Log in

Mechanocomposites Based on Anhydrite: Properties and Applications

Number of journal: 8-2022
Autors:

Garkavi M.S.,
Artamonov A.V.,
Kolodezhnaya E.V.,
Dergunov S.A.,
Serikov S.V.

DOI: https://doi.org/10.31659/0585-430X-2022-805-8-41-45
УДК: 691.311

 

AbstractAbout AuthorsReferences
The most popular way to improve the construction and technical characteristics of binders and materials based on calcium sulfate is their modification through the use of mineral additives. Of particular interest among structure modifiers are the so-called mechanocomposites, which are formed as a result of intensive mechanical processing of a mixture of mineral components. mechanocomposites are metastable structures with a high density of interfacial boundaries between the initial components, which provides a very high concentration of defects on surfaces and in near-surface layers. When crushing a mixture of anhydrite and aluminous slag in a centrifugal impact mill, a mechanocomposite was obtained, which is a CaSO4–CaO–Al2O3 system and consists of calcium aluminates and sulfoaluminates. This mechanocomposite is used to activate the process of hardening of the anhydrite binder due to the formation of calcium and aluminum hydroxides and calcium hydroaluminates during its hydration. In a binder system with a mechanocomposite, crystallization of gypsum dihydrate occurs by the mechanism of oriented coalescence of particles with the formation of dendrites, which are characterized by a clear mutual crystallographic orientation of the branches. This contributes to the growth of the strength of anhydrite stone.
M.S. GARKAVI1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.V. ARTAMONOV1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
E.V. KOLODEZHNAYA2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
S.A. DERGUNOV3, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
S.V. SERIKOV3, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Ural-Omega ZAO (89, bldg. 7, Lenina Avenue, Magnitogorsk, 455037, Russian Federation)
2 Institute for the Problems of Integrated Development of Mineral Resources of the Russian Academy of Sciences (4, Kryukovsky Tupik, Moscow, 111020, Russian Federation)
3 Orenburg State University (13, Prospect Pobedy, Orenburg, 460018, Russian Federation)

1. Rakhimov R.Z., Khaliullin M.I., Gaifullin A.R. Composite gypsum binders using expanded clay dust and blast-furnace slags. Stroitel’nye Materialy [Construction Materials]. 2012. No. 7, pp. 13–16. (In Russian).
2. Gordina A.F., Polyanskikh I.S., Tokarev Yu.V., Buryanov A.F., Senkov S.A. Water-resistant gypsum materials modified with cement, microsilica and nanostructures. Stroitel’nye Materialy [Construction Materials]. 2014. No. 6, pp. 35–37. (In Russian).
3. Petropavlovskaya V.B., Belov V.V., Novichenkova T.B. Maloenergoemkie gipsovye stroitel’nye kompozity: Monografiya [Low-energy gypsum building composites: Monograph]. Tver: TVGTU. 2014. 136 p.
4. Yakovlev G.I., Plekhanova T.A., Makarova I.S., Maeva I.S., Buryanov A.F., Fisher H.B. Porous anhydrite compositions modified with carbon nano-structures. Tekhnologii betonov. 2007. No. 6, pp. 20–22. (In Russian).
5. Ancharov A.I. et al. Mechanocomposites as precursors for creating materials with new properties. Novosibirsk: Publishing house of SO RAN, 2010. 424 p.
6. Smolyakov V.K., Lapshin O.V. Makroskopicheskaya kinetika mekhanokhimicheskogo sinteza: Monografiya [Macroscopic kinetics of mechanochemical synthesis: Monograph]. Tomsk: Publishing House of the Institute of Atmospheric Optics SB RAS, 2011. 192 p.
7. Lapshin O.V., Smolyakov V.K. Dynamics of structural transformations during grinding of a binary mixture. Physical mesomechanics. 2011. Vol. 14. No. 2, pp. 77–84. (In Russian).
8. Lapshin O.V., Smolyakov V.K. Formation of a layered structure of mechanocomposites during grinding of a binary mixture. Khimicheskaya fizika i mezoskopiya. 2013. Vol. 15. No. 2, pp. 278–284. (In Russian).
9. Uvarov N.F., Boldyrev V.V. Size effects in the chemistry of heterogeneous systems. Uspekhi khimii. 2001. Vol. 70. No. 4, pp. 307–329. (In Russian).
10. Buryanov A.F., Fisher H.-B., Gal’tseva N.A., Buldyzhova E.N. Investigation of the role of potassium sulfate in the design of a hardening activator. Stroitel’nye Materialy [Construction Materials]. 2021. No. 8, pp. 34–38. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-794-8-34-38
11. Klimenko V.G., Pogorelova A.S. Multiphase gypsum systems for dry mixes based on natural gypsum. Vestnik BSTU named after V.G. Shukhov. 2005. No. 9, pp. 108–111. (In Russian).
12. Drebezgova M.Yu., Chernyshova N.V., Shatalova S.V. Composite gypsum binder with multicomponent mineral additives of different genesis. Vestnik BSTU named after V.G. Shukhov. 2017. No. 10, pp. 27–34. (In Russian).
13. Tokarev Yu.V., Yakovlev G.I. Modification of anhydrite compositions with aluminum-containing ultrafine additives. Izvestiya KazGASU. 2009. No. 1 (11), pp. 302–308. (In Russian).
14. Budnikov P.P., Zorin S.P. Angidritovyi tsement [Anhydrite cement]. Moscow: Promstroyizdat, 1954. 90 p.
15. Garkavi M.S., Vorobyov V.V., Kushka V.N., Svitov V.S. Modern equipment for grinding and classifying materials. Vestnik BSTU named after V.G. Shukhov. 2003. No. 6, pp. 280–284.
16. Khripacheva I.S., Garkavi M.S., Artamonova A.V., Voronin K.M., Artamonova A.V. Cements of centrifugal-impact grinding. Cement I ego primenenie. 2013. No. 4, pp. 106–109. (In Russian).
17. Khripacheva I.S., Garkavi M.S. Mixed cements of centrifugal-impact grinding based on blast-furnace waste slag. Stroitel’nye Materialy [Construction Materials]. 2010. No. 8, pp. 40–41. (In Russian).
18. Garkavi M.S., Dergunov S.A., Serikov S.V. Formation of the structure of composite cement in the grinding process. Stroitel’nye Materialy [Construction Materials]. 2021. No. 10, pp. 65–68. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-796-10-65-68
19. Garkavi M.S., Artamonov A.V., Stavtseva A.V., Kolodezhnaya E.V., Dergunov S.A., Serikov S.V. Modeling of structural transformations when grinding composite cement. Stroitel’nye Materialy [Construction Materials]. 2021. No. 11, pp. 41–46. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-797-11-41-46
20. Kuznetsova T.V., Sychev M.M., Osokin A.P. and others. Special cements: Textbook for universities. St. Petersburg: Stroyizdat, 1997. 314 p.
21. Garkavi M.S., Artamonov A.V., Kolodezhnaya E.V., Buryanov A.F. Composite anhydrite-slag binder for centrifugal impact grinding. Stroitel’nye Materialy [Construction Materials]. 2014. No. 7, pp. 16–18.
22. Ivanov V.K., Fedorov P.P., Baranchikov A.E., Osiko V.V. Oriented splicing of particles: 100 years of research on the non-classical mechanism of crystal growth. Uspekhi khimii. 2014. Vol. 83. No. 12, pp. 1204–1222.

For citation: Garkavi M.S., Artamonov A.V., Kolodezhnaya E.V., Dergunov S.A., Serikov S.V. Mechanocomposites based on anhydrite: properties and applications. Stroitel’nye Materialy [Construction Materials]. 2022. No. 8, pp. 41–45. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-805-8-41-45

Anhydrite Binder Modified with a Complex Additive for Dry Building Mixtures

Number of journal: 8-2022
Autors:

Buryanov A.F.,
Fisher H.-B.,
Korovyakov V.F.,
Gal'tseva N.A.,
Buldyzhova E.N.

DOI: https://doi.org/10.31659/0585-430X-2022-805-8-36-40
УДК: 691.311

 

AbstractAbout AuthorsReferences
The complex additive as Portland cement, potassium sulfate and ferrous sulphate has a positive effect on the physical and technical properties of anhydrite binders. Mathematical models have been obtained that make it possible to design a material based on a fired modified anhydrite binder with specified properties in terms of setting time and strength characteristics. The complex activator affects the acceleration of the hydration of insoluble anhydrite and the processes occurring in this case. The optimal ratio of alkaline and sulfate hardening accelerators for activating various anhydrite binders has been established: for synthetic and natural anhydrite binders - an alkaline component of 3.5–5% and sulfate: 1.5–2% potassium sulfate, 0.6–1% iron sulfate; for roasting anhydrite binder – alkaline component 2–3.5% and sulfate: 1–1.5% potassium sulfate, 0.2–0.6% ferrous sulfate. Modification of the anhydrite system with the developed additive has a positive effect on the structure formation of hardening samples based on anhydrite binder. Compositions of dry building mixtures for floor screed based on modified anhydrite binder with specified performance properties have been developed. These dry mixes can be used in rooms for light, moderate and heavy loads, depending on the compressive strength.
A.F. BURYANOV1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
H.-B. FISHER2, Doctor-Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.);
V.F. KOROVYAKOV1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
N.A. GAL'TSEVA1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
E.N. BULDYZHOVA3, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)
2 Weimar University of Civil Engineering (11, Coudraystraβe, Weimar, 99421, Germany)
3 Moscow Institute of Psychoanalysis NIGHT VO (34, building 14, Kutuzovsky Avenue, Moscow, 121170, Russian Federation)

