp. 12–14; No. 4, pp. 8–9. (In Russian).
42. Kalashnikov V.I., Moroz M.N., Tarakanov O.V. et al. New ideas about the mechanism of action of superplasticizers, jointly milled with cement or mineral rocks. Stroitel’nye Materialy [Construction Materials]. 2014. No. 9, pp. 70–75. (In Russian).
43. Batrakov V.G. Modifitsirovannyye betony. Teoriya i praktika [Modified concrete. Theory and practice]. Moscow: Technoproekt. 1998. 768 p.
44. Erofeev V.T., Fomichev V.T., Emelyanov D.V., Balatkhanova E.M., Rodin A.I., et al. Investigation of the properties of cement composites for activated mixing water. Fundamental’nyye issledovaniya. 2015. No. 2 (part 6), pp. 1175–1181. (In Russian).
45. Kalashnikov V.I., Belyakova E.A., Moskvin R.N. Selecting the type of control setting composite cement-ash binder. Procedia Engineering. 2016. Vol. 150, pp. 1631–1635. DOI: 10.1016/j.proeng.2016.07.143
46. Kalashnikov V.I. How to turn old-generation concretes into new-generation high-performance concretes. Beton i zhelezobeton. 2012. No. 1, pp. 82 (In Russian).
47. Kalashnikov V.I. What is a new generation of powder-activated concrete. Stroitel’nye Materialy [Construction Materials]. 2012. No. 10, pp. 70–71 (In Russian).
48. Erofeev V.T., Makridin N.I., Maksimova I.N. On the structural properties of the matrix phase of high-strength cement composites. Promyshlennoye i grazhdanskoyes troitel’stvo. 2019. No. 3, pp. 4–10. (In Russian). DOI: 10.33622/0869-7019.2019.03.04-10
49. Maksimova I.N., Makridin N.I., Erofeev V.T., Skachkov Yu.P. Struktura i konstruktsionnaya prochnost’ tsementnykh kompozitov [Structure and structural strength of cement composites]. Moscow: ASV. 2017. 400 p.
50. Korotkikh D.N. Treshchinostoykost’ sovremennykh tsementnykh betonov (problem materialovedeniya i tekhnologii): monografiya [Crack resistance of modern cement concretes (problems of materials science and technology): monograph]. Voronezh: Voronezh GASU. 2014. 141 p.
51. Karpenko N.I., Yarmakovskiy V.N. Structural concretes of new modifications for lightweight frames of energy-efficient buildings. Rossiyskiy stroitel’nyi kompleks. 2011. No. 10, pp. 122–128. (In Russian).
52. Deize T., Horkung O., Meloman M. Transition from Mikrodur technology to Nanodur technology. The use of standard cements in the practice of producing concrete with ultra-high performance properties. Betonnyy zavod. 2004. No. 3, pp. 4–11. (In Russian).
53. Marenkov V.A., Tarasov O.G. Influence of the climatic factor on the loss of pretensioning in the reinforcement of prestressed elements. Stroitel’nye Materialy [Construction Materials]. 2006. No. 12, pp. 55–57. (In Russian).
54. Dobshits L.M. Physico-mathematical model of concrete destruction during variable freezing and thawing. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2017. No. 12, pp. 30–36 (In Russian).
55. Matveeva O.I., Vasiliev I.G., Pavlyukova I.R. Cement concretes with composite fiber reinforcement for highways operated in the climatic conditions of Yakutia. Concrete and reinforced concrete - a look into the future: scientific works of the III All-Russian (II International) conference on concrete and reinforced concrete: in 7 volumes. Moscow: MGSU, 2014. Vol. 3, pp. 173–182. (In Russian).
56. Sall M., Rybintseva E.S., Tkachenko G.A. Fine-grained concretes with organo-mineral additive for road construction. Stroitel’nye Materialy [Construction Materials]. 2009. No. 7, pp.18–20. (In Russian).
57. Kalashnikov V.I., Erofeev V.T., Moroz M.N. et al. Nanohydrosilicate technologies in the production of concrete. Stroitel’nye Materialy [Construction Materials]. 2014. No. 5, pp. 88–91. (In Russian).
58. Kalashnikov V.I., Suzdaltsev O.V., Dryanin R.A., Sekhposyan G.P. The role of dispersed and fine-grained fillers in concretes of a new generation. Izvestiya vysshikh uchebnykh zavedeniy. Stroitel’stvo. 2014. No. 7, pp. 11–21. (In Russian).
59. Bazhenov Yu.M., Lukutsova N.P., Karpikov E.G. Fine-grained concrete modified with a complex microdispersed additive. Vestnik MGSU. 2013. No. 2, pp. 94–100. (In Russian).
60. Berdov G.I., Mashkin A.N. Activation of cement slurry to obtain high-quality concrete. Izvestiya vysshikh uchebnykh zavedeniy. Stroitel’stvo. 2007. No. 7, pp. 28–31. (In Russian).
