Log in

Ceramic Insulated Blocks Based on Local Raw Materials of the Republic of Karakalpakstan

Number of journal: 11-2022
Autors:

Pilipenko A.S.,
Kaddo M.B.,
Asamatdinov M.O.,
Turganbaev B.B.

DOI: https://doi.org/10.31659/0585-430X-2022-808-11-86-91
УДК: 691.42

 

AbstractAbout AuthorsReferences
The article devoted to the question of production of energy-efficient ceramic materials based on local raw materials of the Republic of Karakalpakstan. The usage of a porous non-burning filler in the composition of ceramic masses will make it possible to obtain materials with a reduced medium density (compared to traditional ceramic products), to use rigid mix designs with a low water content, significantly reducing the cost of drying products, while increasing the uniformity of the porous ceramic shard. The purpose of the research was to develop mix designs for porous ceramic products and to develop the schemes of their drying and firing. Granular foam glass was used as non-burning filler, which is sintered during firing with a ceramic shard into a single whole. Foam glass has a low average density (140–200 kg/m3), low water absorption (up to 5% by weight) and is fully compatible with a ceramic shard, which makes it possible to obtain isotropic products. The optimum density of the ceramic material is established as the result, which does not exceed 1400 kg/m3. Optimization of the most energy-intensive firing process was carried out by methods of mathematical planning and processing of experimental results. The optimal average density of crushed foam glass (140–150 kg/m3) was established for the firing process. Also, a nomogram for selecting parameters and evaluating the properties of the product depending on the consumption of foam glass and the firing temperature was obtained as a result of analytical optimization and graphical interpretation of the experimental results.
A.S. PILIPENKO1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
M.B. KADDO1, Candidate of Sciences (Engineering), (This email address is being protected from spambots. You need JavaScript enabled to view it.);
M.O. ASAMATDINOV2, Ph.D. (Engineering), (This email address is being protected from spambots. You need JavaScript enabled to view it.);
B.B. TURGANBAEV1,2, Master student, (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 National Research Moscow State University of Civil Engineering (26, Yaroslavskoye Highway, Moscow, 129337, Russian Federation)
2 Karakalpak State University named after Berdakh (1, Ch. Abdirov Street, Nukus, 230112, Republic of Karakalpakstan, Uzbekistan)

1. Semenov A.A. The state of the Russian market of ceramic wall materials. Stroitel’nye Materialy [Cons-truction materials]. 2014. No. 8, pp. 9–12. (In Russian).
2. Richman R.C., Clanfrone C., Pressnail K.L. More sustainable masonry façade: Preheating ventilation air using a dynamic buffer zone. Journal of building physics. 2018. Vol. 34. No. 1, pp. 27–41. DOI: https://doi.org/10.1177/1744259109355729
3. Kloseiko P., Arumagi E. and Ralamees T. Hydro-thermal performants of internally insulated brick wall in cold climate: a case study in a historical school building. Journal of building physics. 2015. Vol. 38. No. 5, pp. 444–464. DOI: https://doi.org/10.1177/1744259114532609
4. Lobov, O.I., Ananiev A.I. and Ananiev A.A. Energy efficiency, durability and safety of the outer walls of buildings made of ceramic materials. Stroitel’nye Materialy [Construction Materials]. 2010. No. 4, pp. 10–15.
5. Ischuk M.K., Gogua O.K. and Frolova I.G. Features of the work of flexible connections in walls with a face layer of masonry. Stroitel’nye Materialy [Construction Materials]. 2018. No. 7, рр. 40–44. (In Russian).
6. Rubtsov O.I., Bobrova E.Yu., Zhukov A.D., Zinov’eva E.A. Ceramic brick, stones and the full brick walls. Stroitel’nye Materialy [Construction Materials]. 2019. No. 9, pp. 8–13. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-774-9-8-1
7. Gurov N.G. and Kotlyarova L.V. Selection of effective technologies in the production process of wall ceramic products in modern conditions. Stroitel’nye Materialy [Construction Materials]. 2004. No. 2, pp. 6–7. (In Russian).
8. Gorbunov G.I., Rasulov O.R. The use of rice straw in the production of ceramic bricks. Vestnik MGSU. 2014. No. 11, pp. 128–136. (In Russian). DOI: https://doi.org/10.22227/1997-0935.2014.11.128-136
9. Gorbunov G.I., Rasulov O.R. Problems of rational utilization of rice straw. Vestnik MGSU. 2013. No. 7, pp. 106–113. DOI: https://doi.org/10.22227/1997-0935.2014.11.128-136. (In Russian).
10. Makoond N., Pela L. and Molins C. Dynamic elastic properties of brick masonry constituents. Construction and Building Materials. 2019. Vol. 199, pp. 756–770. DOI: https://doi.org/10.1016/j.conbuildmat.2018.12.071
11. Kodzoev M.-B., Isachenko S., Bobrova E., Efimov B. and Bessonov I. Ceramic products and energy-efficient systems. IOP Conference Series: Materials Science and Engineering. 2020. Vol. 869. 032006. DOI: https://doi.org/10.1088/1757-899X/869/3/032006.
12. Talpa B.V., Kotlyar V.D. Siliceous clay is perspective raw materials effective wall ceramic. Proceedings the second International conference «Clays minerals and layered materials 2013» – CMLM. 2013. 107 p.
13. Eshimbetov U.Kh. Current state of mining industry and extraction of mineral resources of the Republic of Karakalpakstan. Iқtisodiet va innovatsion tekhnologiyalar ilmii elektron zhurnali. 2016. No. 6, pp. 1–9.
14. Pyataev E.R., Pilipenko E.S., Burtseva M.A., Mednikova E.A. and Zhukov A.D. Composite material based on recycled concrete. IOP Conf. Series: Materials Science and Engineering. 2018. Vol. 365. 032041. DOI: https://doi.org/10.1088/1757-899X/365/3/032041
15. Zhukov A.D., Bobrova E.Yu., Bessonov I.V., Medvedev A.A., Demissi B.A. Application of statistical methods for solving problems of building materials science. Nanotekhnologii v stroitel’stve: scientific Internet-journal. 2020. Vol. 12. No. 6, pp. 313–319. (In Russian). DOI: https://doi.org/10.15828/2075-8545-2020-12-6-313-319

For citation: Pilipenko A.S., Kaddo M.B., Asamatdinov M.O., Turganbaev B.B. Ceramic insulated blocks based on local raw materials. Stroitel’nye Materialy [Construction Materials]. 2022. No. 11, pp. 86–91. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-808-11-86-91

Structure and Thermophysical Characteristics of Gas-Filled Polymers

Number of journal: 11-2022
Autors:

Efimov B.A.,
Ushakov A.Yu.,
Tyakina A.M.,
Minaeva A.M.

DOI: https://doi.org/10.31659/0585-430X-2022-808-11-81-85
УДК: 699.86

 

AbstractAbout AuthorsReferences
Thermal resistance and durability of insulation systems of building structures, firstly, provide comfort in insulated rooms and, secondly, provide protection of the building structure entirely from negative atmospheric influences and largely depend on the properties of thermal insulation. Many properties of heat-insulating materials and, in particular, average density, thermal conductivity, water absorption, vapor permeability, thermal conductivity, etc. are determined by the properties of the polymer matrix (type of polymer, method of polymerization and porization), as well as porosity and structure the porosity of these materials. The purpose of the research presented in the article was to study the relationship between the structure of gas-filled polymers and their thermophysical characteristics and to verify the solutions obtained by testing the properties of materials. Based on the position that the thermal resistance and durability of insulation systems of building structures largely depend on the properties of thermal insulation, the requirements for the properties of thermal insulation materials are set out. It is substantiated that the thermophysical characteristics of heat-insulating materials and, in particular, thermal conductivity, are determined by the properties of the polymer matrix (the type of polymer, the method of its polymerization and porization), as well as the porosity and porosity structure of these materials.
B.A. EFIMOV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.Yu. USHAKOV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.M. TYAKINA, Undergraduate, (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.M. MINAEVA, Master student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Ter-Zakaryan K.A., Zhukov A.D., Bobrova E.Yu., Bessonov I.V., Mednikova E.A. Foam polymers in multifunctional insulating coatings. Polymers. 2021. Vol. 13 (21). 3698. https://doi.org/10.3390/polym13213698
2. Semenov V.S., Bessonov, I.V., Zhukov Zh.A., Mednikova E.A., Govryakov I.S. Thermal insulation systems for road bases with foam glass gravel. Magazine of Civil Engineering. 2022. Vol. 110 (2). 11003. DOI: 10.34910/MCE.110.3
3. Pilipenko A., Ter-Zakaryan K., Bobrova E., Zhukov A. Insulation systems for extreme conditions. International Conference on Modern Trends in Manufacturing Technologies and Equipment. 2019. Vol. 19, pp. 1819–2586. https://doi.org/10.1016/j.matpr.2019.08.112
4. Zhukov A., Bessonov I., Medvedev A., Zinovieva E., Mednikova E. Insulation systems for structures on pile supports. E3S Web of Conferences. 2021. Vol. 258 (361). 09088. https://doi.org/10.1051/e3sconf/202125809088
5. Bessonov I.V., Bogomolova L.K., Zhukov A.D., Zinoveva E.A. Building systems based on foamed modified polymers. Key Engineering Materials. 2021. Vol. 887, pp. 446–452. https://doi.org/10.4028/www.scientific.net/kem.887.446
6. Zhukov A., Medvedev A., Poserenin A., Efimov B. Ecological and energy efficiency of insulating systems. E3S Web of Conferences. 2019. Vol. 135. https://doi.org/10.1051/e3sconf/201913503070
7. Nardi L., Perilli S., De Rubeis T., Sfarra S., Ambrosini  D. Influence of insulation defects on the thermal performance of walls an experimental and numerical investigation. Journal of Building Engineering. 2019. Vol. 21, pp. 355–365 DOI: 10.1016/j.jobe.2018.10.029
8. Жуков А.Д., Тер-Закарян К.А., Бессонов И.В., Семёнов В.С, Старостин А.В. Системы строительной изоляции с применением пенополиэтилена // Строительные материалы. 2018. № 9. С. 58–61. DOI: https://doi.org/10.31659/0585-430X-2018-763-9-58-61
8. Zhukov A.D., Ter-Zakaryan K.A., Bessonov I.V., Semenov V.S., Starostin A.V. Systems of construction insulation with the use of foam polyethylene. Stroitel’nye Materialy [Construction Materials]. 2018. No. 9, pp. 58–61. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2018-763-9-58-61
9. Ibrahim O., Younes R. Progress to global strategy for management of energy systems. Journal of Building Engineering. 2018. Vol. 20, pp. 303–316 DOI: 10.1016/j.jobe.2018.07.020
10. Umnyakova N. Heat exchange peculiarities in ventilated facades air cavities due to different wind speed. In book: Advances and Trends in Engineering Sciences and Technologies II. London, UK: CRC Press, Taylor & Francis Group. 2016, рр. 655–660.
11. Gnip I.J., Keršulis V.J., Vaitkus S.J. Predicting the deformability of expanded polystyrene in long-term compression. Mechanics of Composite materials. 2005. Vol. 41 (5), pp. 407–414.
12. Shen X., Li L., Cui W., Feng Y. Coupled heat and moisture transfer in building material with freezing and thawing process. Journal of Building Engineering. 2018. Vol. 20, pp. 609–615. DOI: 10.1016/j.jobe.2018.07.026
13. Жуков A.Д., Бобровa E.Ю., Попов И.И., Демисси Бекеле Арега. Системный анализ технологических процессов // International Journal for Computational Civil and Structural Engineering. 2021. Vol. 17 (4), pp. 73–82. https://doi.org/10.22337/2587-9618-2021-17-4-73-82
13. Zhukov A.D., Bobrova E.Yu., Popov I.I., Arega D.B. System analysis of technological processes. Inter-national Journal for Computational Civil and Structural Engineering. 2021. Vol. 17 (4), pp. 73–82. https://doi.org/10.22337/2587-9618-2021-17-4-73-82
14. Жуков А.Д., Боброва Е.Ю., Бессонов И.В., Медведев А.А., Демисси Бекеле Арега. Приме-нение статистических методов для решения задач строительного материаловедения // Нанотехно-логии в строительстве: научный интернет-журнал. 2020. Т. 12. № 6. С. 313–319. DOI: 10.15828/2075-8545-2020-12-6-313-319
14. Zhukov A.D., Bobrova E.Yu., Bessonov I.V., Medvedev A.A., Arega D.B. Application of statistical methods for solving problems of building materials science. Nanotechnologii v stroitel’stve: scientific online journal. 2020. Vol. 12. No. 6, pp. 313–319. (In Russian). DOI: 10.15828/2075-8545-2020-12-6-313-319
15. Теличенко В.И., Орешкин Д.В. Материаловедче-ские аспекты геоэкологической и экологической безопасности в строительстве // Экология урбанизированных территорий. 2015. № 2. С. 31–33.
15. Telichenko V.I., Oreshkin D.V. Material science aspects of geoecological and ecological safety in construction. Ekologiya urbanizirovannykh territoriy. 2015. No. 2, pp. 31–33. (In Russian).
16. Умнякова Н.П. Взаимосвязь экологического состояния городов и долговечности строительных материалов и конструкций // Жилищное строительство. 2012. № 1. С. 30–33.
16. Umnyakova N.P. The relationship between the ecological state of cities and the durability of building materials and structures. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2012. No. 1, pp. 30–33. (In Russian).