1. Guerra-Cossio M.A., González-Lopez J.R., Magal-lanes-Rivera R.X., Zaldivar-Cadena A.A., Figueroa-Torres M.Z. Calcium sulfate: an alternative for environmentally friendly construction. Conference: 2nd International Conference on Bio-based Building Materials & 1st Conference on ECOlogical valorisation of GRAnular and FIbrous materials. 2017, pp. 1–5.
2. Kaklyugin A.V., Kastornykh L.I., Stupen N.S., Kovalenko V.V. Press-formed composites with alternate wetting and drying resistance based on modified gypsum binder. Stroitel’nye Materialy [Construction Materials]. 2020. No. 12, pp. 40–46. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-787-12-40-46
3. Meshcheryakov Yu.G., Fedorov S.V., Suchkov V.P. Influence of gypsum and phosphogypsum dehydration conditions on the structure and technical properties of the binder. Stroitel’nye Materialy [Construction Materials]. 2020. No. 7, pp. 23–27. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-782-7-23-27
4. Petropavlovskaya V., Sulman M., Novichenkova T., Zavadko M., Petropavlovskii K. Gypsum composition with a complex based on industrial waste. Chemical Engineering Transactions. 2021. Vol. 88, pp. 1009–1014. https://doi.org/10.3303/CET2188168
5. Tokarev Yu.V., Volkov M.A., Ageev A.V., Kuzmina N.V., Grakhov V.P., Yakovlev G.I., Khazeev D.R. Estimation of efficiency of applying aqueous dispersion of carbon particles in anhydrite binder. Stroitel’nye Materialy [Construction Materials]. 2020. No. 1–2, pp. 24–35. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-778-1-2-24-35
6. Klimenko V.G. The role of double salts based on sulfates Na+, K+, Ca2+, NH4+ in the technology of obtaining anhydrite binders. Vestnik BSTU named after V.G. Shukhov. 2017. No. 12, pp. 119–125. (In Russian).
7. Tokarev Yu.V., Yakovlev G.I., Buryanov A.F. Anhydrite compositions modified with an ultrafine additive based on MgO. Stroitel’nye Materialy [Construction Materials]. 2012. No. 7, pp. 17–19. (In Russian).
8. Klimenko V.G., Pavlenko V.I., Gasanov S.K. Acid-base interactions in gypsum glass systems. Vestnik BSTU named after V.G. Shukhov. 2015. No. 5, pp. 77–81. (In Russian).
9. Buryanov A.F., Galtseva N.A., Buldyzhova E.N., Petropavlovsky K.S. The possibility of developing an anhydrite binder hardening model. Collection of articles of the III All-Russian scientific and practical conference “Young scientists of Russia”. 2020, pp. 28–30.
10. Buryanov A.F., Fisher Kh.-B., Sokolova Yu.A., Gal’tseva N.A., Buldyzhova E.N. Study of the effect of firing temperature on natural gypsum stone. Construction materials science: present and future: collection of materials of the II All-Russian scientific conference dedicated to the centenary of the Moscow State University of Civil Engineering. Moscow, November 18–19, 2021, pp. 9–11. (In Russian).

For citation: Buryanov A.F., Fisher H.-B., Korovyakov V.F., Gal'tseva N.A., Buldyzhova E.N. Anhydrite binder modified with a complex additive for dry building mixtures. Stroitel’nye Materialy [Construction Materials]. 2022. No. 8, pp. 36–40. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-805-8-36-40

New Technological Approaches in the Production of Artificial Gypsum Stone from Phosphogypsum

Number of journal: 8-2022
Autors:

Sobol Yu.B.,
Abramov A.M.,
Polumiev E.V.

DOI: https://doi.org/10.31659/0585-430X-2022-805-8-31-35
УДК: 691.311

 

AbstractAbout AuthorsReferences
An effective technology for the production of artificial gypsum stone from phosphogypsum has been developed. An integrated approach has been implemented in solving the issue of processing large-tonnage industrial waste, including the extraction of rare-earth elements from it. The possibilities of replacing natural gypsum stone as a setting regulator in the production of cement have been studied. It has been established that artificial gypsum stone from phosphogypsum can completely replace natural material. In the course of the work done, it was found that the dosage of the setting regulator can be significantly reduced. Industrial tests have shown the technological advantages of the gypsum stone obtained in terms of transportation, feeding and dosing.
Yu.B. SOBOL, Candidate of Sciences (Enginereeng), Founder,
A.M. ABRAMOV, Founder,
E.V. POLUMIEV, Project Manager (This email address is being protected from spambots. You need JavaScript enabled to view it.)

SKYGRAD INNOVATTIONS LLC, (1/4, Pionerskaya Street, Yubileynyy Microdistrict, Korolev, 141090, Moscow Oblast, Russian Federation)

1. Shestakov V.L., Dvorkin L.I. Possibility of phosphogypsum granulation. Tsement. 1983. No. 7. (In Russian).
2. Buryanov A.F. Gypsum, its research and application – from P.P. Budnikov to the present day. Stroitel’nye Materialy [Construction Materials]. 2005. No. 9, pp. 40–44. (In Russian).
3. Mikheenkov M.A. Artificial gypsum stone based on phosphogypsum. Tsement i yego primeneniye. 2009. No. 5, pp. 81–84. (In Russian).
4. Mikheenkov M.A., Kim V.D., Polyansky L.I. Production of artificial gypsum stone. Stroitel’nye Materialy [Construction Materials]. 2010. No. 7, pp. 13–17. (In Russian).
5. Abramov A.M., Sobol’ Yu.B., Galieva Zh.N., Galiev R.S., Sabinina O.R. Integrated technology for the processing of phosphogypsum with the production of REM concentrate, gypsum binder and building products based on it. Rare earth elements: geology, chemistry, production and application: Proceedings of the international conference. Moscow. October 29–31, 2012, pp. 41–42. (In Russian).
6. Galieva Zh.N., Abramov A.M., Sobol Yu.B., Igumnov M.S., Gerya V.O., Shulin S.S., Chizhevskaya S.V. Development of universal technology and equipment for the separation of rare earth concentrates in cascades of centrifugal extractors, mastering production. Khimicheskaya promyshlennost’ segodnya. 2019. No. 3, pp. 54–60. (In Russian).
7. Patent 2487834 RF: MPK51 C01F 17/00 A method for extracting rare earth metals from phosphogypsum. Abramov A.M., Galieva Zh.N., Galiev R.S., Sabinina O.R., Sobol Yu.B. Patent holder LLC “Laboratory of Innovative Technologies”. Declared 12/27/2011. Published 07/20/2013. Bull. No. 20. 8 p. (In Russian).
8. Abramov A.M., Volobuev O.I., GalievaZh.N., Sobol’ Yu.B, Solodovnikov A.V., Yachmenov A.A., Kuznetsov G.I., Kosogorov A.V., Trusilov N.N. Separating rare-earth elements on centrifugal extractors: developing technology, designing equipment, and engineering production. Theoretical Foundations of Chemical Engineering. 2020. Vol. 54. No. 4, pp. 762–768. DOI: 10.1134/S0040579520040028

For citation: Sobol Yu.B., Abramov A.M., Polumiev E.V. New technological approaches in the production of artificial gypsum stone from phosphogypsum. Stroitel’nye Materialy [Construction Materials]. 2022. No. 8, pp. 31–35. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-805-8-31-35

Rheological Properties of Gypsum Cement Binders and Molding Mixtures Based on Them for 3D Additive Construction Technologies

Number of journal: 8-2022
Autors:

Shatalova S.V.,
Chernysheva N.V.,
Elistratkin M.Yu.,
Drebezgova M.Yu.,
Masalitina S.V.

DOI: https://doi.org/10.31659/0585-430X-2022-805-8-23-30
УДК: 666.941.4

 

AbstractAbout AuthorsReferences
The large-scale introduction of 3D technologies into the widespread practice of low-rise construction depends on their competitiveness compared to traditional technologies. There is a need for affordable materials that make it possible to obtain molding mixes for construction printing that best meet the requirements for them. Molding mixtures based on gypsum cement binders are effective for these purposes, which have a significant advantage in the ability to regulate the setting time within a wide range and the hardening rate compared to mixtures based on Portland cement. The results of experimental studies of rheological characteristics of gypsum cement binders and molding mixtures based on them, obtained using the method of rotational viscometry, are presented. The study of rheological features made it possible to establish that the introduction of a plasticizing and foaming additive eliminates the main rheological anomalies of the compositions, unifying the nature of their flow. With the introduction of a fine aggregate with partial polarization of the concrete mixture, the rheogram character remains close to linear. At the same time, the filler significantly increases the yield strength required to ensure mold stability, which is an important requirement for the effectiveness of gypsum cement molding mixtures for additive construction.
S.V. SHATALOVA, assistant (This email address is being protected from spambots. You need JavaScript enabled to view it.),
N.V. CHERNYSHEVA, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
M.Yu. ELISTRATKIN, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
M.Yu. DREBEZGOVA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
S.V. MASALITINA, undergraduate (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Belgorod State Technological University named after V.G. Shukhov (46, Kostyukov Street, Belgorod, 308012, Russian Federation)