61. Kaushansky V.E., Samoshchenko L.S., Bazhenova O.Yu. et al. Obtaining cement with active mineral additives based on aluminosilicate rocks. Tsement i yego primeneniye. 2000. No. 3, pp. 28–30. (In Russian).
62. Resner O. New opportunities in the design of architectural facades. Mezhdunarodnoye betonnoye proizvodstvo. 2013. No. 6, pp. 152–155. (In Russian).
63. Concrete flowers. Mezhdunarodnoye betonnoye proizvodstvo. 2013. No. 5, pp. 24–26 (In Russian).
64. Visualization of photos and graphics on a concrete surface. Mezhdunarodnoye betonnoye proizvodstvo. 2014. No. 3, p. 173. (In Russian).
65. Concrete surfaces with photocatalytic activation. Mezhdunarodnoye betonnoye proizvodstvo. 2013. No. 6, p. 18. (In Russian).
66. Fomichev V.T., Erofeev V.T., Emelyanov D.V., Matvievsky A.A., Mitina E.A. The role of products of anodic processes in the course of electromagnetic activation of water. Fundamental’nyye issledovaniya. 2015. No. 2 (part 6), pp. 1194–1197. (In Russian).
67. Kalashnikov V.I. Calculation of compositions of high-strength self-compacting concrete. Stroitel’nye Materialy [Construction Materials]. 2008. No. 10, pp. 4–6. (In Russian).
68. Gusev B.V. Nanostructuring of concrete materials. Promyshlennoye i grazhdanskoye stroitel’stvo. 2016. No. 1, pp. 7–9. (In Russian).
69. Uriev N.B. Vysokokontsentrirovannyye dispersnyye sistemy [Highly concentrated disperse systems]. Moscow: Chemistry. 1980. 320 p.
70. Mchedlov-Petrosyan O.P., Olginsky A.G. Osobennosti mineraloobrazovaniya kristallogidratov v prisutstvii monomineral’nykh tonkodispersnykh napolniteley. V kn.: Eksperimental’noye issledovaniye mineraloobrazovaniya [Peculiarities of mineral formation of crystalline hydrates in the presence of monomineral finely dispersed fillers. In book: Experimental study of mineral formation]. Moscow: Nauka. 1971, pp. 262–268.
71. Erofeev V.T., Rodin A.I., Dergunova A.V., Suraeva E.N., Smirnov V.F., Bogatov A.D., Kaznacheev S.V., Karpushin S.N. Biological and climatic resistance of cement composites. Academia. Arkhitektura i stroitel’stvo. 2016. No. 3. pp. 93–102. (In Russian).
72. Startsev O.V., Molokov M.V., Medvedev I.M., Erofeev V.T. Determination of the influence of the atmosphere on building elements by temperature sensors. Vse materialy. Entsiklopedicheskiy spravochnik. 2017. No. 3, pp. 61–68. (In Russian).
73. Erofeev V.T., Elchishcheva T.F., Rodin A.I., Smirnov I.V., Merkulov D.A., Fedortsov V.A., Chuvatkin A.A. Study of the properties of concrete, reinforced concrete structures of structures operated in the coastal zone of the Black Sea coast. Transportnyye sooruzheniya. 2018. Vol. 5. No. 2, p. 5. (In Russian). DOI: 10.15862/05SATS218
74. Powers T.K. Fizicheskaya struktura portlandtsementnogo testa. V kn.: Khimiya tsementov [The physical structure of Portland cement paste. In book: Chemistry of cements]. Moscow: Stroyizdat. 1969, pp. 300–319.
75. Kalashnikov V.I. Capillary shrinkage of high-strength reaction-powder concretes and the influence of the scale factor. Stroitel’nye Materialy [Construction Materials]. 2010. No. 5, pp. 52–53. (In Russian).
76. Falikman V.R., Sorokin Yu.V., Kalashnikov O.O. Construction and technical properties of especially high-strength fast-hardening concretes. Beton i zhelezobeton. 2004. No. 5, pp. 5–10 (In Russian).
77. Sheikin A.E., Dobshits L.M. Tsementnyye betony vysokoy morozostoykosti [Cement concretes of high frost resistance]. Leningrad: Stroyizdat. 1989. 128 p.
78. Dobshits L.M. Durability of concrete of transport structures. Transportnoye stroitel’stvo. 1995. No. 3, pp. 17–20. (In Russian).
79. Dobshits L.M., Solomatov V.I. Influence of the properties of cement on the frost resistance of concrete. Beton i zhelezobeton. 1999. No. 3, pp. 19–21. (In Russian).
80. Kalashnikov V.I., Suzdaltsev O.V., Moroz M.N., Pausk V.V. Frost resistance of painted architectural-decorative powder-activated sand concretes. Stroitel’nye Materialy [Construction Materials]. 2015. No. 3, pp. 16–19. (In Russian).
81. Velichko E.G. Frost resistance of concrete with an optimized dispersed composition/ Stroitel’nye Materialy [Construction Materials]. 2012. No. 2, pp. 81–83. (In Russian).