For citation: Efimov B.A., Ushakov A.Yu., Tyakina A.M., Minaeva A.M. Structure and thermophysical characteristics of gas-filled polymers. Stroitel’nye Materialy [Construction Materials]. 2022. No. 11, pp. 81–85. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-808-11-81-85

Prediction of the Stress-Optical Coefficient of Multilayer Polymer Materials

Number of journal: 11-2022
Autors:

Matseevich T.A.,
Askadskii A.A.,
Merkulov S.A.

DOI: https://doi.org/10.31659/0585-430X-2022-808-11-76-80
УДК: 675.043.84

 

AbstractAbout AuthorsReferences
A method for predicting the stress-optical coefficient of multilayer polymeric materials is described. The prediction is based on the chemical structure of the polymer layers. All analyzes were carried out for network polymers based on cured cycloaliphatic epoxy resin, as well as on the basis of polyisocyanurates, consisting of products of the chemical interaction of 2,4-toluenediisocyanates and glycols of various chemical structures. The highest coefficient reaches 192 Brewster and the smallest coefficient is 97 Brewster. Thus, the stress-optical coefficient always remains high for the three-layer network polymers considered in the article. These polymers can be used in the photo-elasticity method for building models of full-scale building structures.
T.A. MATSEEVICH1, Doctor of Sciences (Physics and Mathematics) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.A. ASKADSKII1,2, Doctor of Sciences (Chemistry) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
S.A. MERKULOV1, Undergraduate (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)
2 A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS) (28, Vavilova Street, Moscow, 119991, Russian Federation)

1. Синтез и изучение свойств оптически чувствительных материалов. Сборник научных трудов Под общ. ред. Г.Л. Хесина и А.А. Аскадского. М.: МИСИ им. В.В. Куйбышева, 1987. 220 с.
1. Synthesis and study of the properties of optically sensitive materials. Collection of scientific works under the general editorship of G.L. Khesin and A.A. Askadsky. Moscow: MISI im. V.V. Kuibysheva, 1987. 220 p. (In Russian).
2. Szczurowski Marcin K., Martynkien Tadeusz, Statkiewicz-Barabach Gabriela, Urbanczyk Waclaw, Khan Lutful, and Webb David J. Measurements of stress-optic coefficient in polymer optical fibers. Optics Letters. 2010. Vol. 35. No. 12, pp. 2013–2015.
3. Ohkita H., Ishibashi K., Tsurumoto D., Tagaya A., Koike Y. Compensation of the photoelastic birefringence of a polymer by doping with an anisotropic molecule. Applied Physics A: Materials Science and Processing. 2005. Vol. 81, pp. 617–620.
4. Koyama T., Zhu Y., Otsuka T., Takada T., Murooka Y. An automatic measurement system for 2-dimensio-nal birefringence vector distribution. ICSD’98. Proceedings of the 1998 IEEE 6th International Conference on Conduction and Breakdown in Solid Dielectrics (Cat. No.98CH36132). 1998, pp. 557–560. DOI: 10.1109/ICSD.1998.709346
5. Xu W., Yao X. F. Yeh H.Y., Jin G.C. Fracture investigation of PMMA specimen using coherent gradient sensing (CGS) technology. Polymer Testing. 2005. Vol. 24. Iss. 7, pp. 900–908. https://doi.org/10.1016/j.polymertesting.2005.06.005
6. Waxler R.M., Horowitz D., Feldman A. Optical and physical parameters of Plexiglas 55 and Lexan. Applied Optics. 1979. Vol. 18. Iss. 1, pp. 101–104. https://doi.org/10.1364/AO.18.000101
7. Lee Y.C., Liu T.S., Wu C.I., Lin W.Y. Investigation on residual stress and stress-optical coefficient for flexible electronics by photoelasticity. Measurement, 2012, Vol. 45, pp. 311–316.
8. Fiber Optic Sensors. An Introduction for Engineers and Scientists. Edited by Eric Udd. John Wiley & Sons, lnc. 2006. 518 p.
9. D.W. van Krevelen, Klaas te Nijenhuis. Properties of Polymers: Their Correlation with Chemical Structure; their Numerical Estimation and Prediction from Additive Group Contributions. Elsevier. 2009. 1030 p.
10. Jong Sun Kim, Kyung Hwan Yoon, Julia A. Konfield. Measurement of stress-optical coefficient of COCs with different composition. Key Engineering Materials. 2006. Vol. 326–328, pp. 183–186. https://doi.org/10.4028/www.scientific.net/KEM.326-328.183
11. Аскадский А.А., Прозорова С.Н., Слонимский Г.Л. Оптико-механические свойства ароматических теплостойких полимеров. Высокомолекулярные соединения. Серия А. 1976. Т. 18. № 3. С. 636–647.
11. Askadskii A.A., Prozorova S.N., Slonimskii G.L. Optical-mechanical properties of aromatic heat-resistant polymers. Vysokomolekulyarnyye soyedine-niya. Seriya A. 1976. Vol. 18, No. 3, pp. 636–647. (In Russian).
12. Аскадский А.А., Маршалкович А.С., Матвеева Т.П. Прогнозирование оптико-механических свойств полимеров, применяемых в методе фотоупругости. Механика композитных материалов. 1983. № 3. С. 906–913.
12. Askadskii A.A., Marshalkovich A.S., Matveeva T.P. Prediction of optical-mechanical properties of polymers used in the photoelasticity method. Mekhanika kompozitnykh materialov. 1983. No. 3, pp. 906–913. (In Russian).
13. Аскадский А.А., Пастухов А.В., Маршалкович А.С. Прогнозирование некоторых физических характеристик и получение оптически чувствительных эпоксидных полимеров. Высокомолекулярные со-единения. Серия А. 1984. Т. 26. № 1. С. 160–171.
13. Askadskii A.A., Pastukhov A.V., Marshalkovich A.S. Prediction of some physical characteristics and production of optically sensitive epoxy polymers. Vysokomolekulyarnyye soyedineniya. Seriya A. 1984. Vol. 26. No. 1, pp. 160–171. (In Russian).

For citation: Matseevich T.A., Askadskii A.A., Merkulov S.A. Forecasting the stress-optical coefficient of multilayer polymeric materials. Stroitel’nye Materialy [Construction Materials]. 2022. No. 11, pp. 76–80. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-808-11-76-80

Calculation of Thermal Resistance of Pavement

Number of journal: 11-2022
Autors:

Galkin A.F.,
Pankov V.Yu.,
Zhirkova E.O.

DOI: https://doi.org/10.31659/0585-430X-2022-808-11-70-75
УДК: 625.7/8

 

AbstractAbout AuthorsReferences
Thermal calculations to substantiate technical solutions in the design of highways in the cryolithozone are based on the determination and selection of a set thermal resistance of the structural layers of the pavement. The purpose of this study was to quantify the possibility of using an equivalent single-layer (instead of multi-layer) pavement structure in thermal resistance calculations. The classical formulas for stationary heat transfer through a flat wall were used for the analysis. Simple engineering formulas have been obtained for estimating the relative percentage error of thermal resistance values when using the equivalent pavement layer in calculations. As an example, the two-layer construction of the pavement is considered. The concept of the coefficient of inequality of thermal conductivity of materials of structural layers of pavement is introduced. It is shown that in order to achieve an error in the calculations less than acceptable in engineering practice, the inequality coefficient should not be less than the value of 0.52 and greater than the value of 1.92. The objective function of the permissible calculation error for the minimum is constructed and investigated. The results of numerical calculations are presented in the form of 2D and 3D graphs, which make it possible to visually assess the influence of the range of changes in the values of the thermal conductivity coefficients of materials of structural layers on the validity of using an equivalent single-layer pavement structure in thermal resistance calculations.
A.F. GALKIN1, Doctor of Sciences (Engineering), Professor (This email address is being protected from spambots. You need JavaScript enabled to view it.);
V.Yu. PANKOV2, Candidate of Sciences (Geology and Mineralogy), Docent (This email address is being protected from spambots. You need JavaScript enabled to view it.),
E.O. ZHIRKOVA2, (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Melnikov Permafrost Institute, Siberian Branch, Russian Academy of Sciences (36, Merzlotnaya Street, Yakutsk, 677010, Russian Federation)
2 North-Eastern Federal University (58, Belinskogo Street, Yakutsk, 677027, Russian Federation)