1. Лесовик В.С., Елистраткин М.Ю., Глаголев Е.С., Шаталова С.В., Стариков М.С. Формирование свойств композиций для строительной печати // Вестник БГТУ им. В.Г. Шухова. 2017. № 10. С. 6–14. https://doi.org/10.12737/article_59cd0c57ede8c1.83340178
1. Lesovik V.S., Elistratkin M.Yu., Glagolev E.S., Shatalova S.V., Starikov M.S. Formation of the properties of compositions for construction printing. Vestnik BSTU named after V.G. Shukhov. 2017. No. 10, pp. 6–14. https://doi.org/10.12737/article_59cd0c57ede8c1.83340178 (In Russian).
2. Khoshnevis B., Dooil Hwang, Ke-Thia Yao, Zhenghao Yeh. Mega-scale fabrication by contour crafting. International Journal of Industrial and Systems Engineering. 2006. Vol. 1. No. 3, pp. 301–320. DOI:10.1504/IJISE.2006.009791
3. Zhang J., Khoshnevis B. Optimal machine operation planning for construction by Contour Crafting. Automation in Construction. 2013. No. 29, pp. 50–67. DOI:10.1016/J.AUTCON.2012.08.006
4. Le T.T., Austin S.A., Lim S., Buswell R.A., Gibb A.G.F., Thorpe T. Mix design and fresh properties for high-performance printing concrete. Materials and structures. 2012. Vol. 45. No. 8, pp. 1221–1232. DOI: 10.1617/s11527-012-9828-z
5. Zeina Malaeb, Hussein A. Hachem, Tourbah A., Maalouf T., Nader El Zarwi, Hamzeh F. 3D Concrete printing: machine and mix design. International Journal of Civil Engineering and Technology. 2015. Vol. 6 (6), pp. 14–22. Project: 3D Concrete Printing
6. Khalil N. Aouad G., Rémond S. Use of calcium sulfoaluminate cements for setting control of 3D-printing mortars. Construction and Building Materials. 2017. Vol. 157, pp. 382–391. DOI: 10.1016/j.conbuildmat.2017.09.109
7. Lin J.C., Wu X., Yang W. Application of P.O and R-SAC mortar for 3D printing in construction. Conf. Series: Materials Science and Engineering. 2017. Vol. 292, pp. 79–83. DOI:10.1088/1757-899X/292/1/012070
8. Slavcheva G., Britvina E., Shvedova М. Heat release during 3d-printable materials setting and hardening. Materials Science Forum. 2021. Vol. 1043 MSF, pp. 37–42. DOI:10.4028/www.scientific.net/MSF.1043.37
9. Marchon D., Kawashima S., Bessaies-Bey H., Mantellato S.Ng. Hydration and rheology control of concrete for digital fabrication: potential admixtures and cement chemistry. Cement and Concrete Research. 112. 2018, pp. 96–110. https://doi.org/10.1016/j. cemconres.2018.05.014
10. Thrane L.N., Pade C., Nielsen C.V. Determination of rheology of self-consolidating concrete using the 4C-rheometer and how to make use of the results. Journal of ASTM International. 2009. Vol. 7 (1), pp. 1–10. DOI: 10.1520/JAI102003
11. Reiter L., Wangler T., Roussel N., Flatt R.J. The role of early age structural build-up in digital fabrication with concrete. Cement and Concrete Research. 2018. Vol. 112, pp. 86–95. https:// doi.org/10.1016/j.cemconres.2018.05.011
12. Keita E. Bessaies-Bey H., Zuo W., Belin P., Roussel N. Weak bond strength between successive layers in extrusion-based additive manufacturing: measurement and physical origin. Cement and Concrete Research. 2019. Vol. 123. 105787. DOI: 10.1016/j.cemconres.2019.105787
13. Liu K., Wu Y. F., Jiang X. L. Shear strength of concrete filled glass fiber reinforced gypsum walls. Materials and Structures. 2008. Vol. 41. No. 4, pp. 649–662. DOI: 10.1617/s11527-007-9271-8
14. Удодов С.А., Белов Ф.А., Золотухина А.Е. Уточнение состава сухой строительной смеси для 3D-печати методом математического моделирования. В сборнике трудов конференции «European scientific conference». Пенза. 2017. 30 июля. С. 132–138.
14. Udodov S.A., Belov F.A., Zolotukhina A.E. Refinement of the composition of dry mortar for 3D printing by mathematical modeling. In the collection of proceedings of the conference «European scientific conference». Penza. July 30, 2017, pp. 132–138. (In Russian).
15. Рязанов А.Н., Шигапов Р.И., Синицин Д.А., Кинзябулатова Д.Ф., Недосеко И.В. Использо-вание гипсовых композиций в технологиях строительной 3D-печати малоэтажных жилых зданий. Проблемы и перспективы // Строительные материалы. 2021. № 8. С. 39–44. DOI: 10.31659/0585-430X-2021-794-8-39-44
15. Ryazanov A.N., Shigapov R.I., Sinitsin D.A., Kinzyabulatova D.F., Nedoseko I.V. The use of gypsum compositions in the technologies of construction 3D printing of low-rise residential buildings. Problems and prospects. Stroitel’nye Materialy [Construction Materials]. 2021. No. 8, pp. 39–44. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-794-8-39-44
16. Чернышева Н.В., Лесовик В.С., Дребезгова М.Ю., Моторыкин Д.А., Лесниченко Е.Н., Бочарников А.Л. Состав и реологические свойства формовочных смесей на композиционном гипсовом вяжущем // Строительные материалы. 2021. № 8. С. 45–52. DOI: 10.31659/0585-430X-2021-794-8-45-52
16. Chernysheva N.V., Lesovik V.S., Drebezgova M.Yu., Motorykin D.A., Lesnichenko E.N., Bocharnikov A.L. Composition and rheological properties of molding mixtures on a composite gypsum binder. Stroitel’nye Materialy [Construction Materials]. 2021. No. 8, pp. 45–52. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-794-8-45-52
17. Chernysheva N.V., Shatalova S.V. Compounding features of composite gypsum binders for porous composites in construction printing technologies. IOP Conference Series: Materials Science and Engineering. Buildintechbit. Innovations and technologies in construction. 2020. 012007. DOI: 10.1088/1757-899X/945/1/012007
18. Ребиндер П.А. Поверхностные явления в дисперсных системах. Т. 2. Физико-химическая механика. М.: Наука, 1979. 381 с.
18. Rebinder P.A. Poverkhnostnyye yavleniya v dispersnykh sistemakh. T. 2. Fiziko-khimicheskaya mekhanika [Surface phenomena in dispersed systems. T. 2. Physical and chemical mechanics]. Moscow: Nauka. 1979. 381 p.
19. Иващенко Ю.Г., Тимохин Д.К., Страхов А.В. Модифицирующее действие органических добавок на цементные композиционные материалы // Вестник СГТУ. 2012. № 4 (68). С. 202–206.
19. Ivashchenko Yu.G., Timokhin D.K., Strakhov A.V. Modifying effect of organic additives on cement composite materials. Vestnik SGTU. 2012. No. 4 (68), pp. 202–206. (In Russian).
20. Эльян Исса Жамал Исса. Стеновые гипсосодержащие материалы на природном и техногенном сырье Ближнего Востока: Дис. ... канд. техн. наук. Белгород, 2014. 147 с.
20. Elyan Issa Jamal Issa. Wall gypsum-containing materials based on natural and technogenic raw materials from the Middle East. Dis. ... Candidate of Sciences (Engineering). Belgorod. 2014. 147 p. (In Russian).

For citation: Shatalova S.V., Chernysheva N.V., Elistratkin M.Yu., Drebezgova M.Yu., Masalitina S.V. Rheological properties of gypsum cement binders and molding mixtures based on them for 3D additive construction technologies. Stroitel’nye Materialy [Construction Materials]. 2022. No. 8, pp. 23–30. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-805-8-23-30

Features of the Raw Material Base of Kuzbass for the Production of Ceramic Bricks

Number of journal: 8-2022
Autors:

Boldyrev G.V.,
Storozhenko G.I.,
Cherneykin M.A.

DOI: https://doi.org/10.31659/0585-430X-2022-805-8-18-22
УДК: 666.3

 

AbstractAbout AuthorsReferences
In the Kemerovo Кegion, whose brick factories are not leaders in the coarse ceramics industry, both natural deposits and man-made waste can be considered as a raw material base, which do not improve the ecological situation in the region. Despite having significant reserves of natural clay raw materials, mostly of satisfactory quality, huge reserves of dispersed aluminosilicate raw materials suitable for the production of ceramic products have been accumulated in the tailings of processing plants in Kuzbass. This creates prospects for the development of the ceramic industry in the region.
G.V. BOLDYREV1, Candidate of Sciences (Engineering);
G.I. STOROZHENKO2,3, Doctor of Sciences (Engineering);
M.A. CHERNEYKIN3, Engineer (postgraduate student)

1 OOO GEO-S (Novokuznetsk, Russian Federation)
2 Novosibirsk State University of Architecture and Civil Engineering (113, Leningradskaya Street, Novosibirsk, 630008, Russian Federation)
3 Siberian State Industrial University (42, Kirova Street, Novokuznetsk, 654007, Russian Federation)