For citation: Erofeev V.T., Maksimova I.N., Tarakanov O.V., Sanyagina Ya.A., Erofeeva I.V., Suzdaltsev O.V. Decorative and finishing powder-activated concretes with a granular surface texture. Stroitel’nye Materialy [Construction Materials]. 2022. No. 10, pp. 25–40. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-807-10-25-40

Influence of Superplasticizers on the Microstructure and Elastic Properties of Concrete

Number of journal: 10-2022
Autors:

Kramar L.Ya.,
Ivanov I.M.,
Shuldyakov K.V.,
Mordovtseva M.V.

DOI: https://doi.org/10.31659/0585-430X-2022-807-10-17-24
УДК: 693.542.4

 

AbstractAbout AuthorsReferences
At present, the production of structural high-strength concretes is not complete without the use of mineral and chemical additives, since with their help high technological, operational, and economic indicators are achieved. When exposed to a load, such concretes must have strictly defined deformation properties. Therefore, one of the main parameters for such concretes is the modulus of elasticity and Poisson’s ratio. If the effect of mineral additives on the deformation properties of concrete is well studied, then the effect of chemical additives is practically not studied. This is especially true in view of the emergence of a wide variety of chemical additives-superplasticizers. In this regard, a study was made of the influence of superplasticizers of different generations on the structure and properties of the cement stone of concrete, its modulus of elasticity and Poisson’s ratio. In the first part of the study, the influence of superplasticizer additives on the composition and structure of cement hydration products was studied. In the second part, the influence of superplasticizer additives of different generations on Young’s modulus, Poisson’s ratio and other characteristics of high-strength concrete is established. As a result, it was shown that superplasticizers significantly affect the composition and structure of hydrates in cement stone, which significantly changes the deformation properties of concrete.
L.Ya. KRAMAR, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
I.M. IVANOV, Postgraduate (This email address is being protected from spambots. You need JavaScript enabled to view it.),
K.V. SHULDYAKOV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
M.V. MORDOVTSEVA, Graduate student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

South Ural State University (National Research University) (76, Lenina Avenue, Chelyabinsk, 454080, Russian Federation)