1. Vyalov S.S. Rheologicheskie osnovy mekhanika mozlykh gruntov [Rheological foundations of frozen soil mechanics]. Moscow: Vysshaya shkola. 1978. 447 p.
2. Eppelbaum L.V., Kutasov I.M. Well drilling in permafrost regions: Dynamics of the thawed zone. Polar Research. 2019. Vol. 38. 3351. DOI: https://doi.org/10.33265/polar.v38.3351
3. Zhang X., Feng S.G., Chen P.C. Thawing settlement risk of running pipeline in permafrost regions // Oil Gas Storage Transporation. 2013. No. 6, pp. 365–369.
4. Galkin A.F., Pankov V.Yu. Thermal protection of roads in the permafrost zone. Journal of Applied Engineering Science. 2022. Vol. 20. No. 2, pp. 395–399. DOI: 10.5937/jaes0-34379
5. Zhirkov A.F., Zheleznyak M.N., Shats M.M., Sivtsev M.A. Numerical modeling of changes in permafrost conditions of the airport Olekminsk. Marksheyderiya i nedropol’zovaniye. 2021. No. 5 (115), pp. 22–32. (In Russian).
6. Pankov V.Yu., Burnasheva S.G. Analysis of ways to protect roads from negative cryogenic processes In the collection: «The best student article 2020».ICNS «Science and Enlightenment». 2020, pp. 52–55. (In Russian).
7. Shats M.M. The current state of the urban infrastructure of Yakutsk and ways to improve its reliability. Georisk. 2011. No. 2, pp. 40–46. (In Russian).
8. Serikov S.I., Shats M.M. Frost cracking of soils and its role in the state of the surface and infrastructure of Yakutsk. Vestnik of the Perm National Research Polytechnic University. Applied Ecology. Urba-nistics. 2018. No. 1, pp. 56–69. (In Russian). DOI: 10.15593/2409-5125/2018.01.04
9. Shesternev D.M., Litovko A.V. Comprehensive research on the identification of deformations on the Amur highway. Materials of the reports of the XIV All-Russian Scientific and Practical Conference and Exhibition «Prospects for the Development of Engineering Surveys in Construction in the Russian Federation». Moscow: «Geomarke». 2018, pp. 309–314. (In Russian).
10. Zheleznyak M.N., Shesternev D.M., Litovko A.V. Problems of stability of roads in the cryolithozone. Materials of the reports of the XIV All-Russian Scientific and Practical Conference and Exhibition «Prospects for the Development of Engineering Surveys in Construction in the Russian Federation». Moscow: «Geomarket». 2018, pp. 223–227. (In Russian).
11. Kondratyev V.G., Kondratyev S.V. How to protect the federal highway «Amur» Chita – Khabarovsk from dangerous engineering and geocryological processes and phenomena. Engineering geology. 2013. No. 5,pp. 40–47. (In Russian).
12. Galkin A.F., Kurta I.V., Pankov V.Yu., Potapov A.V. Evaluation of the effectiveness of the use of layered structures of thermal protection in the construction of roads in cryolithozone. Energobezopasnost’ i energosberezheniye. 2020. No. 4, pp. 24–28. (In Russian).
13. Bessonov I.V., Zhukov A.D., Bobrova E.Yu., Govryakov I.S., Gorbunova E.A. Analysis of constructive solutions depending on the type of insulating materials in road surfaces in permafrostnye soils. Transportnoye stroitel’stvo. 2022. No. 1, pp. 14–17. (In Russian). DOI: 10.18635/2071-2219-2020-4-24-28
14. Galkin A.F., Zheleznyak M.N., Zhirkov A.F. Increasing the thermal stability of the embankment in permafrost regions. Stroitel’nye Materialy [Construction Materials]. 2021. No. 7, pp. 26–31. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-793-7-26-31
15. Isachenko V.P., Osipova V.A., Sukomel A.S. Teploperedacha [Heat transfer]. Moscow: Energoizdat. 1981. 416 p.
16. Galkin A.F. Thermal resistance of the heat-shielding layer of road clothing // Natural and technical sciences. 2021. №8, pp.97–99. (In Russian)
17. Dulnev G.I. Thermal conductivity of wet porous materials. ITZH. 1989. Vol. 56. No. 2, pp. 261–291. (In Russian).
18. Odelevsky V.I. Calculation of generalized conductivity of heterogeneous systems. Zhurnal tekhnicheskoi fiziki. 1951. Vol. 21. No. 6, pp. 667–685. (In Russian).
19. Dulnev G.N., Zarichnyak Yu.P. Teploprovodnost’ smesey i kompozitsionnykh materialov [Thermal conductivity of mixtures and composite materials]. Leningrad: Energiya. 1974. 264 p.
20. Galkin А.F., Kurta I.V., Pankov V.Yu. Calculation of thermal conductivity coefficient of thermal insulation mixtures. IOP Conf. Series: Materials Science and Engineering. 2020. Vol. 918. 012009. doi:10.1088/1757-899X/918/1/012009

For citation: Galkin A.F., Pankov V.Yu., Zhirkova E.O. Calculation of thermal resistance of pavement. Stroitel’nye Materialy [Construction Materials]. 2022. No. 11, pp. 70–75.(In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-808-11-70-75

Self-Healing of Asphalt Concrete Using Encapsulated Modifier

Number of journal: 11-2022
Autors:

Inozemtsev S.S.,
Korolev E.V.,
Do T.Ch.

DOI: https://doi.org/10.31659/0585-430X-2022-808-11-58-69
УДК: 625.855.3

 

AbstractAbout AuthorsReferences
The results of obtaining composites from a thermoplastic mixture are obtained, after preparation and compaction of which, capsules with a modifier remain intact, and during the period of stress formation in the structure and the formation of defects, they are able to break down to release the encapsulated modifier. The possibility of creating capsules containing a modifier for self-healing asphalt concrete is justified by a significant difference in stress states in the material under the influence of loads that occur at the technological stage during the preparation of the asphalt concrete mixture or its compaction and during the operation of asphalt concrete in the road surface. In an asphalt concrete mixture, the magnitude of stresses is determined by the dispersion of the mineral part and the geometric characteristics of the capsules. In asphalt concrete, the integrity of the capsules is determined by the ability to resist stresses arising in the composite, and depends both on the magnitude of internal stresses that increase during operation and on the geometric characteristics of the capsules. At the optimal content of capsules with an organic reducing agent, the recovery coefficient shows that during repeated compression, the total strength loss, taking into account the action of the modifier, turned out to be 28% less. For a composite with an optimal content of an encapsulated modifier based on an AR polymer, the recovery coefficient reflects that the total strength loss, taking into account the action of the modifier, is 46% less. At the same time, the recovery efficiency with the use of an encapsulated modifier based on an AR polymer is 1.87 times higher than when using an encapsulated modifier based on an organic reducing agent.
S.S. INOZEMTSEV1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
E.V. KOROLEV2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
T.Ch. DO1, Engineer (postgraduate student) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)
2 Saint-Petersburg State University of Architecture and Civil Engineering (4, 2nd Krasnoarmeyskaya Street, Saint Petersburg 190005, Russian Federation)

1. Canestrari F., Ingrassia L.P. A review of top-down cracking in asphalt pavements: Causes, models, experimental tools and future challenges. Journal of Traffic and Transportation Engineering. 2020. Vol. 7. Iss. 5, pp. 541–572. DOI: 10.1016/j.jtte.2020.08.002
2. Inozemtsev S.S., Korolev E.V. Increasing the weathering resistance of asphalt by nanomodification. Materials science forum. 2009. Vol. 945, pp. 147–157. DOI: 10.4028/www.scientific.net/MSF.945.147
3. Partl M.N. Introduction. In: Partl M., Porot L., Di Benedetto H., Canestrari F., Marsac P., Tebaldi G. (eds) Testing and characterization of sustainable innovative bituminous materials and systems. RILEM State-of-the-Art Reports. 2018. Vol. 24. https://doi.org/10.1007/978-3-319-71023-5_1
4. Inozemtcev S.S., Korolev E.V. Mineral carriers for nanoscale additives in bituminous concrete. Advanced Materials Research. 2014. Vol. 1040, pp. 80–85. DOI: 10.4028/www.scientific.net/AMR.1040.80
5. Liang B., Lan F., Shi K., Qian G., Liu Zh., Zheng J. Review on the self-healing of asphalt materials: Mechanism, affecting factors, assessments and improvements. Construction and Building Materials. 2021. Vol. 266. Part A. 120453. DOI: 10.1016/j.conbuildmat.2020.120453
6. Inozemtcev S., Korolev E. Review of road materials self-healing: problems and perspective. IOP Conference Series: Materials Science and Engineering. 2020. Vol. 855. 012010. DOI: 10.1088/1757-899X/855/1/012010
7. Xue B., Wang H., Pei J., Li R., Zhang J., Fan Z. Study on self-healing microcapsule containing rejuvenator for asphalt. Construction and Building Materials. 2007. Vol. 135, pp. 641–649. DOI: 10.1016/j.conbuildmat.2016.12.165
8. Королев Е.В., Тарасов Р.В., Макарова Л.В., Самошин А.П., Иноземцев С.С. Обоснование выбора способа наномодифицирования асфальтобетонных смесей. Вестник БГТУ им. В.Г. Шухова. 2012. № 4. С. 40–43.
8. Korolev E.V., Tarasov R.V., Makarova L.V., Samoshin A.P., Inozemtsev S.S. Substantiation of the choice of the method of nanomodification of asphalt concrete mixtures. Vestnik of BSTU named after V.G. Shukhov. 2012. No. 4, pp. 40–43. (In Russian).
9. Inozemtcev S.S., Korolev E.V. Active polymeric reducing agent for self-healing asphalt concrete. IOP Conference Series: Materials Science and Engineering. 2021. Vol. 1030 (1). 012002. DOI: 10.1088/1757-899X/1030/1/012002
10. Qui J., M.F.C. van de Ven, Wu S., Molenaar A.A.A. Investigation the self healing capability of bituminous binders. Road Materials Pavement Design. 2009. Vol. 10. Iss. 1, pp. 81–94. DOI: 10.1080/14680629.2009.9690237
11. Su J.F., Schlangen E., Qiu J. Design and construction of microcapsules containing rejuvenator for asphalt. Powder technology. 2013. Vol. 235, pp. 563–571. DOI: 10.1016/j.powtec.2012.11.013
12. Inozemtcev S., Trong T.D., Korolev E. Thermal and mechanical properties of calcium alginate capsules for self-healing asphalt concrete. Materials Science Forum. 2021. Vol. 1041 MSF, pp. 101–106. DOI: 10.4028/www.scientific.net/MSF.1041.101
13. Bueno M., Kakar M.R., Refaa Z., Wortlitschek J., Stamatiuo A., Partl M.N. Modification of asphalt mixtures for cold regions using microencapsulated phase change materials. Nature Research: Sci Rep 9. 2019. 20342. DOI: 10.1038/s41598-019-56808-x
14. Bekele A, Ryden N, Gudmarsson A, Birgisson B. Effect of Cyclic low temperature conditioning on Stiffness Modulus of Asphalt Concrete based on Non-contact Resonance testing method. Construction and Building Materials. 2019. Vol. 225, pp. 502–509. DOI: 10.1016/j.conbuildmat.2019.07.194
15. Энциклопедия полимеров. Ред. коллегия: В.А. Каргин (гл. ред.) и др. Т. 1. А–К. М.: Советская Энциклопедия, 1972. 1224 с.
15. Encyclopedia of polymers. Ed. collegium: V.A. Kargin (editor-in-chief). Vol. 1 A–K. Moscow: Soviet Encyclopedia. 1972. 1224 p.
16. Inozemtcev S.S., Korolev E.V. Sodium alginate emulsions for asphalt concrete modifiers encapsulating: structural rheological properties. Magazine of Civil Engineering. 2021. Vol. 1 (101). 10104. DOI: 10.34910/MCE.101.4
17. Inozemtsev S.S., Korolev E.V. Technological features of production calcium-alginate microcapsules for self-healing asphalt. MATEC Web of Conferences. 2018. Vol. 251. 01008. DOI: 10.1051/matecconf/201825101008
18. Su J.F., Schlangen E., Qiu J. Design and construction of microcapsules containing rejuvenator for asphalt. Powder technology. 2013. Vol. 235, pp. 563–571. DOI: 10.1016/J.POWTEC.2012.11.013
19. Barrasa R.C., López V.B., Montoliu C.M.P., Ibáñez V.C., Pedrajasc J., Santaren J. Addressing durability of asphalt concrete by self-healing mechanism. Procedia – Social and Behavioral Sciences. 2014. Vol. 162, pp. 188–197. DOI: 10.1016/j.sbspro.2014.12.199
20. Su J.F., Schlangen E. Synthesis and physicochemical properties of novel high compact microcapsules containing rejuvenator applied in asphalt. Chemical Engineering Journal. 2012. Vol. 198–199, pp. 289–300. DOI: 10.1016/J.CEJ.2012.05.094
21. Xue B., Wang H., Pei J., Li R., Zhang J., Fan Z. Study on self-healing microcapsule containing rejuvenator for asphalt. Construction and Building Materials. 2007. Vol. 135, pp. 641–649. DOI: 10.1016/J.CONBUILDMAT.2016.12.165
22. Al-Mansooria T., Micaeloabc R., Artamendid I., Norambuena-Contrerasae J., Garcia A. Microcapsules for self-healing of asphalt mixture without compromising mechanical performance. Construction and Building Materials. 2017. Vol. 155, pp. 1091–1100. DOI: 10.1016/J.CONBUILDMAT.2017.08.137
23. Inozemtcev S., Korolev E. Surface modification of mineral filler using nanoparticles for asphalt application. MATEC Web of Conferences. 2018. Vol. 196 (10). 04052. DOI: 10.1051/MATECCONF/201819604052
24. Inozemtcev, S.S., Korolev, E.V., Smirnov, V.A. Nanomodified bitumen composites: Solvation shells and rheology. Advanced Materials, Structures and Mechanical Engineering. 2016. Vol. 83, pp. 393–397. DOI: DOI:10.1201/B19693-85
25. Riccardi C., Cannone Falchetto A., Losa M., Wistuba M. Modeling of the rheological properties of asphalt binder and asphalt mortar containing recycled asphalt material. Transportation Research Procedia. 2016. Vol. 14, pp. 3503–3511. DOI: 10.1617/S11527-015-0779-Z
26. Raheb M., Pär J., Sotirios G. Thermal properties of asphalt concrete: A numerical and experimental study. Construction and Building Materials. 2018. Vol. 158, pp. 774–785. DOI: 10.1016/j.conbuildmat.2017.10.068
27. Daintith J. A Dictionary of Physics (6 ed.). Oxford University Press. 2009. 624 p. DOI: 10.1007/978-1-349-66022-3
28. Окопный Ю.А., Радин В.П., Чирков В.П.Механика материалов и конструкций. М.: Машиностроение, 2001. 408 с.
28. Okopny Yu.A., Radin V.P., Chirkov V.P. Mekhanika materialov i konstruktsiy [Mechanics of materials and structures]. Moscow: Mashinostroenie. 2001. 408 p.
29. Bhasin A., Palvadi S., Little D. Influence of aging and temperature on intrinsic healing of asphalt binders. Transportation Research Record Journal of the Transportation Research Board. 2011. Vol. 2207. Iss. 1, pp. 70–78. DOI: 10.3141/2207-10
30. Сивухин Д.В. Общий курс физики. Термодинамика и молекулярная физика. Т. 2. М.: Наука, 1990. 591 с.
31. Sivukhin D.V. Obshchiy kurs fiziki. Termodinamika i molekulyarnaya fizika. Tom II [General course of physics. Thermodynamics and molecular physics. Vol. II]. Moscow: Nauka. 1990. 591 p.
31. Xu S., Tabakoviс´ A., Liu X., Palin D., Schlangen E. Optimization of the calcium alginate capsules for self-healing asphalt. Materials. 2019. Vol. 12. Iss. 1. 168. DOI: 10.3390/APP9030468
32. Qiu J., Wu S., Molenaar A.A.A. Investigating the self healing capability of bituminous binders. Road Materials and Pavement Design. 2009. Vol. 10, pp. 81–94. DOI: 10.1080/14680629.2009.9690237
33. Tabakoviс´ A., Schuyffel L., Karač A., Schlangen E. An evaluation of the efficiency of compartmented alginate fibres encapsulating a rejuvenator as an asphalt pavement healing system. Applied Sciences. 2017. Vol. 7. Iss. 7. 647. DOI: 10.3390/APP7070647