1. Tsivilev invited Putin to create two million-plus cities in Kuzbass. RBC. October 01, 2021. https://www.rbc.ru/society/01/10/2021/6156fa129a794780192d221b (In Russian).
2. Stolboushkin A.Yu. Ivanov A.I., Akst D.V., Fomina O.A., Mishin M.P., Syromyasov V.A. Unsuccessful experience of re-profiling a unique plant for the production of bricks from coal waste and possible ways of its reconstruction. Stroitel’nye Materialy [Construction Materials]. 2017. No. 4, pp. 20–24. (In Russian).
3. Rasskazov V.F., Ashmarin G.D., Livada A.N. Production of construction materials using technogenic wastes. Glass and Ceramics. 2009. Vol. 66. No. 1–2, pp. 3–4.
4. Kotlyar V.D., Terekhina Yu.V., Kotlyar A.V., Yashenko R.A., Dyachenko N.E. Clays of the Kasminsky manifestation in the Kemerovo region – promising raw materials for production clinker bricks. Stroitel’nye Materialy [Construction Materials]. 2021. No. 12, pp. 17–22. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-798-12-17-22
5. Stolboushkin A.Yu., Akst D.V., Fomina O.A., Ivanov A.I., Syromyasov V.A. Analysis of waste coal from the enterprises of Kemerovo region as raw materials for production of ceramic materials. IOP Conference Series: Earth and Environmental Science. International Scientific and Research Conference on Knowledge-based Technologies in Development and Utilization of Mineral Resources (KTDMUR2017). 6–9 June 2017. Vol. 84. 012037. doi: 10.1088/1755-1315/84/1/012037
6. Complex deposits within the Kuznetsk coal basin. Construction and Information Portal. 03/26/2020. https://fccland.ru/geologiya-mestorozhdeniy/9044-kompleksnye-mestorozhdeniya-v-predelah-kuzneckogo-ugolnogo-basseyna-html (In Russian).
7. Perfiliev V.I., Feoktistov B.P. Kailinskoye deposit of refractory clays in the Anzhero-Sudzhensky district of the Kemerovo region. Report on detailed exploration of refractory clays based on the work of 1951. Irkutsk: Trust “Sibgeolnerud”, 1952. 203 p. (In Russian).
8. Zharikov V.P., Ermoshkin V.V., Kleimenov R.G. Rational land use in the formation of dumps and hydraulic dumps in the cuts of Kuzbass. Gornyy informatsionno-analiticheskiy byulleten’ (nauchno-tekhnicheskiy zhurnal). 2012. No. 2, pp. 28–32. (In Russian).
9. State geological map of the Russian Federation. Scale 1:1000000 (third generation). Altai-Sayan series. Sheet N-45 – Novokuznetsk. Explanatory note. St. Petersburg: VSEGEI map factory, 2007. 665 p. + 10 incl. (Ministry of Natural Resources of Russia, FSUE VSEGEI, FSUE Zapsibgeolsemka). (In Russian).

For citation: Boldyrev G.V., Storozhenko G.I., Cherneykin M.A. Features of the raw material base of Kuzbass for the production of ceramic bricks. Stroitel’nye Materialy [Construction Materials]. 2022. No. 8, pp. 18–22. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-805-8-18-22

The Necessity to Increase the Efficiency of Ceramic Materials with a Matrix Structure for External walls of Buildings

Number of journal: 8-2022
Autors:

Stolboushkin A.Yu.,
Isterin E.V.,
Fomina O.A.

DOI: https://doi.org/10.31659/0585-430X-2022-805-8-4-11
УДК: 666.7:658.567.1:669.1

 

AbstractAbout AuthorsReferences
It has been presented the results of a study on the possible arrangement of external walls of a single-layer structure from an effective ceramic material with a matrix structure. The chemical and granulometric compositions of raw materials are given. The composition of a two-component charge and the technique for preparing effective samples with a matrix structure by the developed method are considered. By the calculation method it was estimated the possibility of constructing conditionally single-layer external walls (without taking into account the protective layer of 120 mm thick clinker, the thermal resistance of which can be neglected) for heated civil buildings. The results of the calculation of the required thermal resistance of the outer wall enclosure and the minimum thickness of the layer of effective ceramic material with a matrix structure are given on the example of the Siberian region of Russia. As a result of the analysis, the territory of Siberia is conditionally divided into 4 climatic zones with the required physical and mechanical characteristics for a cellular ceramic material. Experimental studies have established that samples of cellular ceramics with a matrix structure have an average density of 950–1000 kg/m3 and, according to their thermal characteristics, belong to the group of ceramic materials of increased efficiency. The required thermal resistance of the enclosing structure from the developed ceramic materials during the construction of single-layer external walls with a thickness of 640–770 mm is provided only in the south of Siberia.
A. Yu. STOLBOUSHKIN1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
E.V. ISTERIN1, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.);
O.A. FOMINA2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Siberian State Industrial University (42, Kirova Street, Novokuznetsk, 654007, Russian Federation)
2 Mechanical Engineering Research Institute of the Russian Academy of Sciences (4, Maly Kharitonievsky side Street, Moscow, 101990, Russian Federation)

1. On some measures to improve the energy and environmental efficiency of the Russian economy: Decree of the President of the Russian Federation of June 4, 2008 No. 889. Electronic Fund of Legal and Regulatory Technical Documents. Access mode: http: docs.cntd.ru, free (date of circulation 13.05.2019). (In Russian).
2. Gagarin V.G., Kozlov V.V. Requirements for heat protection and energy efficiency in the project of the updated SNiP “Thermal protection of buildings. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2011. No. 8, pp. 2–6. (In Russian).
3. Yarmakovskiy V.N., Kostin A.N., Fotin O.V., Kondyurin A.Ye. Heat-efficient external walls of buildings erected using monolithic polystyrene concrete with highly porous and plasticized matrix. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2014. No. 6, pp. 18–24. (In Russian).
4. Blazhko V.P. External multilayer walls with brick lining in monolithic buildings Zhilishchnoe Stroitel’stvo [Housing Construction]. 2009. No. 8, pp. 6–8. (In Russian).
5. Davidyuk A.N. Efficient materials and structures to solve the problem of energy saving of buildings Zhilishchnoe Stroitel’stvo [Housing Construction]. 2010. No. 3, pp. 16–21. (In Russian).
6. Keller: site of the manufacturer of cellular building materials: site. Germany. 2021. URL: https://www.keller.de/ru/ics/oborudovanye-dlja-zapolnenyja-keramyczeskoho-kyrpycza/No.8 (date of circulation 21.01.2021).
7. Proskurovskis A. Energy efficient wall expanded clay concrete block. Stroitel’stvo unikal’nykh zdaniy i sooruzheniy. 2019. No. 3, pp. 23–33. (In Russian).
8. Rogovoy M.I. Tekhnologiya iskusstvennykh poristykh zapolniteley i keramiki [Technology of artificial porous aggregates and ceramics]. Мoscow: Stroyizdat. 1974. 315 p.
9. Stolboushkin A.Yu., Fomina O.A. Influence of burning temperature on the formation of the cellular structure ceramics with glass-ceramic frame. Stroitel’nye Materialy [Construction Materials]. 2019. No. 4, pp. 20–26. DOI: https://doi.org/10.31659/0585-430X-2019-769-4-20-26 (In Russian).
10. Patent RF 2593832. Sposob izgotovleniya stenovykh keramicheskikh izdeliy. Ivanov A.I., Stolboush-kin A.Yu., Storozhenko G.I. 2016. Bulletin No. 22, p. 9. (In Russian).
11. Semenov A.A. Russian market of ceramic bricks. Development trends and prospects. Stroitel’nye Materialy [Construction Materials]. 2020. No. 12, pp. 4–5. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-787-12-4-5
12. Semenov A.A. Some trends in the development of the ceramic wall materials market in Russia. Stroitel’nye Materialy [Construction Materials]. 2022. No. 4, pp. 4–5. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-801-4-4-5
13. Lapovskaya S.D. Experimental determination of initial moisture release rate from autoclave aerated concrete masonry in climatic conditions in Kyiv. Stroitel’nye Materialy [Construction Materials]. 2015. No. 8, pp. 18–21. (In Russian).
14. Kotlyar V.D. Highly efficient wall ceramics based on porous-hollow silicate aggregate. Nauchnoye obozreniye. 2014. No. 10, pp. 392–395. (In Russian).
15. Stolboushkin A.Yu., Ivanov A.I., Shevchenko V.V. i dr. Study of the structure and properties of cellular ceramic materials with a framework of dispersed silica-containing rocks. Stroitel’nye Materialy [Construction Materials]. 2017. No. 12, pp. 7–13. (In Russian).
16. Kotlyar V.D., Nebezhko N.I., Terekhina Yu.V., Kotlyar A.V. On the issue of chemical corrosion and durability of brick masonry. Stroitel’nye Materialy [Construction Materials]. 2019. No. 10, pp. 78–84. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-775-10-78-84.
17. Kotlyar V.D., Teryokhina Yu.V., Kotlyar A.V. Features of properties, application and requirements for clinker brick. Stroitel’nye Materialy [Construction Materials]. 2015. No. 4, pp. 72–74. (In Russian).

For citation: Stolboushkin A.Yu., Isterin E.V., Fomina O.A. The need to improve the efficiency of ceramic materials with a matrix structure for the exterior walls of buildings. Stroitel’nye Materialy [Construction Materials]. 2022. No. 8, pp. 4–11. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-805-8-4-11

Influence of Aggregate Composition and Dispersion on its Cementation During Carbonate Biomineralization

Number of journal: 7-2022
Autors:

Strokova V.V.,
Dukhanina U.N.,
Balitsky D.A.,
Drozdov O.I.,
Nelubova V.V.,
Frank-Kamenetskaya O.V.,
Vlasov D.Yu.