1. Несветаев Г.В., Давидюк А.Н. Самоуплотняющиеся бетоны: модуль упругости и мера ползучести // Строительные материалы. 2009. № 6. С. 68–71.
1. Nesvetaev G.V., Davidyuk A.N. Self-compacting concretes: modulus of elasticity and creep measure. Stroitel’nye Materialy [Construction Materials]. 2009. No. 6, pp. 68–71. (In Russian).
2. Несветаев Г.В., Кардумян Г.С. Модуль упругости цементного камня с суперпластификаторами и органоминеральными модификаторами с учетом его собственных деформаций при твердении // Бетон и железобетон. 2013. № 6. С. 10–13.
2. Nesvetaev G.V., Kardumyan G.S. Modulus of elasticity of cement matrix with superplasticizers and organomineral modifiers taking into account its own deformations during hardening. Beton i Zhelezobeton. 2013. No. 6, pp. 10–13. (In Russian).
3. Каприелов С.С., Карпенко Н.И., Шейнфельд А.В., Кузнецов Е.Н. О регулировании модуля упругости и ползучести высокопрочных бетонов с модификатором МБ-50С // Бетон и железобетон. 2003. № 6. С. 8–12.
3. Kaprielov S.S., Karpenko N.I., Sheinfel’d A.V., Kuznetsov E.N. On the regulation of modulus of elasticity and creep of high-strength concrete with modifier MB-50C. Beton i zhelezobeton. 2003. No. 6, pp. 8–12. (In Russian).
4. Krizoba K., Hela R. Evaluation of static modulus of elasticity depending on concrete compressive strength. International Journal of Civil, Environmental, Structural, Construction and Architectural Engineering. 2015. Vol. 9. No. 5, pp. 654–657. doi.org/10.5281/zenodo.1107529
5. Берг О.Я., Щербаков Е.Н., Писанко Г.Н. Высокопрочный бетон / Под ред. О.Я. Берга. М.: Стройиздат, 1971. 208 с.
5. Berg O.Ya., Shcherbakov E.N., Pisanko G.N. Vysokoprochnyi beton. Pod red. O.Ya. Berga [High-strength concrete. Edited by O.Ya. Berg]. Moscow: Stroyizdat. 1971. 208 p.
6. Alexander M.G., Davis D.E. Aggregates in concrete – a new assessment of their role. Concrete Beton. 1991. Vol. 59, pp. 10–20.
7. dos Santos A.C., de Arruda A.M., da Silva T.J., Vitor P.C.P., Trautwein L.M. Influence of coarse aggregate on concrete’s elasticity modulus. Acta Scientiarum – Technology. 2017. Vol. 39. No. 1, pp. 17–25. DOI: https://doi.org/10.4025/actascitechnol.v39i1.29873
8. Маилян Д.Р., Несветаев Г.В. Регулирование жесткости и прочности железобетонных балок варьированием модуля упругости бетона // Вестник ТГАСУ. 2018. Т. 20. № 4. С. 86–93. DOI: 10.31675/1607-1859-2018-20-4-86-93
8. Mailyan D.R., Nesvetaev G.V. Regulation of rigidity and strength of reinforced concrete beams by varying the modulus of elasticity of concrete. Vestnik TGASU. 2018. Vol. 20. No. 4, pp. 86–93. DOI: 10.31675/1607-1859-2018-20-4-86-93 (In Russian).
9. Несветаев Г.В., Халезин С.В. О прочности бетона с каркасной структурой // Интернет-журнал «Науковедение». 2015. Т. 7. № 3. С. 116 (1–10). DOI: 10.15862/92TVN315
9. Nesvetaev G.V., Khalezin S.V. On the strength of concrete with a frame structure. Internet-zhurnal «Naukovedenie». 2015. Vol. 7. No. 3, pp. 116 (1–10). DOI: 10.15862/92TVN315 (In Russian).
10. Бабков В.В., Мохов В.Н., Капитонов С.М., Комохов П.Г. Структурообразование и разрушение цементных бетонов. Уфа: ГУП «Уфимский полиграфкомбинат», 2002. 376 с.
10. Babkov V.V., Mokhov V.N., Kapitonov S.M., Komokhov P.G. Strukturoobrazovanie i razrushenie tsementnykh betonov [Structure formation and destruction of cement concretes]. Ufa: GUP «Ufimskii poligrafkombinat». 2002. 376 p.
11. Nassif H.H., Najm H., Suksawang N. Effect of pozzolanic materials and curing methods on the elastic modulus of HPC. Cement and Concrete Composites. 2005. Vol. 27. No. 6, pp. 661–670. DOI: 10.1016/j.cemconcomp.2004.12.005
12. Skalny J., Mindess S. Physico-chemical phenomena at the cement paste. Aggregate interface. Proceeding of 10th international symposium on the reactivity of solids. Dijon. 1984, pp. 223–224.
13. Scrivener K.L., Crumbie A.K., Pratt P.L. A study of the interfacial region between cement paste and aggregate in concrete. MRS Proceedings. 1987. Vol. 114. No. 1. DOI: 10.1557/PROC-114-87
14. Chen D., Zou J., Zhao L., Xu S., Xiang T., Liu, C. Degradation of dynamic elastic modulus of concrete under periodic temperature-humidity action. Materials. 2020. Vol. 13. No. 3. DOI: 10.3390/ma13030611
15. Тамразян А.Г., Есаян С.Г. Механика ползучести бетона: Монография. М.: МГСУ, 2012. 524 с.
15. Tamrazyan A.G., Esayan S.G. Mekhanika polzuchesti betona: monografiya [Mechanics of concrete creep: monograph]. Moscow: MGSU. 2012. 524 p.
16. Горшков В.С., Тимашев В.В., Савельев В.Г. Методы физико-химического анализа вяжущих веществ. М.: Высшая школа, 1981. 335 с.
16. Gorshkov V.S., Savel’ev V.G., Abakumov A.V. Vyazhushchie, keramika i steklokristallicheskie materialy: struktura i svoistva. Sprav. posobie. [Binders, ceramics and glass-crystalline materials: structure and properties. Guide]. Moscow: Stroyizdat. 1995. 576 p.
17. Горшков В.С., Савельев В.Г., Абакумов А.В. Вяжущие, керамика и стеклокристаллические материалы: структура и свойства: Справ. пособие. М.: Стройиздат, 1995. 576 с.
17. Gorshkov V.S., Savel’ev V.G., Abakumov A.V. Vyazhushchie, keramika i steklokristallicheskie materialy: struktura i svoistva. Sprav. posobie. [Binders, ceramics and glass-crystalline materials: structure and properties. Guide]. Moscow: Stroyizdat. 1995. 576 p.
18. Шмитько Е.И., Крылова А.В., Шаталова В.В. Химия цемента и вяжущих веществ: Учебное пособие. Воронеж: Изд-во ВГАСУ, 2005. 164 с.
18. Shmit’ko E.I., Krylova A.V., Shatalova V.V. Khimiya tsementa i vyazhushchikh veshchestv: uchebnoe posobie [Chemistry of cement and binders: textbook]. Voronezh: VGASU. 2005. 164 p.
19. Тейлор Х. Химия цемента / Пер. с англ. А.И. Бойковой, Т.В. Кузнецовой. М.: Мир, 1996. 560 с.
19. Teilor Kh. Khimiya tsementa. Per. s angl. Boikovoi A.I., Kuznetsovoi T.V. [Chemistry of cement. Trans. from English Boikova A.I., Kuznetsova T.V.]. Moscow: Mir. 1996. 560 p.