For citation: Inozemtsev S.S., Korolev E.V., Do T.Ch. Self-healing of asphalt concrete using encapsulated modifier. Stroitel’nye Materialy [Construction Materials]. 2022. No. 11, pp. 58–69. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-808-11-58-69

Structure Formation Aspects for Fluoranhydrate-Based Materials

Number of journal: 11-2022
Autors:

Gordina А.F.,
Polyanskikh I.S.,
Gafipov A.T.,
Kuzmina N.V.
Pudov I.А.

DOI: https://doi.org/10.31659/0585-430X-2022-808-11-50-57
УДК: 691.553.3

 

AbstractAbout AuthorsReferences
It is known that moderate physical-mechanical properties of anhydrate-based materials are due to the slow hydration reaction and hardening. To make it faster and manage structure formation of sulfate-based materials different types of hardening activators are widely used. In this article there are results of using activators of different nature and their impact on anhydrate-based binder, activators that were used – sodium sulfate, Portland cement, sodium phosphate and a by-product additive. Metallurgical dust was suggested to use in this research as a by-product additive. It was proved that effective amount of additives is 3% of activator of hardening combining with 0.5–1.5% of metallurgical dust. This amount of additives has led to positive changes in characteristics of material such as increasing of strength (flexural and compressive) and water resistance, reducing of water absorption. All that changes is likely due to changes in hydration conditions. Aspects of hydration process have been explained by microstructure and differential thermal analyses. Microstructure of fluor anhydrate-based material showed that using the additives results in formation of denser structure. Also, additives enable the porosity to decrease and at the same time the contact areas between new growths increase. Spectral results showed that sodium phosphate is the most effective in terms of providing proper conditions for binder hydration.
A.F. GORDINA, Candidate of Science (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
I.S. POLYANSKIKH, Candidate of Science (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.T. GAFIPOV, Master student (This email address is being protected from spambots. You need JavaScript enabled to view it.),
N.V. KUZMINA, graduate student (This email address is being protected from spambots. You need JavaScript enabled to view it.),
I.А. PUDOV, Candidate of Science (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Kalashnikov Izhevsk State Technical University (7, Studencheskaya Street, Izhevsk, 426000, Russian Federation)

1. Mankeevich Y.V., Sycheva L.I. Influence of mechanical activation of phosphogypsum raw mix on hydration and hardening of anhydrite binder. Uspekhi v khimii i khimicheskoi tekhnologii. 2014. No. 8(157), pp. 61–64. (In Russian).
2. Nizevičienė D., Vaičiukynienė D., Vaitkevičius V., Rudžionis B. Effects of waste fluid catalytic cracking on the properties of semi-hydrate phosphogypsum // Journal of Cleaner Production. 2016. Vol. 137, pp. 150–156. DOI: 10.1016/j.jclepro.2016.07.037
3. Fomenko А.I., Gryzlov V.S., Fedorchuk N.M., Kaptyushina A.G. Dry building mix on the basis of phospho-hemihydrate of calcium sulfate. Stroitel’nye Materialy [Construction Materials]. 2017. No. 7, pp. 60–63. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2017-750-7-60-63
4. Gumeniuk A., Polyanskikh I., Gordina A. et al. Fluorоanhydrite based composites with the thermoplastic additive. Magazine of Civil Engineering. 2022. No. 4 (112). 11210. DOI: 10.34910/MCE.112.10
5. Bondarenko S.A., Trofimov B.Ya., Chernykh T.N., Kramar L.Ya. The use of fluoroanhydrite in the production of tongue-and-groove partitions. Stroitel’nye Materialy [Construction Materials]. 2008. No. 3. pp. 68–69. (In Russian).
6. Kurmangalieva A.I., Anikanova L.A., Volkova O.V. et al. Activation of hardening processes of fluorogypsum compositions by chemical additives of sodium salts. Izvestiya VUZov. Khimiya i khimicheskaya tekhnologiya. 2020. Vol. 63, pp. 73–80. (In Russian). DOI: 10.6060/ivkkt.20206308.6137
7. Buryanov A.F., Fisher H.-B., Gal’tseva N.A., Machortov D.N., Hasanshin R.R. Research in the influence of various activating additives on the properties of anhydrite binder. Stroitel’nye Materialy [Construction Materials]. 2020. No. 7, pp. 4–9. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-782-7-4-9
8. Belov V.V., Buryanov A.F., Yakovlev G.I. et al. Modifikatsiya struktury i svoistv stroitel’nykh kompozitov na osnove sul’fata kal’tsiya: monografiya [Modification of the structure and properties of building composites based on calcium sulfate: monograph. Under the general editorship of Buryanov A.F.] Moscow: De Nova. 2012. 195 p.
9. Buryanov A.F., Petropavlovskii K.S., Petropavlovskaya V.B., Novichenkova T.B. Formation of the spatial structure of a condensed system of calcium sulphate dehydrate. Journal of Physics: Conference Series. Vol. 1425. Modelling and Methods of Structural Analysis. 13–15 November 2019. Moscow, Russian Federation. DOI: 10.1088/1742-6596/1425/1/012194
10. Klimenko V.G. The role of double salts based on sulfates Na+, K+, Ca2+, NH4+ in the technology of obtaining anhydrite binders. Vestnik of the Belgorod State Technological University named after V.G. Shukhov. 2017. No. 12, pp. 119–125. (In Russian). DOI: 10.12737/article_5a27cb84ae0049.79523605
11. Klimenko V.G., Pavlenko V.I., Elistratkin M.Y. Complex anhydrite hardening activators based on ammonium sulfate. Vestnik of the Belgorod State Technological University named after V.G. Shukhov. 2013. No. 5, pp. 28–30. (In Russian).
12. Anikanova L.A., Volkova О.V., Kudyakov A.I., Kurmangalieva A.I. Mechanically activated composite fluoroanhydrite binder. Stroitel’nye Materialy [Construction Materials]. 2019. No. 1–2, pp. 36–42. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-36-42
13. Kudyakov A.I., Anikanova L.A., Redlikh V.V., Sarkisov Yu.S. Influence of sulfate and sulfite of sodium on the processes of structure formation of fluoroanhydrite compositions. Stroitel’nye Materialy [Construction Materials]. 2012. No. 10, pp. 50–52. (In Russian).
14. Shuhua Liu. Jiayi Ouyang, Jun Ren. Mechanism of calcination modification of phosphogypsum and its effect on the hydration properties of phosphogypsum-based supersulfated cement. Construction and Building Materials. 2020. Vol. 243. 118226. DOI: 10.1016/j.conbuildmat.2020.118226
15. Kramar L.Y., Trofimov B.Y., Chernykh T.N. Properties and modification of anhydrite binder from technogenic raw materials. Innovative materials and technologies KNAUF-GARANT of quality and safety in modern construction. Collection of reports of the fifth scientific conference LLC KNAUF GIPS. Chelyabinsk. 2012. 58 p.
16. Tokarev Yu.V., Yakovlev G.I. Modification of anhydrite compositions with aluminum-containing ultrafine additives. Izvestiya of the Kazan State University of Architecture and Engineering. 2009. No. 1 (11), pp. 302–308. (In Russian).
17. Anikanova L.A., Kurmangalieva A.I., Volkova O.V., Pervushina D.M. Gas-gypsum materials properties modified by plasticizing agents. Vestnik of the Tomsk State University of Architecture and Civil Engineering. 2020. Vol. 22 (1), pp. 106–117. https://doi.org/10.31675/1607-1859-2020-22-1-106-117 (In Russian).
18. Gazdič D., Stachová J., Magrla R. Modification of natural anhydrite by mixed exciter. Advanced Materials Research. 2015. Vol. 1100. DOI: https://doi.org/10.4028/www.scientific.net/AMR.1100.56
19. Fedorchuk Y.M., Zamyatin N.V., Smirnov G.V. et al. Prediction of the properties anhydrite construction mixtures based on neural network approach. Journal of Physics: Conference Series. 2017. No. 1. 012039. DOI: 10.1088/1742-6596/881/1/012039
20. Kalabina D.A., Yakovlev G.I., Kuz’mina N.V. Non-shrinking fluoroanhydrite compositions for flooring. Izvestiya of the Kazan State University of Architecture and Engineering. 2021. No. 1 (55), pp. 24–38. (In Russian). DOI: 10.52409/20731523_2021_1_24

For citation: Gordina А.F., Polyanskikh I.S., Gafipov A.T., Kuzmina N.V. Pudov I.А. Structure formation aspects for fluoranhydrate-based materials. Stroitel’nye Materialy [Construction Materials]. 2022. No. 11, pp. 50–57. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-808-11-50-57

Options for the Introduction of a Finely Dispersed Additive Based on Perlite into Cement Mixtures

Number of journal: 11-2022
Autors:

Kozlova I.V.,
Zemskova O.V.,
Lekanov N.A.