DOI: https://doi.org/10.31659/0585-430X-2022-804-7-63-70
УДК: 666.9

 

AbstractAbout AuthorsReferences
The results of the study of carbonate biomineralization by ureolytic bacterial cultures in a aggregate medium of different composition and dispersion as a result of percolation cementation method are presented. Quartz sand, marble and cement stone were considered as aggregates, which were crushed and fractionated to three fractions: 1.25–0.63; 0.63–0.315; 0.315–0.16. Physical and chemical factors determining the intensity of induction processes have been established. The microstructure of the cemented layers is analyzed, the features of new formations are considered. The time limits of the consolidated layer formation within two fractions (0.63–0.315 and 0.315–0.16) were revealed, which directly depend on the percolation depth of the solution with precursors and bacterial inoculum. It has been shown that the bacterial culture of Lysinibacillus sphaericus exhibits active cementing properties to the greatest extent. The maximal thickness of the aggregate layer consolidated by calcium carbonate crystals was formed in samples with carbonized cement stone with the aggregate fraction of 0.63–0.315 mm.
V.V. STROKOVA1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
U.N. DUKHANINA1, Engineer,
D.A. BALITSKY1, Engineer,
O.I. DROZDOV1, Master degree student,
V.V. NELUBOVA1, Doctor of Sciences (Engineering);
O.V. FRANK-KAMENETSKAYA2, Doctor Sciences (Geology and Mineralogy),
D.Yu. VLASOV2, Doctor Sciences (Biology)

1 Belgorod State Technological University named after V.G. Shukhov (46, Kostyukova Street, Belgorod, 308012, Russian Federation)
2 Saint Petersburg University (7/9, University Embankment, St. Petersburg, 199034, Russian Federation)

1. Muynck W.D., Belie N.D., Verstraete W. Microbial carbonate precipitation in construction materials: A review. Ecological Engineering. 2010. Vol. 36, pp. 118–136. DOI: 10.1016/j.ecoleng.2009.02.006
2. Sazanova K.V., Frank-Kamenetskaya O.V., Vlasov D.Yu., Zelenskaya M.S., Vlasov A.D., Rusakov  A.V., Petrova M.A. Carbonate and oxalate crystallization by interaction of calcite marble with bacillus subtilis and bacillus subtilis–aspergillus niger association. Crystals. 2020. No. 10. Vol. 756, pp. 1–16. DOI: 10.3390/cryst10090756
3. Строкова В.В., Власов Д.Ю., Франк-Каменецкая О.В. Микробная карбонатная биоминерализация как инструмент природоподобных технологий в строительном материаловедении // Строительные материалы. 2019. № 7. С. 66–72 DOI: https://doi.org/10.31659/0585-430X-2019-772-7-66-72
3. Strokova V.V., Vlasov D.Yu., Frank-Kamenetskaya O.V. Microbial сarbonate biomineralisation as a tool of natural-like technologies in construction material science. Stroitel’nye Materialy [Construction Materials]. 2019. No. 7, pp. 66–72. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-772-7-66-72
4. Строкова В.В., Власов Д.Ю., Франк-Каменецкая О.В., Духанина У.Н., Балицкий Д.А. Применение микробной карбонатной биоминерализации в биотехнологиях создания и восстановления строительных материалов: анализ состояния и перспективы развития // Строительные материалы. 2019. № 9. С. 83–103. DOI: https://doi.org/10.31659/0585-430X-2019-774-9-83-103
4. Strokova V.V., Vlasov D.Yu., Frank-Kamenets-kaya O.V., Dukhanina U.N., Balitsky D.A. Application of microbial carbonate biomineralization in biotechnologies of building materials creation and restoration: analysis of the state and prospects of development. Stroitel’nye Materialy [Construction Materials]. 2019. No. 9, pp. 83–103. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-774-9-83-103
5. Kim G., Youn H. Microbially induced calcite precipitation employing environmental isolates. Materials. 2016. Vol. 9. (6):468. doi:10.3390/ma9060468
6. Kim D., Park К., Kim D. Effects of ground conditions on microbial cementation in soils. Materials. 2013. Vol. 7. No. 1, pp. 143–156. doi: 10.3390/ма7010143
7. Stabnikov V., Naeimi M., Ivanov V., Chu J. Formation of water-impermeable crust on sand surface using biocement. Cement and Concrete Research. 2011. Vol. 41, pp. 1143–1149 https:// doi.org/10.1016/j.cemconres.2011.06.017.
8. Liu L., Liu H., Xiao Y., Chu J., Xiao H., Wang Y. Biocementation of calcareous sand using soluble calcium derived from calcareous sand. Bulletin of Engineering Geology and the Environment. 2018. Vol. 77:1781. doi: 10.1007/s10064-017-1106-4
9. Sharaky A.M., Mohamed N.S., Elmashad M.E., Shredah N.M. Application of microbial biocementation to improve the physico-mechanical properties of sandy soil. Construction and Building Materials. 2018. Vol. 190, рр. 861–869. https://doi.org/10.1016/j.conbuildmat.2018.09.159
10. Omoregie A.I., Palombo E.A., Ong D.E., Nissom P.M. Biocementation of sand by Sporosarcina pasteurii strain and technical-grade cementation reagents through surface percolation treatment method. Construction and Building Materials. 2019. Vol. 228, рр. 116828–116828. https://doi.org/10.1016/j.conbuildmat.2019.116828
11. Armstrong I.O., Ghazaleh K., Nurnajwani S., Dominic Ek Leong Ong, Nissom Р.Е. Experimental optimisation of various cultural conditions on urease activity for isolated Sporosarcina pasteurii strains and evaluation of their biocement potentials. Ecological Engineering. 2017. Vol. 109, рр. 65–75. https://doi.org/10.1016/j.ecoleng.2017.09.012
12. Minto J. M., Tan Q., Lunn R. J., El Mountassir G., Guo H., Cheng, X. Microbial mortar’-restoration of degraded marble structures with microbially induced carbonate precipitation. Construction and Building Materials. 2017. Vol. 180, рр. 44–54. https://doi.org/10.1016/j.conbuildmat.2018.05.200
13. Strokova V., Duhanina U., Balitsky D. The study of the quartz sand bio consolidation processes as a result of carbonate mineralization by urolithic bacteria. Materials Science Forum. 2020. Vol. 1011, рр. 44–51. https://doi.org/10.4028/www.scientific.net/msf.1011.44

For citation: Strokova V.V., Dukhanina U.N., Balitsky D.A., Drozdov O.I., Nelubova V.V., Frank-Kamenetskaya O.V., Vlasov D.Yu. Influence of aggregate composition and dispersion on its cementation during carbonate biomineralization. Stroitel’nye Materialy [Construction Materials]. 2022. No. 7, pp. 63–70. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-804-7-63-70

Investigation of the Resistance to Operational Impacts of Sets for Structural Glazing of Facades

Number of journal: 7-2022
Autors:

Larin O.A.,
Kashurkin A.Yu.,
Mitrofanova N.V.,
Fedchenko E.V.

DOI: https://doi.org/10.31659/0585-430X-2022-804-7-57-62
УДК: 698.3

 

AbstractAbout AuthorsReferences
The article presents the results of the tests carried out to determine the physical and mechanical properties of the sealant joint specimen in tension and shear before and after the onset of climatic influences, as well as a method for processing the results of such tests. The work carried out made it possible to establish the order of cycles of climatic influences in laboratory conditions on samples-seams, as well as to determine the main controlled parameters characterizing structural sealants – tensile strength and shear strength before and after a cycle of climatic influences. Comparison of the initial indicators with those after artificial climatic influences made it possible to determine the resistance of silicone sealants to a complex of climatic influences, depending on the change in one or more indicators of their properties (physical and mechanical, appearance, etc.). As a result of the work, a list of the main test methods was determined to confirm the stability of sets for structural glazing of facades and roofs using silicone sealants in glass-glass and glass-aluminum combinations to operational impacts in the climatic conditions of the Russian Federation, and a method for processing the results of such tests was proposed. The results of this scientific research can be taken into account when developing regulatory and technical documents responsible for quality control of structural sealants used in the creation of external translucent structures, and also allow determining the timing of major repairs and, consequently, the payback period for certain innovative solutions.
O.A. LARIN1 , Candidate of Sciences (Engineering);
A.Yu. KASHURKIN1,2, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.);
N.V. MITROFANOVA1, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
E.V. FEDCHENKO1, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Research Institute of Building Physics Russian Academy Architecture and Construction sciences (21, Lokomotivniy Driveway, Moscow, 127238, Russian Federation)
2 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Galamichev A.V., Wind load and its effect on facade structures. Stroitel’stvo unikal’nykh zdaniy i sooruzheniy. 2017. No. 9 (60), pp. 44–57. (In Russian).
2. Gorshkov A.S., Rymkevich P.P., Nemova D.V., Vatin N.I. Methodology for calculating the return on investment for the renovation of the facades of existing buildings. Stroitel’stvo unikal’nykh zdaniy i sooruzheniy. 2014. No. 2 (17), pp. 82–106. (In Russian).
3. Gusarova (Markova) T.S. Energy-saving light-regulating thermochromic glazing. Modern problems of ecology: XXIII international scientific and practical conference. Tula, October 15, 2019, pp. 15–17. (In Russian).
4. Davidovich A.S. Structural features and classification features of translucent facades. Aktual’nyye nauchnyye issledovaniya v sovremennom mire. 2021. No. 7–3 (75), pp. 164–171. (In Russian).
5. Domozhilov V.Y. Glazing of facade elements and the microclimate of residential premises. BST: Byulleten’ stroitel’noy tekhniki. 2018. No. 8 (1008), pp. 73–74. (In Russian).
6. Kopylov A.B. The use of airgel in the glazing of building facades Vestnik evraziyskoy nauki. 2019. Vol. 11. No. 2, p. 67. (In Russian).
7. Kornienko S.V., Vatin N.I., Petrichenko M.R., Gorshkov A.S., Evaluation of the humidity regime of a multilayer wall structure in the annual cycle // Stroitel’stvo unikal’nykh zdaniy i sooruzheniy. 2015. No. 6, pp. 19–33. (In Russian).
8. Kornienko S.V., Popova E.D. “Green” construction in Russia and abroad // Stroitel’stvo unikal’nykh zdaniy i sooruzheniy. 2017. No. 4 (55), pp. 67–93. (In Russian).
9. Mikhailova M.K. Bearing capacity of adhesive joints in the structures of hinged facade systems. Stroitel’stvo unikal’nykh zdaniy i sooruzheniy. 2018. No. 5 (68), pp. 1–14. DOI 10.18720/CUBS.68.1. (In Russian).
10. Nebozh T.B., Bozhenko A.M., Shevtsova M.A. Analytical review of translucent facades used in modern construction. Perspektivy nauki. 2021. No. 6 (141), pp. 75–77. (In Russian).
11. Semenova E.E. Stained-glass glazing of facades: advantages and disadvantages. Vysokiye tekhnologii v stroitel’nom komplekse. 2019. No. 1, pp. 198–201. (In Russian).
12. Statsenko E.A., Ostrovaya A.F., Kiselev S.S. Ventilated glass facades. Air gap parameters. Stroitel’stvo unikal’nykh zdaniy i sooruzheniy. 2015. No. 12 (39), pp. 32–42. (In Russian).
13. Baetens R., Jelle B.P., Gustavsen A. Aerogel insulation for building applications: A state-of-the-art review. Energy and Buildings. 2011. No. 43, pp. 761–769.
14. Pascual C., Montali J., Overend M. Adhesively-bonded GFRP-glass sandwich components for structurally efficient glazing applications. Composite Structures. 2017. No. 160, pp. 560–573. https://doi.org/10.1016/j.compstruct.2016.10.059
15. Staudt Y., Odenbreit C., Schneider J. Investigation of bonded connections with silicone under shear loading. Challenging Glass Conference Proceedings. 2016. Vol. 5, pp. 353–362.
16. Staudt Y., Schneider J., Odenbreit C. Investigation of the material behaviour of bonded connections with silicone. Engineered transparency. International Conference at glasstec-Glass| Facade| Energy. 2014, pp. 393–402. http://hdl.handle.net/10993/22149