For citation: Kramar L.Ya., Ivanov I.M., Shuldyakov K.V., Mordovtseva M.V. Influence of superplasticizers on the microstructure and elastic properties of concrete. Stroitel’nye Materialy [Construction Materials]. 2022. No. 10, pp. 17–24. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-807-10-17-24

Polystyrene Concrete. Rational use of Energy Resources

Number of journal: 10-2022
Autors:

Zyukin D.G.

DOI: https://doi.org/10.31659/0585-430X-2022-807-10-12-16
УДК: 691.327.3

 

AbstractAbout AuthorsReferences
The rapid development of construction in Russia in the early 1990s in the context of the impending energy crisis required new materials and technologies. First of all, due to the sharply increased requirements for thermal protection of building enclosing structures. At the initial stage, a significant increase in the requirements for resistance to heat transfer of enclosing structures in the absence of domestic heat-efficient materials led to an irrational increase in the thickness of the outer walls and a significant increase in the material consumption of the building as a whole. As a result, it became necessary to build more massive foundations. All this required the creation of a “warm house” using an innovative technology that provides the required resistance to heat transfer of enclosing structures based on single-layer thermo-technically homogeneous external walls made of a fundamentally new material – polystyrene concrete.
D.G. ZYUKIN, Head of Technical Department (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Production and Construction Enterprise “BlockPlastBeton” LLC (BlockPlastBeton) (1, Tsvetaevoy Street, Korolev, 141075, Moscow Region, Russian Federation)

1. Yudin I.V., Yarmakovsky V.N. Innovative technologies in industrial housing construction using structural lightweight concretes. Stroitel’nye Materialy [Construction Materials]. 2010. No. 1, pp. 15–17. (In Russian).
2. Yarmakovsky V.N., Bremner T.U. Lightweight concrete: present and future. Stroitel’nyi Expert. 2005. No. 20, pp. 5–7. No. 21, pp. 5–7. (In Russian).
3. Petrov V.P., Makridin N.I., Sokolova Yu.A., Yarmakovsky V.N. Tekhnologiya i materialovedenie poristykh zapolnitelei i legkikh betonov [Technology and materials science of porous aggregates and light concretes]. Moscow: Paleotype, RAASN, 2013. 332 p.
4. Zyukin D.G. Large-format polystyrene concrete panels – the key to successful construction. Stroitel’nye Materialy [Construction Materials]. 2022. No. 6, pp. 58–60. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-803-6-58-60

For citation: Zyukin D.G. Polystyrene concrete. Rational use of energy resources. Stroitel’nye Materialy [Construction Materials]. 2022. No. 10, pp. 12–16. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-807-10-12-16

Dispersed Reinforced Radiation-Resistant Composites

Number of journal: 9-2022
Autors:

Rudakov O.B.,
Barabash D.E.,
Barabash A.D.