DOI: https://doi.org/10.31659/0585-430X-2022-808-11-42-49
УДК: 666.96

 

AbstractAbout AuthorsReferences
The article discusses the options for introducing a fine perlite additive into the composition of a cement system. One of the options for the introduction of fine perlite is dry mixing of the additive with cement, followed by mixing with water with a polycarboxylate plasticizer. The second option is the introduction of a stabilized suspension of finely dispersed perlite into the cement. It was found that suspensions with a fine perlite content of 1–3% and polycarboxylate plasticizer 0.3–0.5%, subjected to ultrasonic treatment, have the greatest aggregative and sedimentation stability. It was revealed that the homogenization of the suspension is ensured by ultrasonic exposure, stabilization is achieved by fixing the functional groups of polycarboxylate on the surface of fine perlite particles. The use of a complex method of homogenization and stabilization of the suspension contributes to the uniformity of the distribution of perlite particles in the volume of the cement system, which leads to an acceleration of hydration processes.
I.V. KOZLOVA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
O.V. ZEMSKOVA, Candidate of Sciences (Chemistry) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
N.A. LEKANOV, Student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Zhernovoi F.E., Miroshnikov E.V., Zhernovaya N.F. Perlite Mukhor-Tala as a glass raw material. Vestnik of the Belgorod State Technological University named V.G. Shukhov. 2012. No. 3, pp. 32–36. (In Russian).
2. Dalakishvili A.I. Glass formation processes in perlite- and obsidian-containing batches. Fizika i khimiya stekla. 2005. Vol. 31. No. 6, pp. 1128–1132. (In Russian).
3. Samkharadze N.Ya., Chokhonelidze M.I., Machava-riani Z.P., Gelashvili N.V. Prospects for expanding the resource base and increasing the production of perlite in Georgia. Gornyy zhurnal. 2004. No. 4, pp. 78–80. (In Russian).
4. Mikshis L.P. Perlites of the polar Urals - raw materials for the construction industry. Gornyye vedomosti. 2006. No. 2 (21), pp. 64–67. (In Russian).
5. Toturbiev A.B., Cherkashin V.I., Toturbiev B.D., Toturbieva U.D. Perlite thermal insulation material based on nanodispersed polysilicate sodium binder. Promyshlennoye i grazhdanskoye stroitel’stvo. 2016. No. 3, pp. 20–24. (In Russian).
6. Balykova L.I., Saraykina I.P. Heat-insulating materials based on Kamchatka perlite. Vestnik Kamchatskogo gosudarstvennogo tekhnicheskogo universiteta. 2009. No. 9, pp. 15–20. (In Russian).
7. Zin Min Htet, Tikhomirova I.N. Heat insulation material on the basis of expanded perlite and expanded mineral binder. Stroitel’nye Materialy [Construction Materials]. 2019. No. 1–2, pp. 107–112. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-107-112
8. Solovieva L.N., Radchenko D.S. Heat-insulating concrete based on expanded perlite production waste. Resource-Energy-Efficient Technologies in the Regional Construction Complex. 2013. No. 3, pp. 177–181. (In Russian).
9. Rakhmanova I.A., Sarkisov Yu.S., Vereshchagin V.I. Thermal insulation materials based on perlite and vermiculite. Vestnik of the Tomsk State University of Architecture and Civil Engineering. 2013. No. 2 (39), pp. 257–262. (In Russian).
10. Vysotskaya M.A., Fedorov M.Yu., Kuznetsov D.A. Adsorption and structuring activity of perlite as a filler for asphalt concrete. Izvestia of higher educational institutions. Construction. 2012. No. 7–8 (643–644), pp. 21–26. (In Russian).
11. Shulaev M.V., Bashirov R.R., Emelyanov V.M. Investigation of the adsorption properties of industrial waste – spent perlite. Izvestiya of higher educational institutions. Series: Chemistry and chemical technology. 2010. Vol. 53. No. 3, pp. 59–62. (In Russian).
12. Vardanyan M.A. Hydrophobization of expanded perlite with synthetic polymeric materials and study of its sorption properties. Voda i ekologiya: problemy i resheniya. 2017. No. 2 (70), pp. 50–59. (In Russian).
13. Kazym U. Adsorbing property of perlite. Znaniye. 2016. No. 3–5 (32), pp. 95–98. (In Russian).
14. Tikhonov Yu.M., Terekhin S.N., Aubakirova I.U., Shidlovskiy G.L., Guguchkina M.Yu. Povedeniye ognezashchitnykh materialov na osnove vermikulita, perlita i mineral’noy fibry v usloviyakh pozhara: Monografiya [Behavior of fire-retardant materials based on vermiculite, perlite and mineral fiber under fire conditions: Monograph]. Sankt-Peterburg. 2016. 148 p.
15. Terekhin S.N., Shidlovsky G.L., Tikhonov Yu.M. Fire-retardant composites based on vermiculite, perlite and fibrous fillers. Problems of risk management in the technosphere. 2015. No. 3 (35), pp. 41–44. (In Russian).
16. Fadeeva N.P., Pavlov M.V., Kharchenko I.A., Simunin M.M., Shabanova K.A., Pavlov V.F., Ryzhkov I.I. High-strength ceramic substrates based on perlite and silicate foams for filtration membranes. Membrany i membranenye tekhnologii. 2022. Vol. 12. No. 3, pp. 192–199. (In Russian).
17. Gurgenyan N.V., Pyuskylyan K., Khachanova I.B. Radiation characteristics of perlite Khimicheskaya tekhnologiya. 2015. Vol. 16. No. 6, pp. 352–357. (In Russian).
18. Kulikova E.S., Krivun E.A. Concrete on expanded perlite. Dal’niy Vostok: problemy razvitiya arkhitekturno-stroitel’nogo kompleksa. 2017. No. 1, pp. 291–293. (In Russian).
19. Volkova O.E., Volkova A.Yu. Building materials based on expanded perlite and magnesia binder. Trudi of the Bratsk State University. Series: Natural and engineering sciences. 2015. Vol. 1, pp. 201–203. (In Russian).
20. Nasedkin V.V. Perlite as a filler for lightweight concrete (historical chronicle and prospects for the future). Stroitel’nye Materialy [Construction Materials]. 2006. No. 6, pp. 70–74. (In Russian).
21. Natsievskii S.Yu., Alekseeva L.V. Production of dry building mixes using expanded perlite. Sukhiye stroitel’nyye smesi. 2012. No. 6, pp. 26–27. (In Russian).
22. Chernyak L.P., Dorogan N.A., Glushchenko D.K. The use of perlite as a component of the raw mix for the manufacture of cement clinker. Colloquium-Journal. 2018. No. 6–1 (17), pp. 57–62. (In Russian).
23. Khardaev P.K. Improving the efficiency of using crystallized perlites in concrete technology. Dis... Doctor of Sciences (Engineering). Ulan-Ude, 2000. 470 p. (In Russian).
24. Berezhnoy Yu.M., Romanova O.N., Bessarabov E.N., Sevostyanova A.A. Prospects for the use of foamed modified perlite to obtain new composite materials. Inzhenerny Vestnik Dona. 2018. No. 1 (48), p. 133.
25. Zhernovoi F.E., Miroshnikov E.V. Comprehensive assessment of the factors of increasing the strength of cement stone with the addition of ultrafine perlite. Vestnik of the Belgorod State Technological University named after V.G. Shukhov. 2009. No. 2, pp. 55–60. (In Russian).
26. Pavlenko N.V., Zhernovoi F.E., Miroshnikov E.V., Suvorova A.R. Perlite as an effective raw material for obtaining a nanostructured binder of non-hydration type of hardening. Resursoenergoeffektivnyye tekhnologii v stroitel’nom komplekse regiona. 2012. No. 2, pp. 240–243. (In Russian).
27. Lesovik V.S., Zhernovoi F.E., Glagolev E.S. The use of natural perlite in the composition of mixed cements. Stroitel’nye Materialy [Construction Materials]. 2009. No. 6, pp. 84–87. (In Russian).
28. Chizhov R.V., Kozhukhova N.I., Zhernovsky I.V., Korotkikh D.N., Fomina E.V., Kozhukhova M.I. Phase formation and properties of aluminosilicate binders of non-hydration hardening type using perlite. Stroitel’nye Materialy [Construction Materials]. 2015. No. 3, pp. 34–36. (In Russian).
29. Kozhukhova N.I., Chizhov R.V., Zhernovsky I.V., Loganina V.I., Strokova V.V. Peculiarities of structure formation of a geopolymer binder system based on perlite using various types of alkaline activator. Stroitel’nye Materialy [Construction Materials]. 2016. No. 3, pp. 61–64. (In Russian).
30. Kozhukhova N.I., Fomina E.V., Zhernovsky I.V. Peculiarities of structure formation and properties of aluminosilicate binders based on perlite. Resursoenergoeffektivnyye tekhnologii v stroitel’nom komplekse regiona. 2015. No. 5, pp. 100–104. (In Russian).
31. Samchenko S., Kozlova I., Zemskova O., Potaev D., Tsakhilova D. Efficiency of stabilization of slag suspensions by polycarboxylate. E3S Web of Conferences. 2019. Vol. 91. 02039. DOI: 10.1051/e3sconf/20199102039
32. Samchenko S., Kozlova I., Zemskova O., Nikiporova T., Kosarev S. Method of modifying Portland slag cement with ultrafine component. Advances in Intelligent Systems and Computing. 2019. 983, pp. 807–816. DOI: 10.1007/978-3-030-19868-8_79
33. Samchenko S., Kozlova I., Zemskova O., Zamelin D., Pepelyaeva A. Complex method of stabilizing slag suspension. Advances in Intelligent Systems and Computing. 2019. Vol. 983, pp. 817–827. DOI: 10.1007/978-3-030-19868-8_80

For citation: Kozlova I.V., Zemskova O.V., Lekanov N.A. Options for the introduction of a finely dispersed additive based on perlite into cement mixtures. Stroitel’nye Materialy [Construction Materials]. 2022. No. 11, pp. 42–49. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-808-11-42-49

Facade Plastering Systems Using a Modified Binder

Number of journal: 11-2022
Autors:

Zhukov A.D.,
Bessonov I.V.,
Kulapin A.V.,
Medvedev A.A.
Demissi B.A.,
Poudel R.S.

DOI: https://doi.org/10.31659/0585-430X-2022-808-11-37-41
УДК: 693.614

 

AbstractAbout AuthorsReferences
Plaster systems applied to facade surfaces using reinforcing meshes can be considered as a kind of textile concrete. This material consisting of a mineral binder (or fine aggregate) and reinforcing components. Similar coatings are used in facade heat-insulating composite systems, as well as on a concrete base (without wall insulation). Can be used on any surface during the reconstruction of building facades. Facade systems and materials must meet the requirements for durability and operational stability under climatic influences: solar radiation, precipitation, alternating and negative temperatures. The aim of the study was to study the properties of reinforced plaster coatings based on a modified binder. The composition of the modified binder included a finely ground mineral additive based on volcanic tuff; the composition of the facade mixture also included modifying additives: cellulose ethers, dispersible powder, blowing agent, thickener, water repellent. It has been established that, regardless of the thermal insulation used (mineral wool facade slabs, or slabs based on foamed plastics), the system of plaster coatings based on mineral plasters reinforced with meshes performs protective functions in relation to the insulating layers. Firstly, it is weather protection, secondly, it is protection against vandalism, and thirdly, it is protection against possible fire impact, which is especially important in the case of combustible thermal insulation. The decrease in adhesion strength (adhesion) after cyclic temperature and humidity exposures was 9–13%. Upon completion of cyclic exposures, no external changes were detected on the front surface of the samples (color, cracks, chips, peeling).
A.D. ZHUKOV1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
I.V. BESSONOV2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.V. KULAPIN3, graduate student;
A.A. MEDVEDEV1, Candidate of Sciences (Engineering), (This email address is being protected from spambots. You need JavaScript enabled to view it.),
B.A. DEMISSI1, graduate student,
R.S. POUDEL1, graduate student

1 National Research Moscow State University of Civil Engineering (26, Yaroslavskoye Highway, Moscow, 129337, Russian Federation)
2 Research Institute of Building Physics, Russian Academy of Architecture and Construction Sciences (21, Lokomotivny Driveway, Moscow, 127238, Russian Federation)
3 St. Petersburg State University of Architecture and Civil Engineering (SPbGASU) (3/6, 3rd Krasnoarmeyskaya Street, St. Petersburg, 190005, Russiaт Federation)