For citation: Larin O.A., Kashurkin A.Yu., Mitrofanova N.V., Fedchenko E.V. Investigation of the resistance to operational impacts of sets for structural glazing of facades. Stroitel’nye Materialy [Construction Materials]. 2022. No. 7, pp. 57–62. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-804-7-57-62

Experimental Evaluation of Impulse Noise Isolation by a Light Partition

Number of journal: 7-2022
Autors:

Kanev N.G.,
Peretokin A.V.,
Fadeev A.S.,
Tsukernikov I.E.

DOI: https://doi.org/10.31659/0585-430X-2022-804-7-51-56
УДК: 699.844

 

AbstractAbout AuthorsReferences
The transmission of impulse noise between rooms differs significantly from the transmission of constant noise, which is also true for the soundproofing abilities of building structures – in general, impulse noise is isolated much better than constant noise, which was noticed back in the middle of the 20th century. However, today in practical acoustics this circumstance is not given due attention, although a number of studies show this difference. This paper presents the results of measurements of the insulation of impulse noise by a light partition, carried out in modern sound measuring chambers. The results obtained are compared with the measurements carried out according to the standard technique using constant noise.
N.G. KANEV1,3,4, Candidate of Sciences (Physics and Mathematics) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.V. PERETOKIN1, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.S. FADEEV1, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.);
I.E. TSUKERNIKOV2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Acoustic Materials LLC (33, building 2, Novokuznetskaya Street, Moscow, 115054, Russian Federation)
2 Research Institute of Building Physics Russian Academy Architecture and Construction sciences (21, Lokomotivniy Driveway, Moscow, 127238, Russian Federation)
3 Acoustic Institute named after Academician N.N. Andreev JSC (4, Shvernik Street, Moscow, 117036, Russian Rederation)
4 National Research Moscow State Technical University named after N.E. Bauman (5, building 1, 2nd Baumanskaya Street, Moscow, 105005, Russian Federation)

1. GOST 23337–2014. Methods for measuring noise in the residential area and in the premises of residential and public buildings. Moscow: Standartinform, 2014. (In Russian).
2. Raes A.C. Static and dynamic transmission losses of partitions. The Journal of the Acoustical Society of America. 1963. Vol. 35. No. 8, pp. 1178–1182.
3. Suvorov G.A., Likhnitsky A.M. Impul’snyy shum i yego vliyaniye na organizm cheloveka [Impulse noise and its effect on the human body]. Leningrad: Medicine. 1975. 207 p.
4. SanPiN 1.2.3685-21. Hygienic standards and requirements for ensuring the safety and (or) harmlessness of environmental factors for humans. (In Russian).
5. Kanev N.G., Fadeev A.S., Tsukernikov I.E. Evaluation of sound insulation of intense sources of pulsed noise by building structures in natural conditions. Stroitel’nye Materialy [Construction Materials]. 2021. No. 6, pp. 25–29. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-792-6-25-29
6. Kanev N.G., Fadeev A.S. Isolation of impulse noise by building structures: laboratory experiment. Proceedings of the XXXIV session of the Russian Acoustic Society. Moscow, February 14–18, 2022, pp. 528–537. (In Russian).
7. GOST R ISO 10140-2–2012. Acoustics. Laboratory measurements of sound insulation of building elements. Part 2. Airborne sound insulation measurement. Moscow: Standartinform, 2019. (In Russian).
8. GOST 27296–2012. Buildings and constructions. Methods for measuring the sound insulation of building envelopes. Moscow: Standartinform, 2014. (In Russian).
9. SP 275.1325800.2016. Enclosing structures for residential and public buildings. Moscow: Standartinform, 2017. (In Russian).

For citation: Kanev N.G., Peretokin A.V., Fadeev A.S., Tsukernikov I.E. Experimental evaluation of impulse noise isolation by a light partition. Stroitel’nye Materialy [Construction Materials]. 2022. No. 7, pp. 51–56. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-804-7-51-56

The Role of Nano-Additives in the Formation of a Strong Contact Layer of Protective Coatings

Number of journal: 7-2022
Autors:

Pchelnikov A.V.,
Pichugin A.P.,
Khritankov V.F.,
Smirnova O.E.

DOI: https://doi.org/10.31659/0585-430X-2022-804-7-45-50
УДК: 620.3:666.9

 

AbstractAbout AuthorsReferences
The formation of a strong contact layer in the “metal – paint layer” system is one of the important factors for the reliable operation of the protective coating. The development of methods for increasing adhesion and reducing defects at the boundary of metal surfaces with paint and varnish coating using nanoscale additives is the most effective way to obtain guaranteed quality characteristics. To this end, a number of different nano-additives have been studied in wide dosage ranges and the dependences of changes in the properties of coatings for a large set of operational impacts and factors have been determined. It is shown that the introduction of binary additives – carbon nanotubes and bismuth oxide – lead to a synergistic effect, expressed in increased adhesion, strength, hardness, water resistance, corrosion resistance and enhanced thermal stability of the contact layer. Thermomechanical and dielkometric studies of paint and varnish protective coatings with nano-additives have revealed patterns of changes in dielectric properties over time, which opens up opportunities for directional changes in all protection indicators. This approach allows us to consider the process of introducing nano-additives as a complex that contributes to obtaining the required parameters of quality indicators not only for protective coatings, but also for the formation of their specified service life under certain operating conditions.
A.V. PCHELNIKOV1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.P. PICHUGIN1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.F. KHRITANKOV1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
O.E. SMIRNOVA2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Novosibirsk State Agrarian University (160, Dobrolyubova Street, Novosibirsk, 630039, Russian Federation)
2 Novosibirsk State University of Architecture and Civil Engineering (113, Leningradskaya Street, Novosibirsk, 630008, Russian Federation)

1. Pichugin A.P., Gorodetsky S.A., Bareev V.I. Comprehensive protection of agricultural facilities from corrosion damage. Stroitel’nye Materialy [Construction Materials]. 2011. No. 3, pp. 45–47. (In Russian).
2. Pichugin A.P., Gorodetsky S.A., Bareev V.I. Korrozionnostoykiye materialy dlya zashchity polov i inzhenernykh sistem sel’skokhozyaystvennykh zdaniy i sooruzheniy. Monografiya [Corrosion-resistant materials for the protection of floors and engineering systems of agricultural buildings and structures. Monograph]. Novosibirsk: NGAU-RAEN. 2010. 123 p.
3. Subbotin O.S., Pichugin A.P., Belan I.V. Materialy i arkhitektura maloetazhnykh zdaniy, ekspluatiruyushchikhsya v osobykh prirodnykh usloviyakh. Monografiya [Materials and architecture of low-rise buildings operated in special natural conditions. Monograph]. Novosibirsk: NGAU-RAEN. 2012. 192 p.
4. Pichugin A.P., Khritankov V.F., Smirnova O.E., Pimenov E.G., Nikitenko K.A. Protective and finishing compositions and compositions for repair work and ensuring the durability of buildings. Izvestiya vuzov. Stroitel’stvo. 2019. No. 9, pp. 109–120. (In Russian).
5. Artamonova O.V. Sintez nanomodifitsiruyushchikh dobavok dlya tekhnologii stroitel’nykh kompozitov: monografiya [Synthesis of nanomodifying additives for the technology of building composites: monograph]. Voronezh: Voronezh GASU. 2016. 100 p.
6. Chernyshov E.M., Artamonova O.V., Slavcheva G.S. Nanomodifitsirovaniye sistem tverdeniya v strukture stroitel’nykh kompozitov: monografiya. [Nanomodifi-cation of hardening systems in the structure of building composites: monograph]. Voronezh: Nauchnaya kniga. 2016. 132 p.
7. Pichugin A.P., Khritankov V.F., Banul V.V., Kudryashov A.Yu. Influence of nano-dimensional additives on adhesion ability of protective polymer coatings. Stroitel’nye Materialy [Construction materials]. 2018. No. 1–2, pp. 39–44. DOI: https://doi.org/10.31659/0585-430X-2018-756-1-2-39-44 (In Russian).
8. Pchelnikov A.V. Simulation of the process and methods for assessing the burning of protective coatings of metal structures and equipment. Izvestiya vuzov. Stroitel’stvo. 2020. No. 6, pp. 81–90. (In Russian).
9. Pichugin A.P., Khritankov V.F., Smirnova O.E., Pimenov E.G., Nikitenko K.A. Protective and finishing compositions and compositions for repair work and ensuring the durability of buildings. Izvestiya vuzov. Stroitel’stvo. 2019. No. 9, pp. 109–122. (In Russian).
10. Khritankov V.F., Pichugin A.P., Smirnova O.E., Shatalov A.A. The use of nanoscale additives in concretes and mortars to ensure adhesion during repair work. Nauka o Zemle. 2019, pp. 131–140.
11. Pchelnikov A.V., Pichugin A.P., Lutsik R.V., Tkachenko S.E. Dielectric analysis of operational characteristics and the aging process of protective coatings. Ekspert: teoriya i praktika. 2022. No. 1 (16), pp. 14–22. (In Russian).
12. Kargin V.A. Rol’ strukturnykh yavleniy v formirovanii svoystv polimerov. Progress polimernoy khimii [The role of structural phenomena in the formation of polymer properties. Progress in polymer chemistry]. Moscow: Nauka. 1969, pp. 7–31.
13. Teitelbaum B.Ya. Termomekhanicheskiy analiz polimerov [Thermomechanical analysis of polymers]. Moscow: Nauka. 1979. 236 p.
14. Pichugin A.P., Khritankov V.F., Pchelnikov A.V., Smirnova O.E. Thermomechanical studies of protective impregnating compositions with nanosized and special additives. Inzhenerno-stroitel’nyy vestnik Prikaspiya. 2020. No. 3, pp. 53–58. (In Russian).
15. Khozin V.G. Usileniye epoksidnykh polimerov [Reinforcing epoxy resins]. Kazan: PIK “House of Printing”. 2004. 446 p.
16. Knigina G.I., Tacki O.N., Kucherova E.A. Sovre-mennyye fiziko-khimicheskiye metody issledovaniya stroitel’nykh materialov [Modern physical and chemical methods for the study of building materials]. Novosibirsk, 1981. 82 p.
17. Lipatov Yu.S. Mezhfaznyye yavleniya v polimerakh [Interfacial phenomena in polymers]. Kyiv: Naukova Dumka, 1980. 260 p.