DOI: https://doi.org/10.31659/0585-430X-2022-806-9-62-67
УДК: 621.45.038.77

 

AbstractAbout AuthorsReferences
Prospects for nuclear branch of creation of the screens providing protection against radiation and possessing constructional properties are shown. Use as binding non-isocyanate polyurethane of the urethane synthesized as a result of nonconventional reaction between oligoether with trailer cyclocarbonate groups and diethylenetriamine is proved. It is established that the received binding possesses the large number of hydrogen communications providing effective absorption of gamma radiation and a neutron stream. Key shortcomings of polymeric binding – dependence of the physicist – mechanical characteristics from temperature and difficult predicted durability are revealed at a radiation warming up. Solutions of the specified problem by introduction of the reinforcing components – polyamide and glass fibers are shown. The rational maintenance of the filling group providing the necessary technological viscosity corresponding to a molding way of production of products is defined. Results of determination of concentration of the reinforcing fibers of various types in a radiation resistant composite are presented. Dependences of «tension deformation» for composite samples at compression and stretching in various temperature conditions are established. Improvement of heat physical characteristics of the reinforced compositions and increase of values of durability is proved. Technological conditions of receiving effective composites of various types reinforced by fibers are defined. For the studied compounding values of linear coefficients of easing scale of radiation are established.
O.B. RUDAKOV, Doctor of Sciences (Chemistry) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
D.E. BARABASH, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.D. BARABASH, graduate student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Voronezh State Technical University (84, 20th Anniversary of October Street, Voronezh, 394006, Russian Federation)

1. Korolev E.V. Prospects for the development of construction materials science. Academia. Arkhitektura i stroitel’stvo. 2020. No. 3, pp. 143-159. (In Russian). DOI: https://doi.org/10.22337/2077-9038-2020-3-143-159
2. Garkina I.A., Danilov A.M., Korolev E.V. Evolution of representations about composite materials from the positions of changing the paradigm. Stroitel’nye Materialy [Construction Materials]. 2018. No. 1–2, pp. 60–62. DOI: https://doi.org/10.31659/0585-430X-2018-756-1-2-60-62 (In Russian).
3. Alfimova N.I. Modern trends in the development of radiation-protective materials science. Vestnik BSTU named after V.G. Shukhov. 2017. No. 4, pp. 20–25. (In Russian).DOI: https://doi.org/10.12737/article_58e24bcd42faa5.10006763.
4. Sachenko M.S., Alfimova N.I., Vishnevskaya J.Yu Modern radiation-protective composition materials for construction purposes Vestnik BSTU named after V.G. Shukhov. 2017. No. 5, pp. 15–19. (In Russian). DOI: https://doi.org/10.12737/article_590878fa94e168.59204031
5. Barabash D.E., Barabash A.D., Potapov Yu.B., Panfilov D.V., Perekalskiy O.E. Radiation-resistant composite for biological shield of personnel. IOP Conference Series: Earth and Environmental Science. Energy Management of Municipal Transportation Facilities and Transport – EMMFT. 2017. Vol. 90. DOI: https://doi.org/10.1088/1755-1315/90/1/012085
6. Barabash A. Barabash D, Pertsev V.T., Panfilov D.V. Polymer composite materials for radiation protection. International Scientific Conference Energy Management of Municipal Facilities and Sustainable Energy Technologies EMMFT 2018. Springer International Publishing. 2018, pp. 352–360. DOI: https://doi.org/10.1007/978-3-030-19868-8_36
7. Barabash D.E., Barabash A.D. Technology of reception of radiation-protective composites of the set viscosity. Effective Building Structures: Theory and practice. Collection of articles of the XVII International Scientific and Technical Conference. 2017. Penza. 2017, pp. 14–17. (In Russian).
8. Parcheta P., Głowińska E., Datta J. Effect of bio-based components on the chemical structure, thermal stability and mechanical properties of green thermoplastic polyurethane elastomers. European Polymer Journal. 2020. 2:109422. https://doi.org/10.1016/j.eurpolymj.2019.109422
9. Piotr Stachak, Izabela Łukaszewska, Edyta Hebda, Krzysztof Pielichowski. Recent advances in fabrication of non-isocyanate polyurethane-based composite materials. Materials. 2021. DOI: https://doi.org/10.3390/ma14133497
10. Barabash A.D. Barabash D.E. Polymeric softeners of mechanical type in production of radiation and resistant composites. Khimiya, fizika i mekhanika materialov. 2020. Vol. 3 (26), pp. 50–59. (In Russian).
11. Bormotov A.N. Mathematical method for the synthesis of composites based on the quality functionals of kinetic processes. Sovremennoye stroitel’stvo i arkhitektura. 2020. No. 1 (17), pp. 29–35. (In Russian).
12. Moceikis R., Kičaitė A., Skripkiūnas G., Yakovlev G.I. Mechanical characteristics and ductility of glass fiber reinforced concrete with modified matrix. Stroitel’nye Materialy [Construction Materials]. 2018. No. 12, pp. 27–33. DOI: https://doi.org/10.31659/0585-430X-2018-766-12-27-33 (In Russian).
13. Smirnova O.M., Andreeva E.V. Properties of heavy concrete, dispersed-reinforced with synthetic fiber. Stroitel’nye Materialy [Construction Materials]. 2016. No. 11, pp. 11–20. (In Russian).
14. Borovkov A.V., Ovchinnikova S.V. Technical and economic comparison of the effectiveness of the use of fiber-reinforced concrete based on fibers of various origins. Inzhenernyi vestnik Dona. 2020. No. 11 (71), pp. 259–270. (In Russian).
15. Barabash A.D., Barabash D.E. Design features of the formulations of corrosion-resistant materials based on liquid rubbers. Nauchnyi vestnik Voronezhskogo gosudarstvennogo arkhitekturno-stroitel’nogo universiteta. 2017. Iss. 9, pp. 47–54. (In Russian).
16. Barabash A.D., Barabash D.E. Softeners of mechanical type in production polymeric composites. Effective Building Structures: Theory and practice. Collection of articles of the XХ International Scientific and Technical Conference. Edited by N.N. Las’kov. 2020, pp. 21–24. (In Russian).