1. Теличенко В.И., Орешкин Д.В. Материаловедческие аспекты геоэкологической и экологической безопасности в строительстве // Экология урбанизированных территорий. 2015. № 2. С. 31–33.
1. Telichenko V.I. Oreshkin D.V. Materials science aspects of geoecological and environmental safety in construction. Ekologiya urbanizirovannykh territoriy. 2015. No. 2, pp. 31–33. (In Russian).
2. Gudkov P., Kagan P., Pilipenko A., Zhukova E.Yu., Zinovieva E.A., Ushakov N.A. Usage of thermal isolation systems for low-rise buildings as a component of information models. E3S Web Conf. XXII International Scientific Conference “Construction the Formation of Living Environment” (FORM-2019). Vol. 97. 2019. DOI: https://doi.org/10.1051/e3sconf/20199701039
3. Efimov B., Isachenko S., Kodzoev M.-B., Dosanova G., EkaterinaB. Dispersed reinforcement in concrete technology. E3S Web Conf. International Science Conference SPbWOSCE-2018 “Business Technologies for Sustainable Urban Development”. 2019. Vol. 110. https://doi.org/10.1051/e3sconf/201911001032
4. Gelbrich S. Organisch geformter Hybridwerkstoff aus textil-bewehrtem Beton und glasfaserverstrktem Kunststoff. Leichter bauen – Zukunft formen. TUDALIT. 2012. No. 7, рр. 9.
5. Демиссе Б.А., Жуков А.Д., Поудел Р.С. Мелкозернистый бетон на модифицированном вяжущем // Промышленное и гражданское строительство. 2022. № 3. С. 31–36. DOI: 10.33622/0869-7019.2022.03.31-36
5. Demisse B.A., Zhukov A.D., Poudel R.S. Fine-grained concrete on a modified binder. Promyshlennoye i grazhdanskoye stroitel’stvo. 2022. No. 3, pp. 31–36. (In Russian). DOI: 10.33622/0869-7019.2022.03.31-36
6. Муртазаев С.-А.Ю., Батаев Д.К.-С., Исмаилова З.Х. Мелкозернистые бетоны на основе наполнителей из вторичного сырья. М.: Комтехпринт, 2017. 142 с.
6. Murtazaev S.-A.Yu., Bataev D.K.-S., Ismailova Z.Kh. [Melkozernistye betony na osnove napolnitelej iz vtorichnogo syr’ya [Fine-grained concrete based on fillers from secondary raw materials]. Moscow: Komtekhprint. 2017. 142 p.
7. Davood Mostofinejad, Seyed Mohammad Hosseini, Farzaneh Nosouhian, Togay Ozbakkaloglu, Bahareh Nader Tehrani. Durability of concrete containing recycled concrete coarse and fine aggregates and milled waste glass in magnesium sulfate environment. Journal of Building Engineering. 2020. Vol. 29, pp. 10–15. https://doi.org/10.1016/j.jobe.2020.101182
8. Румянцев Б.М., Жуков А.Д. Эксперимент и моделирование при создании новых изоляционных и отделочных материалов. Электрон. текстовые данные. М.: МГСУ, ЭБС АСВ, 2013. 156 p.
8. Rumyantsev B.M., Zhukov A.D. Eksperiment i modelirovanie pri sozdanii novyh izolyacionnyh i otdelochnyh materialov [Experiment and modeling in the creation of new insulation and finishing materials]. Moscow: MGSU. EBS ASV. 2013. 156 p.
9. Shannag M., Charif A., Naser S., Faisal F., Karim A. Structural behavior of lightweight concrete made with scoria aggregates and mineral admixtures. International Journal of Aerospace and Mechanical Engineering. 2020. Vol. 14. No. 12, pp. 105–109.
10. Мешков П.И., Мокин В.А. Способы оптимизации составов сухих строительных смесей // Строительные материалы. 2000. № 5. С. 12–14.
10. Meshkov P.I., Mokin V.A. Ways to optimize the composition of dry building mixes. Stroitel’nye Materialy [Construction Materials]. 2000. No. 5, pp. 12–14. (In Russian).
11. Almusaed A., Almassad A., Alasadi A. Analytical interpretation of energy efficiency concepts in the housing design process from hot climate. Journal of Building Engineering. 2019. Vol. 21, pp. 254–266. DOI: 10.1016/j.jobe.2018.10.026
12. Жуков А.Д., Боброва Е.Ю., Бессонов И.В., Медведев А.А., Демисси Б.А. Применение статистических методов для решения задач строительного материаловедения // Нанотехнологии в строительстве: научный интернет-журнал. 2020. Т. 12. № 6. С. 313–319. DOI: 10.15828/2075-8545-2020-12-6-313-319
12. Zhukov A.D., Bobrova E.Yu., Bessonov I.V., Medvedev A.A., Demissi B.A. Application of statistical methods for solving problems of building materials science. Nanotechnologii v stroitel’stve: scientific online journal. 2020. Vol. 12. No. 6, pp. 313–319. (In Russian). DOI: 10.15828/2075-8545-2020-12-6-313-319
13. Biao Li, Shaodan Hou, Zhenhua Duan, LongLi, Wei Guo Rheological behavior and compressive strength of concrete made with recycled fine aggregate of different size range. Construction and Building Materials. 2021. Vol. 268, pp. 5–15. https://doi.org/10.1016/j.conbuildmat.2020.121172
14. Velichko E., Shokodko E. Reactive powder concrete based on multicomponent cement systems with multilevel optimization of the disperse composition. MATEC Web of Conferences. 2018. Vol. 251. 01042. https://doi.org/10.1051/matecconf/201825101042
15. Sanchez F., Sobolev K. Nanotechnology in concrete. A review. Construction and Building Materials. 2010. Vol. 24, pp. 2060–2071. DOI: 10.1016/j.conbuildmat.2010.03.014
16. Zhukov A.D., Bessonov I.V., Demissi B.A., Zinove-va E.A. Analytical optimization of the dispersion-reinforced fine-grained concrete composition. CATPID 2020. IOP Conf. Series: Materials Science and Engineering. 2021. Vol. 1083. 012037. doi:10.1088/1757-899X/1083/1/012037

For citation: Zhukov A.D., Bessonov I.V., Kulapin A.V., Medvedev A.A. Demissi B.A., Poudel R.S. Facade plastering systems using a modified binder. Stroitel’nye Materialy [Construction Materials]. 2022. No. 11, pp. 37–41. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-808-11-37-41

Analysis of Changes in the Characteristics of Activated Cement Using Disintegrator Technology

Number of journal: 11-2022
Autors:

Samchenko S.V.,
Abramov M.A.,
Osmanov A.B.

DOI: https://doi.org/10.31659/0585-430X-2022-808-11-32-36
УДК: 666.945

 

AbstractAbout AuthorsReferences
The aim of the study is to research possible changes in the characteristics of cement during its activation using a disintegrator installation. Cement activation was carried out on a DSL-94 disintegrator with activation energy of 17 kJ/kg. The studies consisted of single, double and triple activation of cement in a disintegrator installation, followed by determination of changes in the physical characteristics of cement particles. An increase in the specific surface area of cement for each subsequent activation of cement by 12–16% was revealed, and an increase in the number of particle contacts by about 2 times for each subsequent passage of cement through the disintegrator unit was also noted. An increase in voidness by 12.4% was found after the first passage of cement through the disintegrator unit. A change in the bulk density of cement particles after activation was revealed, as well as a change in the agglomeration of cement particles was determined. A decrease in particle fractions of 40–63 microns was determined in comparison with the control cement: by 5.4%, 8.7%, 8.4% at activation energies of 17 kJ/kg, 34 kJ/kg and 51 kJ/kg, respectively. The determination of the change in the size of cement particles after single, double and triple activation with the construction of integral and differential curves of particle distribution, the construction of the Rosin-Rammler distribution of cement particles with different activation energies. The change in the magnitude of the exothermic reaction, as well as the change in the time of release of exothermic energy during the mixing of activated cement with water, was determined
S.V. SAMCHENKO1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
M.A. ABRAMOV2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.B. OSMANOV1,2, postgraduate (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Moscow State University of Civil Engineering, National Research University (26, Yaroslavskoe highway, Moscow, 129337, Russian Federation)
2 Yaroslavl State Technical University (88, Moscow Avenue, Yaroslavl, 150023, Russian Federation)

1. Fedyuk R.S., Mochalov A.V., Lesovik V.S. Modern methods of activation of binder and concrete mixtures (review). Vestnik of the FEFU Engineering School. 2018. No. 4 (37), pp. 85–99. (In Russian).
2. Samchenko S., Kozlova I., Zemskova О., Baskakova E. Increase of aggregative and sedimentation stability of slag suspensions by ultrasound. E3S Web of Conferences. 2019. Vol. 110. 01061. DOI: 10.1051/e3sconf/201911001061
3. Samchenko S., Kozlova I., Zemskova O., Zamelin D., Pepelyaeva A. Complex method of stabilizing slag suspension. Advances in Intelligent Systems and Computing. 2019. Vol. 983, pp. 817–827. DOI: 10.1007/978-3-030-19868-8_80
4. Samchenko S.V., Egorov E.S. Influence of ultradispersed additive from pre-hydrated cement on the properties of cement paste. Tekhnika i tekhnologiya silikatov. Mezhdunarodnyy zhurnal po vyazhushchim. 2019. Vol. 26. No. 2, pp. 52–57. (In Russian).
5. Rybakova M.V., Barbanyagre V.D. Intensification of the hardening process of cement stone based on mechanically activated suspension. II International seminar-competition of young scientists and graduate students working in the field of binders, concretes and dry mixes: a collection of reports. St. Petersburg. 2011. p. 140. (In Russian).
6. Krivoborodov Yu.R., Yasko D.A. Activation of cement to improve the properties of concrete. New science: problems and prospects. Collection of articles of the International scientific-practical conference. Sterlitamak: RICA MI. 2015. No. 3, pp. 105–108. (In Russian).
7. Elenova A.A., Krivoborodov Yu.R. Influence of a gyrodynamically activated crystalline hydrate additive on the hydration and hardening of cement stone. Advances in chemistry and chemical technology: a collection of scientific papers. 2016. Vol. XXX. No. 7, pp. 36–38. (In Russian).
8. Gurinovich L.S., Usov B.A. Mechanochemical treatment of building materials. Ecology and construction. Scientific Research Center Of Environmental Engineering And Construction. 2015. V. 3. No. 3, p. 22. (In Russian).
9. Stavrov S.V., Abramov M.A. Mechanochemical production of microfillers for “smart” and multifunctional concretes. Young scientists – Development of the National Technology Initiative (POISK). 2020, pp. 635–638. (In Russian).
10. Murog V.Yu., Vaitekhovich P.E., Borovsky D.N. Grinding-classifying mills of the disintegrator type. Proceedings of the Belarusian State Technological University. Series 3. Chemistry and technology of inorganic substances. 2008, pp. 113–117. (In Russian).
11. Zlobin I.A., Mаndrikova O.S., Borisov I.N. The method of mechanical action during grinding as a factor determining the formation of qualitative characteristics of cement. Tsement i yego primeneniye. 2016. No. 1, pp. 158–162. (In Russian).
12. Gurinovich L.S., Usov B.A. Mechanochemical treatment of building materials. Ecology and construction. Scientific Research Center Of Environmental Engineering And Construction. 2015. Vol. 3. No. 3, p. 22. (In Russian).
13. Promtov M.A. Pul’satsionnyye apparaty rotornogo tipa: teoriya i praktika [Pulsation devices of rotary type: theory and practice]. Moscow: Mashinostroenie-1 Publishing House. 2001. 260 p.
14. Mehrotra S.P., Alex T.C., Greifzu G., Kumar R. Mechanical activation of gibbsite and boehmite. New findings and their implications. Transactions of the Indian Institute of Metals. 2015. 69 (1). С. 51–59. DOI: 10.1007/s12666-015- 0633-6

For citation: Samchenko S.V., Abramov M.A., Osmanov A.B. Analysis of changes in the characteristics of activated cement using disintegrator technology. Stroitel’nye Materialy [Construction Materials]. 2022. No. 11, pp. 32–36. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-808-11-32-36

Width Effect of Composite Material on its Tensile Behavior at Strengthening Reinforced Concrete Structures

Number of journal: 11-2022
Autors:

Denisova A.D.,
Shekhovtsov A.S.,
Kuzhman E.D.