For citation: Pchelnikov A.V., Pichugin A.P., Khritankov V.F., Smirnova O.E. The role of nano-additives in the formation of a strong contact layer of protective coatings. Stroitel’nye Materialy [Construction Materials]. 2022. No. 7, pp. 45–50. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-804-7-45-50

Strength and Deformation Properties of Building Mortars Modified with a Peat-Based Additive

Number of journal: 7-2022
Autors:

Kopanitsa N.O.,
Demyanenko О.V.,
Kulikova А.А.,
Petrov A.G.

DOI: https://doi.org/10.31659/0585-430X-2022-804-7-40-44
УДК: 691.535

 

AbstractAbout AuthorsReferences
High-quality competitive dry building mixes require the inclusion of modifying additives for various purposes in their composition. At the same time, the use of dry building mixes when conducting finishing and installation works significantly improve their quality and labor productivity, provides high performance characteristics of finished products. The variety of consumer properties of such mixes determines the need for the use of a complex of modifying additives for various purposes. The production of import-substituting competitive in properties additives in building mixes is an important task. One of the ways to solve this problem is to organize the production of modifying additives based on local raw materials. TSUAB has developed a modifying additive (MT-600) based on thermally activated peat raw materials, the introduction of which makes it possible to increase the strength characteristics of building mortars at compression up to 20% and at bending up to 15%, and the modulus of elasticity by 25%. Significantly, up to 44%, the strength characteristics of modified mortars increase at the early stages of hardening. The paper presents the results of a study of the effect of the MT-600 additive on the deformation and strength properties of building mortars, the features of the formation of these characteristics are established.
N.O. KOPANITSA, Doctor of Sciences (Engineering), Professor (This email address is being protected from spambots. You need JavaScript enabled to view it.);
О.V. DEMYANENKO, Senior Lecturer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
А.А. KULIKOVA, Post-graduate Student (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.G. PETROV, Candidate of Sciences (Engineering), Associate Professor (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Tomsk State University of Architecture and Building (2, Solyanaya Square, Tomsk, 634003, Russian Federation)

1. Batrakov V.G. Modifitsirovannyye betony. Teoriya i praktika [Modified concrete. Theory and practice]. Moscow. 1998. 768 p.
2. Kopanitsa N.O. Sarkisov Yu.S., Kasatkina A.V. Effective organomineral additives based on local raw materials. Vestnik TSUAB. 2013. No. 4, pp. 184–190. (In Russian).
3. Kopanitsa N.O., Sarkisov Yu.S., Kasatkina A.V. New organic-mineral additives based on peat for cement systems. Stroitel’nye Materialy [Construction Materials]. 2015. No. 14, pp. 93–96. (In Russian).
4. Kopanitsa N.O., Sarkisov Yu.S., Kasatkina A.V. On some aspects of the application of nanomaterials and nanotechnologies in construction. Vestnik TSUAB. 2012. No. 4, pp. 226–234. (In Russian).
5. Ustinov A., Kopanitsa D., Abzaev Y., Klopotov A., Koshko B., Kopanitsa G. Study of deformations evolution in near-surface layers of adhesive joints. Youth, science, solutions: ideas and prospects (YSSIP-2016): Proceedings of the III International Young Researchers Conference “Youth, Science, Solutions: Ideas and Prospects”. AIP Conference Proceedings. 1800(1):040007. DOI: 10.1063/1.4973048
6. Panchenko A.I., Dilger U. Ensuring the quality of dry mixes and their effective use. Stroitel’nye Materialy [Construction Materials]. 2002. No. 9, pp. 12–14. (In Russian).
7. Sarkisov Yu.S., Gorlenko N.P., Kasitskaya L.V., Tsyro L.V. Strengthening of peat-containing compositions by generating free radicals. Zhurnal fizicheskoi khimii. 1999. Vol. 73. No. 5, pp. 824–826. (In Russian).
8. Karapuzov E.K., Lutz G., Herold H. Sukhiye stroitel’nyye smesi [Dry building mixes]. K.: Tekhnika, 2000. 226 p.
9. Kasitskaya L.V., Sarkisov Yu.S., Gorlenko N.P. Torfyanyye resursy tomskoy oblasti i puti ikh ispol’zovaniya v stroitel’stve [Peat resources of the Tomsk region and ways of their use in construction. Edited by Kudyakova A.I., Sarkisova Yu.S.]. Tomsk: STT. 2007. 292 p.
10. Kopanitsa N.O., Kudyakov A.I., Sarkisov Yu.S. Stroitel’nyye materialy i izdeliya na osnove modifitsirovannykh torfov Sibiri: monografiya [Building materials and products based on modified peat of Siberia: monograph]. Tomsk: Publishing House of the Tomsk State University of Architecture and Civil Engineering. 2013. 294 p.
11. Misnikov O.S., Belugin G.P. Properties of hydrophobically modified cements and materials based on them. Modern technologies of dry mixes in construction: Collection of reports of the VII International Scientific and Technical Conference. St. Petersburg. 2005, pp. 28–30. (In Russian).
12. Garboczi E.J., Bentz D.P. Modelling of the microstructure and transport properties of concrete. Construction and Building Materials. 1996. Vol. 10. Iss. 5, pp. 293–300.
13. Kalashnikov V.I., Makhambetova K.N., Shitova I.Yu. Hygrometric properties of cement-sand mortars modified with modern water repellents. Modern problems of science and education: Electronic scientific journal. 2015. No. 1. http://www.science-education.ru/pdf/2015/1/1337.pdf
14. Bertolinia L., Carsanaa M., Cassagoa D., Curziob A.Q., Collepardia M. MSWI ashes as mineral additions in concrete. Cement and Concrete Research. 2004. 34(10):1899-1906. DOI: 10.1016/j.cemconres.2004.02.001
15. Korolev E.V., Bazhenov Yu.M., Beregovoi V.A. Modification of building materials with nanocarbon tubes and fullerenes. Stroitel’nye Materialy: Nauka [Construction Materials Application Science]. 2006. No. 8, pp. 2–4. (In Russian).
16. Kalashnikov V.I. Concrete: macro-, micro-, nano- and picoscale raw materials. Real nanotechnology of concrete. Collection of reports of the conference “Days of modern concrete”. Zaporozh’e. 2012, pp. 38–50. (In Russian).
17. Gorshkova A.V. Dry building mixtures with a modifying additive based on peat. Diss… Doctor of Sciences (Engineering). Tomsk. 2015. 168 p. (In Russian).
18. Airapetov G.A., Bezrodny O.K., Zholobov A.L. etc. Stroitel’nyye materialy. Uchebno-spravochnoye posobiye [Building materials. Educational and reference manual. Edited by Nesvetaev G.V.] Rostov-on-Don: Phoenix. 2005. 608 p.
19. Kasitskaya L.V. Peat-based composite materials. Diss… Candidate of Sciences (Chemistry). Tomsk. 1999. 161 p. (In Russian).

For citation: Kopanitsa N.O., Demyanenko О.V., Kulikova А.А., Petrov A.G. Strength and deformation properties of building mortars modified with a peat-based additive. Stroitel’nye Materialy [Construction Materials]. 2022. No. 7, pp. 40–44. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-804-7-40-44

Porosity and Strength of Composite Cement Based on Fine High-Calcium Fly Ash

Number of journal: 7-2022
Autors:

Sharonova O.M.,
Yumashev V.V.,
Anshits A.G.