For citation: Rudakov O.B., Barabash D.E., Barabash A.D. Dispersed reinforced radiation-resistant composites. Stroitel’nye Materialy [Construction Materials]. 2022. No. 9, pp. 62–67. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-806-9-62-67

Evaluation of the Effectiveness of Injection and Repair of Damaged Masonry

Number of journal: 9-2022
Autors:

Derkach V.N.,
Bakusov P.A.,
Orlovich R.B.

DOI: https://doi.org/10.31659/0585-430X-2022-806-9-55-61
УДК: 693.1:691.42.001.5

 

AbstractAbout AuthorsReferences
In violation of the technology for repairing damaged masonry by repairing or injection, the restored areas of masonry in further exploitation may be subject to destruction and cracking. Currently, there are no regulations for quality control of the restoration of damaged masonry. A technique for the operational quality control of injection of cracks or repairing of masonry is proposed, based on a comparison of the physical and mechanical characteristics of the repaired areas with basic masonry. For the study, sensors are used that record vibrations of the structure caused by the microseismic background. One sensor was fixed, installed near the repaired area, the second was portable. First, the vibrations of the area of the intact masonry are measured, and then the vibrations of the area of the masonry with a repaired defect. Based on the measurement results, the coherence coefficients are calculated, the value of which is used to evaluate the quality of the repair work.
V.N. DERKACH1, Doctor of Sciences (Engineering), (This email address is being protected from spambots. You need JavaScript enabled to view it.);
P.A. BAKUSOV2, Engineer, Assistant of the department of information technology (This email address is being protected from spambots. You need JavaScript enabled to view it.);
R.B. ORLOWICZ3, Doctor of Sciences (Engineering), Professor (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Branch office of the RUE “Institute BelNIIS” – Scientific-Technical Center (267/2, Moskovskaya Street, Brest, 224023, Republic of Belarus)
2 Saint Petersburg State University of Architecture and Civil Engineering (4, 2nd Krasnoarmeiskaya Street, Saint Petersburg, 190005, Russian Federation)
3 «Georeconstruction» PI OOO (office 414, 4, Izmaylovskiy Avenue, Saint Petersburg, 190005, Russian Federation)