DOI: https://doi.org/10.31659/0585-430X-2022-808-11-26-31
УДК: 691.328.4

 

AbstractAbout AuthorsReferences
The composite material of the external reinforcement system FRP laminate (FRP – fiber reinforced polymer) is considered. The results of tests of the FRP laminate for tensioning of various widths are presented. The influence of the width of the FRP laminate on its tensile performance, including the nature of destruction, is analyzed. The dependence of the FAP resistance to stretching on its width is given. Recommendations are given on taking into account the width factor at the stage of assigning the calculated values of the FRP tensile resistance, as well as at the stage of designing the anchor to absorb the prestress and then transfer it to the concrete of the structure strengthened.
A.D. DENISOVA, Postgraduate Student (Engineer) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.S. SHEKHOVTSOV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
E.D. KUZHMAN, Master’s Student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

St. Petersburg State University of Architectures and Civil Engineering (4, Vtoraya Krasnoarmeiskaya Street, Saint Petersburg, 190005, Russian Federation)

1. Liu Ch., X. Wang, Shi J., Lulu Liu, Wu Zh. Experimental study on the flexural behavior of RC beams strengthened with prestressed BFRP laminates. Engineering Structures. 2021. Vol. 233, pp. 1–14. https://doi.org/10.1016/j.engstruct.2020.111801
2. Deng J., Xiaoda Li, Yi Wang. RC beams strengthened by prestressed CFRP plate subjected to sustained loading and continuous wetting condition: Flexural behavior. Construction and Building Materials. 2021. Vol. 311, pp. 1–14. https://doi.org/10.1016/j.conbuildmat.2021.125290
3. Slaitas J., Valivonis J. Full moment-deflection response and bond stifness reduction of RC elements strengthened with pretressed FRP materials. Composite structures. 2020. Vol. 260, pp. 1–13. https://doi.org/10.1016/j.compstruct.2020.113265
4. Ascione L., Berardi V.P., D’Aponte A. Long-term behavior of PC beams externally plated with prestressed FRP systems: A mechanical model. Composites. Part B: Engineering. 2011. Vol. 42. Iss. 5, pp. 1196–1201. https://doi.org/10.1016/j.compositesb.2011.02.023
5. Huang Zh., Deng W., Li. R. Multi-impact performance of prestressed CFRP-strengthened RC beams using H-typed end anchors. Marine Structures. 2022. Vol. 85. https://doi.org/10.1016/j.marstruc.2022.103264
6. Yang J-Q, Feng P., Liu B. Strengthening RC beams with mid-span supporting prestressed CFRP plates: An experimental investigation. Engineering Structures. 2022. Vol. 272, pp. 1–14. https://doi.org/10.1016/j.engstruct.2022.115022
7. Wu B., Zhou Yu., Yin X. The anti-arch inhibition effect of multispan continuous girder bridge strengthened with prestressed CFRP plates. Structures. 2022. Vol. 35, pp. 845–855. https://doi.org/10.1016/j.istruc.2021.11.055
8. Hurukadli P., Bharti G. Behavior of fiber reinforced polymer laminates strengthening prestressed concrete beams. Materials today: proceedings. 2022. https://doi.org/10.1016/j.matpr.2022.10.036
9. Wei M-W., Xie J-H. , Li J-L. Effect of the chloride environmental exposure on the flexural performance of strengthened RC beams with self-anchored prestressed CFRP plates. Engineering Structures. 2021. Vol. 231, pp. 1–16. https://doi.org/10.1016/j.engstruct.2020.111718
10. Moshiri N., Czaderski Ch., Mostofinejad D. Flexural strengthening of RC slabs with nonprestressed and prestressed CFRP strips using EBROG method. Composites. Part B: Engineering. 2020. Vol. 201, pp. 1–13. https://doi.org/10.1016/j.compositesb.2020.108359
11. Atutis M., Valivonis J., Atutis Ed. Experimental study of concrete beams prestressed with basalt fiber reinforced polymers. Part II: Stress relaxation phenomenon. Composite Structures. 2018. Vol. 202, pp. 344–354. https://doi.org/10.1016/j.compstruct.2018.01.109
12. Mostakhdemin Hosseini M.R., Dias S.J.E., Barros J.A.O. Behavior of one-way RC slabs flexurally strengthened with prestressed NSM CFRP laminates – Assessment of influencing parameters. Composite Structures. 2020. Vol. 245, pp. 1–16. https://doi.org/10.1016/j.compstruct.2020.112259
13. Денисова А.Д., Шеховцов А.С., Апполонова Ю.С. Влияние геометрических характеристик фиброармированного полимера (ФАП) на напряжения на границе раздела «ФАП–бетон» // Жилищное строительство. 2022. № 4. С. 27–39. DOI: https://doi.org/10.31659/0044-4472-2022-4-27-39
13. Denisova A.D., Shekhovtsov A.S., Appolonova Yu.S. Influence of geometric characteristics of fiber reinforced polymer (FRP) on stresses at theFRP–concrete interface. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2022. No. 4, pp. 27–39.(In Russian). DOI: https://doi.org/10.31659/0044-4472-2022-4-27-39

For citation: Denisova A.D., Shekhovtsov A.S., Kuzhman E.D. Width effect of composite material on its tensile behavior at strengthening reinforced concrete structures. Stroitel’nye Materialy [Construction Materials]. 2022. No. 11, pp. 26–31. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-808-11-26-31

Use of White Quartz Sand for High-Strength Concrete

Number of journal: 11-2022
Autors:

Aleksandrova O.V.,
Bulgakov B.I.,
Fedosov S.V.,
Nguyen Duc Vinh Quang,
Lyapidevskaya O.B.

DOI: https://doi.org/10.31659/0585-430X-2022-808-11-19-25
УДК: 666.972.55

 

AbstractAbout AuthorsReferences
River quartz sand in the Socialist Republic of Vietnam is becoming a scarce raw material for the construction industry due to the large volumes of its use with limited resources and the high demand for it in other industries. Taking into account the annually increasing demand for quartz sand, due to the high rate of development of the construction industry in Vietnam, there is a great danger of an early depletion of river quartz sand resources. In addition, excessive extraction of river sand negatively affects the ecology of river waters, as well as the living conditions of people on their shores. Therefore, the search for alternative sources of quartz sand is relevant. It seems promising to explore the possibility of replacing river sand as a necessary raw material component for the production of mortars and concretes for various purposes, including high-strength ones, with natural white quartz sand extracted from quarries, deposits of which are available throughout Vietnam and whose potential reserves are estimated at several billion cubic meters. Sulphate-resistant Portland cement produced by the Vietnamese plant “Luks Cement”, local crushed granite in the form of a mixture of fractions of 5–10 and 10–20 mm, natural river and white quartz sands, as well as a water-reducing polycarboxylate superplasticizer and fine mineral additives were used to partially replace sulfate-resistant Portland cement in the composition of a multicomponent binder in the form of ultra- and nanodispersed silica, fly ash from the thermal power plant “Fa Lai” and quartz powder obtained as a result of fine grinding of white sand. Vietnamese standard TCVN 10306:2014 was used to design concrete mixtures. The strength indicators of the developed concretes were determined using the universal testing machine “Matest” model C089-17N (Italy): compressive strength was determined on cube samples 100х100х100 mm in size at the age of 3, 7 and 28 days of normal hardening, flexural strength – on prism samples 100х100х400 mm in size, tensile splitting strength – on cylinder samples 100х200 mm in size at the age of 28 days. Water absorption of concretes was determined on cube samples 100х100х100 mm in size after 28 days of hardening under normal conditions. The density of the concrete structure was assessed by determining its permeability to chlorine ions using concrete disk samples with a diameter of 100±2 mm and a thickness of 50±3 mm. It has found that an increase in the proportion of white sand in the composition of fine aggregate leads to a decrease in the water absorption of concrete and the permeability of its structure for chloride ions. Therefore, with a 100% replacement of river sand with white sand, the values of water absorption and the total value of electric charges that passed through concrete samples during 6 hours of testing amounted to 0.37% by weight and 72.4 Class, respectively, while for concrete samples containing 100% river sand, these figures are respectively 0.44% by weight and 284.2 Class. At the same time, the highest values of compressive strength, as well as flexural and tensile splitting strength equal to 107.5, 12.2 and 8.07 MPa, respectively, were obtained by testing concrete samples containing 100% by weight of white quartz sand and 1.5% by weight of nanodispersed silica as part of a multicomponent binder. Thus, the possibility of replacing the scarce river sand in Vietnam with white quartz sand has been experimentally confirmed, which makes it possible to obtain concretes with a dense structure and high strength indicators.
Keywords: high-strength concrete, natural quartz sand, fine mineral additives, strength indicators, water absorption, density and permeability of the concrete structure.
O.V. ALEKSANDROVA1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
B.I. BULGAKOV1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
S.V. FEDOSOV1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
NGUYEN DUC VINH QUANG2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
O.B. LYAPIDEVSKAYA1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)
2 Hue Industrial College (70, Nguyen Hue Str., Hue City, Vietnam)