DOI: https://doi.org/10.31659/0585-430X-2022-804-7-33-39
УДК: 666.9

 

AbstractAbout AuthorsReferences
The binding properties of high-strength and ultra-high-strength composite ash-cement materials were studied with the replacement of Portland cement (PC) by 80–90% with fine high-calcium fly ash (HCFA), selected from the 4th field of the electrostatic precipitators of the ash collection unit. For effective dispersion, the addition of polycarboxylate superplasticizer Melflux 5581F was used. The total porosity, pore size distribution and strength of composite materials were determined in the process of long-term hardening. It has been established that for high-strength composite materials containing 90% HCFA, 10% PC and 0.12% Melflux 5581F superplasticizer, the compressive strength increases from 35 to 78 MPa during hardening from 4 to 67 days, which is accompanied by an increase in mesopore volume in the range of 20–500 Å and a shift of the maximum of the pore size distribution from 41 to 29 Å. For ultrahigh-strength composite materials of the composition 80% HCFA, 20% PC, 0.3% Melflux 5581F, and 5% microsilica, the strength increases from 108 to 137 MPa upon hardening from 28 to 50 days. They are characterized by a lower total porosity due to a decrease in the contribution of macropores larger than 500 Å. In the pore size distribution, in addition to the maximum at 45–48 Å, an additional maximum at 32 Å develops during long-term hardening.
O.M. SHARONOVA1, Candidate of Sciences (Chemistry) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.V. YUMASHEV1, Leading engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.G. ANSHITS1,2, Doctor of Sciences (Chemistry), Professor (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center “Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences” (50/24, Akademgorodok, Krasnoyarsk, 660036, Russian Federation)
2 Siberian Federal University (79, Svobodny Avenue, Krasnoyarsk, 660041, Russian Federation)

1. Аникеев В., Силка Д. От отходов угольных электростанций к производству строительных материалов // Энергетическая политика. 28.01.2021. https://energypolicy.ru/ot-othodov-ugolnyh-elektrostanczij-k-proizvodstvu-stroitelnyh-materialov/ugol/2021/14/28/
1. Anikeev V., Silka D. From the waste of coal-fired power plants to the production of building materials. Energy policy. 01/28/2021. https://energypolicy.ru/ot-othodov-ugolnyh-elektrostanczij-k-proizvodstvu-stroitelnyh-materialov/ugol/2021/14/28/ (In Russian).
2. Belviso C. State-of-the-art applications of fly ash from coal and biomass: A focus on zeolite synthesis processes and issues. Progress in Energy and Combustion Science. 2018. Vol. 65, pp. 109–135. DOI: http://dx.doi.org/10.1016/j.pecs.2017.10.004
3. Гурьева В.А., Дорошин А.В., Ильина А.А. Модифицированные золошлаковые отходы в производстве керамического кирпича полусухого прессования // Строительные материалы. 2021. № 12. С. 28–33. DOI: https://doi.org/10.31659/0585-430X-2021-798-12-28-33
3. Gur’eva V.A., Doroshin A.V., Il’ina A.A. Modified ash and slag waste in the production of semi-dry pressed ceramic bricks. Stroitel’nye Materialy [Construction Materials]. 2021. No. 12, pp. 28–33. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-798-12-28-33
4. Lothenbach B., Scrivener K., Hooton R.D. Supple-mentary cementitious materials. Cement and Concrete Research. 2011. Vol. 41, pp. 1244–1256. DOI: http://dx.doi.org/10.1016/j.cemconres.2010.12.001
5. Chindasiriphan P., Yokota H., Pimpakan P. Effect of fly ash and superabsorbent polymer on concrete self-healing ability. Construction and Building Materials. 2020. Vol. 233. 116975. DOI: https://doi.org/10.1016/j.conbuildmat.2019.116975
6. Ahari R.S., Erdem T.K., Ramyar K. Permeability properties of self-consolidating concrete containing various supplementary cementitious materials. Construction and Building Materials. 2015. Vol. 79, pp. 326–336. DOI: http://dx.doi.org/10.1016/j.conbuildmat.2015.01.053
7. Choudhary R., Gupta R., Nagar R. Impact on fresh, mechanical, and microstructural properties of high strength self-compacting concrete by marble cutting slurry waste, fly ash, and silica fume. Construction and Building Materials. 2020. Vol. 239. 117888. DOI: https://doi.org/10.1016/j.conbuildmat.2019.117888
8. Yu J., Lu C., Leung Ch.K.Y., Li G., Mechanical properties of green structural concrete with ultrahigh-volume fly ash. Construction and Building Materials. 2017. Vol. 147, pp. 510–518. DOI: http://dx.doi.org/10.1016/j.conbuildmat.2017.04.188
9. Han X., Yang J., Feng J., Zhou C., Wang X. Research on hydration mechanism of ultrafine fly ash and cement composite. Construction and Building Materials. 2019. Vol. 227. 116697. DOI: https://doi.org/10.1016/j.conbuildmat.2019.116697
10. Shaikh F.U.A., Supit S.W.M. Compressive strength and durability properties of high volume fly ash (HVFA) concretes containing ultrafine fly ash (UFFA). Construction and Building Materials. 2015. Vol. 82, pp. 192–205. DOI: https://doi.org/10.1016/j.conbuildmat.2015.02.068
11. Zeng Q., Li K., Fen-chong T., Dangla P. Pore structure characterization of cement pastes blended with high-volume fly-ash. Cement and Concrete Research. 2012. Vol. 42, pp. 194–204. DOI: https://doi.org/10.1016/j.cemconres.2011.09.012
12. Yang J., Su Y., He X., Tan H., Jiang Y., Zeng L., Strnadel B. Pore structure evaluation of cementing composites blended with coal byproducts: Calcined coal gangue and coal fly ash. Fuel Processing Technology. 2018. Vol. 181, pp. 75–90. DOI: https://doi.org/10.1016/j.fuproc.2018.09.013
13. Sharonova O.M., Solovyov L.A., Oreshkina N.A., Yumashev V.V., Anshits A.G. Composition of high-calcium fly ash middlings selectively sampled from ash collection facility and prospect of their utilization as component of cementing materials. Fuel Processing and Technology. 2010. Vol. 91, pp. 573–581. DOI: http://dx.doi.org/10.1016/j.fuproc.2010.01.00
14. Zhao Y., Zhang J., Tian C., Li H., Shao X., Zheng C. Mineralogy and chemical composition of high-calcium fly ashes and density fractions from a coal-fired power plant in China. Energy and Fuels. 2010. Vol. 24, pp. 834–843. DOI: http://dx.doi.org/10.1021/ef900947y
15. Шаронова О.М., Юмашев В.В., Соловьев Л.А., Аншиц А.Г. Тонкодисперсная высококальциевая летучая зола как основа композитного цементирующего материала // Инженерно-строительный журнал. 2019. Вып. 91. С. 60–72. DOI: http://dx.doi.org/10.18720/MCE.91.6
15. Sharonova O.M., Yumashev V.V., Solovyov L.A., Anshits A.G. The fine high-calcium fly ash as the basis of composite cementing material. Magazine of Civil Engineering. 2019. Vol. 91, pp. 60–72. DOI: http://dx.doi.org/10.18720/MCE.91.6
16. Sharonova O.M., Kirilets V.M., Yumashev V.V., Solovyov L.A., Anshits A.G. Phase composition of high strength binding material based on fine microspherical high-calcium fly ash. Construction and Building Materials. 2019. Vol. 216, pp. 525–530. DOI: https://doi.org/10.1016/j.conbuildmat.2019.04.201
17. Ilic M., Cheeseman C., Sollars C., Khight J. Mineralogy and microstructure of sintered lignite coal fly ash. Fuel. 2003. Vol. 82, pp. 331–336. DOI: https://doi.org/10.1016/S0016-2361(02)00272-7
18. Tishmark J.K., Olek J., Diamond S., Sahu S. Characterization of pore solutions expressed from high-calcium fly-ash-water pastes. Fuel. 2001. Vol. 80, pp. 815–819. DOI: https://doi.org/10.1016/S0016-2361(00)00160-5
19. Sharonova O. M., Anshits N.N., Fedorchak M. A., Zhizhaev A.M. , Anshits A.G. Characterization of ferrospheres recovered from high-calcium fly ash. Energy Fuels. 2015. Vol. 29, pp. 5404–5414. https://doi.org/10.1021/acs.energyfuels.5b01618
20. Paweł T. Durdziński, Cyrille F. Dunant, Mohsen Ben Haha, Karen L. Scrivener. A new quantification method based on SEM-EDS to assess fly ash composition and study the reaction of its individual components in hydrating cement paste. Cement and Concrete Research. 2015. Vol. 73, pp. 111–122. DOI: http://dx.doi.org/10.1016/j.cemconres.2015.02.008
21. Papayianni I., Anastasion E. Development of self compacting concrete (SCC) by using high volume of cslcareous fly ash. 2011 World of Coal Ash (WOCA) Conference. May 2–12, 2011. Denver, CO, USA. http://www.flyash.info
22. Li Z. Advanced concrete technology. New Jersey: Wiley & Sons, 2011. 506 p. https://epdf.pub/advanced-concrete-technology.html
23. Giergiczny Z., The hydraulic activity of high calcium fly ash. Journal of Thermal Analysis and Calorimetry. 2006. Vol. 83, pp. 227–232. DOI: http://dx.doi.org/10.1007/s10973-005-6970-7
24. Blissett, R.S., Rowson, N.A. A review of the multi-component utilization of coal fly ash. Fuel. 2012. Vol. 97, pp. 1–23. DOI: https://doi.org/10.1016/j.fuel.2012.03.024
25. Taylor H.F.W. Cement Chemistry. 2nd Edition. Tomas Telford, London, 1997. https://www.icevirtuallibrary.com/doi/book/10.1680/cc.25929

For citation: Sharonova O.M., Yumashev V.V., Anshits A.G. Porosity and strength of composite cement based on fine high-calcium fly ash. Stroitel’nye Materialy [Construction Materials]. 2022. No. 7, pp. 33–39. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-804-7-33-39

https://www.traditionrolex.com/10