1. Malyszko L., Orlowicz R. Konstukcje murowe. Zarysowania i naprawy. Olsztyn: WUWM. 2000. 153 p.
2. Ищук М.К. Усиление каменных конструкций // Промышленное и гражданское строительство. 2006. № 8. С. 28–30.
2. Ishchuk M.K. Strengthening of stone structures. Promyshlennoe i grazhdanskoe stroitel’stvo. 2006. No. 8, pp. 28–30. (In Russian).
3. Ищук М.К. Совместная работа старой и новой кладок на участках с вычинками // Промышленное и гражданское строительство. 2014. № 1. С. 28–29.
3. Ishchuk M.K. Joint work of old and new masonry in areas with replacement. Promyshlennoe i grazhdanskoe stroitel’stvo. 2014. No. 1, pp. 28–29. (In Russian).
4. Patitz G. Bestandserfassung mit Bauradar – ein zerstörungsfreies Verfahren für die Praxis. Mauerwerk. 2013. Vol. 17. Iss. 4, pp. 196–200. DOI: 10.1002/ dama.201300579
5. Wiggenhauser H., Behrens M., Mouser D., Moryson R.M., Pudovikov S., Herrmann H-G. Non-destructive assessment of retaining wall of former coal mine plant. Mauerwerk. 2018. Vol. 22. Iss. 3, pp. 175–186. DOI: 10.1002/dama.201700021
6. Kwiecien A., Chelmecki J., Matysek P. Non-destructive test of brick columns using change in frequency and inertancy response. Structural Analysis of Historical Constructions. 2012, pp. 2437–2444. http://www.hms.civil.uminho.pt/sahc/2012/2437.pdf
7. Завалишин С.И., Шаблинский Г.Э., Зубков Д.А., Румянцев А.А. Динамический мониторинг зданий и сооружений для контроля их сейсмостойкости // Предотвращение аварий зданий и сооружений. 2009. № 2 (2). С. 1–12.
7. Zavalishin S.I., Shablinskiy G.E., Zubkov D.A., Rumyantsev A.A. Dynamic monitoring of buildings and structures to control their seismic stability. Predotvrashchenie avarii zdanii i sooruzhenii. 2009. No. 2 (2), pp. 1–12. (In Russian).
8. Пономарёв И.С., Махнович С.В., Пантилеев А.С. Особенности экспериментального определения частот и форм собственных колебаний цилиндрической оболочки // Научный вестник НГТУ. 2016. № 3 (64). С. 44–58.
8. Ponomarev I.S., Makhnovich S.V., Pantileev A.S. Features of experimental determination of eigenfrequencies and modes of cylindrical shell oscillations. Nauchnyi vestnik NGTU. 2016. No. 3 (64), pp. 44–58. (In Russian).
9. Gentile C., Saisi A., Cabboi A. Dynamic monitoring of a Masonry tower. Structural Analysis of Historical Constructions. 2012, pp. 2390–2397. DOI: 10.1051/matecconf/20152405003
10. Elyamani A., Caselles J.O., Clapes J., Roca P Assessment of dynamic behavior of Mallorca cathedral. Structural Analysis of Historical Constructions. 2012, pp. 2376–2384.
11. Grosel J., Sawicki W., Wojcicki Z. Vibration measurements in analysis of historical structures. Journal of Heritage Conservation. 2012. Vol. 32, pp. 157–164.
12. Бендат Дж., Пирсол А. Измерение и анализ случайных процессов. М.: Мир, 1971. 540 с.
12. Bendat Dzh., Pirsol A. Izmerenie i analiz sluchajnyh processov [Measurement and analysis of random processes]. Moscow: Mir. 1971. 540 p.
13. Дженкинс Г., Ваттс Д. Спектральный анализ и его приложения. Т. 1, 2. М.: Мир, 1971. 316 с.; 285 с.
13. Dzhenkins G., Vatts D. Spektral’nyj analiz i ego prilozheniya [Spectral analysis and its applications]. Vol. 1, 2. Moscow: Mir. 1971. 316 p.; 285 p.
14. Рандалл Р.Б. Частотный анализ. Копенгаген: Брюль и Къер, 1989. 389 с.
14. Randall R.B. Chastotnyj analiz [Frequency analysis]. Copenhagen: Bryul’ i Ker. 1989. 389 p.
15. Отнес Р., Эноксон Л. Прикладной анализ временных рядов. М.: Мир, 1982. 428 с.
15. Otnes R., Enochson L. Prikladnoi analiz vremennykh ryadov [Applied time series analysis]. Moscow: Mir. 1982. 428 p. (In Russian).

For citation: Derkach V.N., Bakusov P.A., Orlovich R.B. Evaluation of the effectiveness of injection and repair of damaged masonry. Stroitel’nye Materialy [Construction Materials]. 2022. No. 9, pp. 55–61. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-806-9-55-61

https://www.traditionrolex.com/10