1. Leal Filho, W. Hunt, J. Lingos, A. Platje, J. Vieira, et al. The unsustainable use of sand: reporting on a global problem. Sustainability. 2021. Vol. 13(6). 3356. doi:10.3390/su13063356
2. Chính phủ Việt Nam. Nghị định số 23/2020/NĐ-CP của Chính phủ: Quy định về quản lý cát, sỏi lòng sông và bảo vệ lòng, bờ, bãi sông. 24/02/2020. 20 tr.
3. Pilarczyk K.W. Bank erosion Mekong Delta and Red River. Vietnam. 2016. 157 p.
4. Bộ Tài nguyên và Môi trường Việt Nam. Nguồn cát tự nhiên sẽ cạn kiệt trong vòng 10 năm tới. Quản Lý Tài Nguyên Thiên Nhiên, 2017, 168 tr.
5. Нгуен Дык Винь Куанг, Баженов Ю.М., Александрова О.В. Влияние кварцевого порошка и минеральных добавок на свойства высокоэффективных бетонов // Вестник МГСУ. 2019. Т. 14. № 1. С. 999–1006. DOI10.22227/1997-0935.2019.1.102-117
5. Nguyen Duc Vinh Quang, Bazhenov Y.M., Aleksandrova O.V. Effect of quartz powder and mineral admixtures on the properties of high-performance concrete. Vestnik MGSU. 2019. Vol. 14(1), pp. 102–117. DOI 10.22227/1997-0935.2019.1.102-117. (In Russian)
6. Nguyen Duc Vinh Quang, O. Aleksandrova, B. Bulgakov. Mechanical and durability properties of high-performance concrete in corrosive medium of Vietnam. Proceedings of FORM 2021. Lecture Notes in Civil Engineering. 2022. Vol. 170, pp. 29–43. doi:10.1007/978-3-030-79983-0_4
7. Баженов Ю.М., Александрова О.В., Нгуен Дык Винь Куанг, Булгаков Б.И., Ларсен О.А., Гальцева Н.А., Голотенко Д.С. Высокопрочный бетон из материалов Вьетнама // Строительные материалы. 2020. № 3. С. 32–38. DOI: https://doi.org/10.31659/0585-430X-2020-779-3-32-38
7. Bazhenov Yu. M., Aleksandrova O.V., Nguyen Duc Vinh Quang, Bulgakov B.I., Larsen O.A., Gal'tseva N.A., Golotenko D.S. High-performance concrete produced with locally available materials in Vietnam. Stroitel’nye Materialy [Construction Materials]. 2020. No. 3, pp. 32–38. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-779-3-32-3
8. Nguyen Duc Vinh Quang, Le D.V., Alexandrov O.V., Bulgakov B.I. Synthesis and characterization of silica nanoparticles from Vietnam. Nanomaterials and Energy. 2019. Vol. 8(1), pp. 73–77. doi: 10.1680/jnaen.18.00012
9. Nguyen Duc Vinh Quang, Aleksandrova O.V., Samchenko C.V. Combined effect of mineral admixtures and fine aggregate on the mechanical properties of ultrahigh performance concrete. IOP Conf. Series: Materials Science and Engineering. 2020. Vol. 869. 032034. Doi:10.1088/1757-899X/869/3/032034
10. Нгуен Дык Винь Куанг, О.В. Александрова, Б.И. Булгаков, В.Ф. Коровяков, М.Б. Каддо. Влияние золы-уноса в многокомпонентном вяжущем на прочность бетонов. // Техника и технология силикатов. 2021. № 28(3). С. 110–116.
10. Nguyen Duc Vinh Quang, Bulgakov B.I., Aleksandrova O.V., Korovyakov V.F., Caddo M.B. Effect of fly ash in a multicomponent binder on the strength of concrete. Tekhnika i tekhnologiya silikatov. 2022. Vol. 29. No. 1, pp. 45–54. (In Russian).
11. Li C., Chen Q., Wang R., Wu M., Jiang Z. Corrosion assessment of reinforced concrete structures exposed to chloride environments in underground tunnels: Theoretical insights and practical data interpretations. Cement and Concrete Composites. 2020. Vol. 112. 103652. Doi: 10.1016/j.cemconcomp.2020.10365
12. Dang An Tran, Maki Tsujimura, Le Phu Vo, Van Tam Nguyen, Dwight Kambuku & Thanh Duc Dang. Hydrogeochemical characteristics of a multi-layered coastal aquifer system in the Mekong Delta, Vietnam. Environmental Geochemistry and Health. 2019. Vol. 42(2), pp. 661–680. Doi: 10.1007/s10653-019-00400-9
13. Trần Đ. H., Nguyễn Q. H. Đánh giá chất lượng nước vùng cửa sông và biển ven bờ để định hướng giải pháp công nghệ xử lý phù hợp cho mục đích cấp nước sinh hoạt. Tạp chí khoa học công nghệ Xây dựng. 2019. Vol. 10, pp. 89–98.
14. Liu J., Huang Z., Zhu J., Liu W., Zhang W. Effect of fly ash as cement replacement on chloride diffusion, chloride binding capacity, and micro-properties of concrete in a water soaking environment. Applied sciences. 2020. Vol. 10. 6271. Doi:10.3390/app10186271
15. M.M.A. Elahi, C.R. Shearer, R. R Naser, et al. Improving the sulfate attack resistance of concrete by using supplementary cementitious materials (SCMs): A review. Construction and Building Materials. 2021. Vol. 281. 122628. https://doi.org/10.1016/j.conbuildmat.2021.122628

For citation: Aleksandrova O.V., Bulgakov B.I., Fedosov S.V., Nguyen Duc Vinh Quang, Lyapidevskaya O.B. Use of white quartz sand for high-strength concrete. Stroitel’nye Materialy [Construction Materials]. 2022. No. 11, pp. 19–25. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-808-11-19-25

Change in the Specific Electrical Resistance of Conductive Concrete During the Hardening Process

Number of journal: 11-2022
Autors:

Larsen O.A.,
Bahrah A.M.

DOI: https://doi.org/10.31659/0585-430X-2022-808-11-10-14
УДК: 666.972

 

AbstractAbout AuthorsReferences
The analysis of methods for obtaining conductive concrete and the influence of its composition on the specific electrical resistance is carried out. The compositions of a composite binder obtained by joint preliminary mixing of dry components including Portland cement, carbon black in the amount of 15 and 30% of the binder weight, as well as a powdered plasticizer before mixing with water, are proposed. An analysis of the data obtained on the change in specific electrical resistance during hardening under normal conditions was carried out. The dependence of strength and change in specific electrical resistance on the ratio of the mineral binder and the conductive component has been obtained.
O.A. LARSEN, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.M. BAHRAH, engineer (postgraduate student) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, 129337, Moscow, Russian Federation)

1. Федюк Р.С., Кузьмин Д.Е., Батаршин В.О. и др. Электропроводящие бетоны для специальных сооружений // Безопасность строительного фонда России. Проблемы и решения. 2017. № 1. С. 51–57.
1. Fedyuk R.S., Kuzmin D.E., Batarshin V.O., et al. Electrically conductive concrete for special structures. Bezopasnost’ stroitel’nogo fonda Rossii. Problemy i resheniya. 2017. No. 1, pp. 51–57. (In Russian).
2. Терёхин И.А., Кремлев И.А., Кондратьев Ю.В. и др. Модельное представление сухого бетона железобетонного фундамента контактной сети как электрического проводника // Научные проблемы транспорта Сибири и Дальнего Востока. 2015. № 3. С. 88–92.
2. Terekhin I.A., Kremlev I.A., Kondratiev Yu.V. Model representation of dry concrete of the reinforced concrete foundation of the contact network as an electrical conductor. Nauchnyye problemy transporta Sibiri i Dal’nego Vostoka. 2015. No. 3, pp. 88–92. (In Russian).
3. Титова Т.С., Сацук Т.П., Терехин И.А., Тарабин И.В. Оценка условий электробезопасности при применении опор контактной сети в качестве естественных заземлителей // Электротехника. 2021. № 2. С. 7–11.
3. Titova T.S., Satsuk T.P., Terekhin I.A., Tarabin I.V. Evaluation of electrical safety conditions when using contact network supports as natural ground electrodes. Elektrotekhnika. 2021. No. 2, pp. 7–11. (In Russian).
4. Агунов А.В., Терёхин И.А., Баранов И.А. Анализ применения электропроводящих бетонов в электроэнергетике // Транспортные системы и технологии. 2021. Т. 7. № 2. С. 5–15.
4. Agunov A.V., Terekhin I.A., Baranov I.A. Analysis of the use of electrically conductive concrete in the power industry. Transportnyye sistemy i tekhnologii. 2021. Vol. 7. No. 2, pp. 5–15. (In Russian).
5. Самченко С.В. Формирование и генезис структуры цементного камня. 2-е изд. М.: Национальный исследовательский Московский государственный строительный университет, 2020. 288 с.
5. Samchenko S.V. Formirovaniye i genezis struktury tsementnogo kamnya: 2-ye izdaniye [Formation and genesis of the structure of cement stone: 2nd edition]. Moscow: National Research Moscow State University of Civil Engineering. 2020. 288 p.
6. Урханова Л.А., Буянтуев С.Л., Урханова А.А., Лхасаранов С.А., Ардашова Г.Р., Федюк Р.С., Свинцов А.П., Иванов И.А. Механические и электрические свойства бетона, модифицированного углеродными наночастицами // Инженерно-строительный журнал. 2019. № 8 (92). С. 163–172. DOI: 10.18720/MCE. 92.1
6. Urkhanova L.A., Buyantuev S.L., Urkhanova A.A., Lkhasaranov S.A., Ardashova G.R., Fedyuk R.S., Svintsov A.P., Ivanov I.A. Mechanical and electrical properties of concrete modified with carbon nanoparticles. Inzhenerno-stroitel’nyi zhurnal. 2019. No. 8 (92), pp. 163–172. (In Russian). DOI: 10.18720/MCE. 92.1
7. Рекомендации по приготовлению электропроводящего раствора: утв. Госстрой СССР ордена Трудового Красного Знамени Научно-исследовательский институт бетона и железобетона (НИИЖБ) 10.01.1983. М.., 1983. 9 с.
7. Recommendations for the preparation of an electrically conductive solution: approved. Gosstroy of the USSR Order of the Red Banner of Labor Research Institute of Concrete and Reinforced Concrete. 10/01/1983. Moscow. 1983. 9 p. (In Russian).
8. Gao D., Sturm M., Mo Y.L. Electrical resistance of carbon-nanofiber concrete. Smart Materials and Structures. 2011. No. 20 (4), pp. 101–112. DOI: 10.1088/0964-1726/20/4/049501
9. Wu J., Liu J., Yang F. Three-phase composite conductive concrete for pavement deicing. Construction building materials. 2015. No. 75, pp. 129–135. https://doi.org/10.1016/j.conbuildmat.2014.11.004
10. Грешкина Е.В., Табагуа Г.Р., Тамов М.М. Электрическая проводимость и пьезорезистивные свойства цементного камня с добавлением углеродных нанотрубок. Инженерный вестник Дона. 2019. № 6 (57). C. 46.
10. Greshkina E.V., Tabagua G.R., Tamov M.M. Electrical conductivity and piezoresistive properties of cement stone with the addition of carbon nanotubes. Inzhenernyy vestnik Dona. 2019. No. 6 (57), p. 46. (In Russian).
11. Ягубов В.С., Щегольков А.В. Саморегулируемый электронагреватель на основе эластомера, модифицированный многослойными углеродными нанотрубками // Вестник ВГУИТ. 2018. Т. 80. № 3. С. 341–345.
11. Yagubov V.S., Shchegolkov A.V. Self-regulating electric heater based on elastomer modified with multilayer carbon nanotubes. Vestnik of VGUIT. 2018. Vol. 80. No. 3, pp. 341–345. (In Russian).
12. Ilhwan Y., Doo-Yeol Y., Soonho K. Electrical and self-sensing properties of ultra-high-performance fiber-reinforced concrete with carbon nanotubes. Sensors. 2017. Vol. 17 (11). 2481. https://doi.org/10.3390/s17112481
13. Heydar Dehghanpour, Kemalettin Yilmaz, Faraz Afshari, Metin Ipek. Electrically conductive concrete: A laboratory-based investigation and numerical analysis approach. Construction and building materials. 2020. Vol. 260. 119948. https://doi.org/10.1016/j.conbuildmat.2020.119948
14. Galao O., Banon L., Carmona J., Highly conductive carbon fiber reinforced concrete for icing prevention and curing. Materials. 2016. Vol. 9 (4). 281; https://doi.org/10.3390/ma9040281
15. Gomis J., Galao O., Gomis V., Zornoza P., Self-heating and deicing conductive cement. Experimental study and modeling. Construction and Building Materials. 2015. Vol. 75, pp. 442–449. https://doi.org/10.1016/j.conbuildmat.2014.11.042
16. Yu Xun, Kun Zhang. Carbon nanotube based self-sensing concrete for pavement structural health monitoring (Contract Number: DTFH 61-10C-00011) Final Report.” 2012.
17. Sircar A.K., Lamond T.G. Effect of carbon-black particle-size distribution on electrical-conductivity. Rubber Chemistry and Technology. 1978. Vol. 51 (1), pp. 126–132. https://doi.org/10.5254/1.3535720
18. Voet A., Russell Cook F. Investigation of carbon chains in rubber vulcanizates by means of dynamic electrical conductivity. Rubber Chemistry and Technology. 1968. Vol. 41 (5), pp. 1207–1214. https://doi.org/10.5254/1.3539186
19. Boonstra B.B., Dannenberg E.M. Performance of Carbon Blacks – Influence of Surface Roughness and Porosity. Industrial and Engineering Chemistry. 1955. Vol. 47. No. 2, pp. 339–344. https://doi.org/10.1021/ie50542a043
20. Medalia A.I. Electrical conduction in carbon black composites. Rubber Chemistry and Technology. 1986. Vol. 59 (3), pp. 432–454. https://doi.org/10.5254/1.3538209
21. Verhelst W.F., Wolthuis K.G., Voet A., Ehrburger P., Donnet J.B. The role of morphology and structure of carbon blacks in the electrical conductance of vulcanizates. Rubber Chemistry and Technology. 1977. Vol. 50 (4), pp. 735–746. https://doi.org/10.5254/1.3535171

For citation: Larsen O.A., Bahrah A.M. Change in the specific electrical resistance of conductive concrete during the hardening process. Stroitel’nye Materialy [Construction Materials]. 2022. No. 11, pp. 10–14. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-808-11-10-14

https://www.traditionrolex.com/10