Self-Healing of Asphalt Concrete Using Encapsulated Modifier

Number of journal: 11-2022
Autors:

Inozemtsev S.S.,
Korolev E.V.,
Do T.Ch.

DOI: https://doi.org/10.31659/0585-430X-2022-808-11-58-69
УДК: 625.855.3

 

AbstractAbout AuthorsReferences
The results of obtaining composites from a thermoplastic mixture are obtained, after preparation and compaction of which, capsules with a modifier remain intact, and during the period of stress formation in the structure and the formation of defects, they are able to break down to release the encapsulated modifier. The possibility of creating capsules containing a modifier for self-healing asphalt concrete is justified by a significant difference in stress states in the material under the influence of loads that occur at the technological stage during the preparation of the asphalt concrete mixture or its compaction and during the operation of asphalt concrete in the road surface. In an asphalt concrete mixture, the magnitude of stresses is determined by the dispersion of the mineral part and the geometric characteristics of the capsules. In asphalt concrete, the integrity of the capsules is determined by the ability to resist stresses arising in the composite, and depends both on the magnitude of internal stresses that increase during operation and on the geometric characteristics of the capsules. At the optimal content of capsules with an organic reducing agent, the recovery coefficient shows that during repeated compression, the total strength loss, taking into account the action of the modifier, turned out to be 28% less. For a composite with an optimal content of an encapsulated modifier based on an AR polymer, the recovery coefficient reflects that the total strength loss, taking into account the action of the modifier, is 46% less. At the same time, the recovery efficiency with the use of an encapsulated modifier based on an AR polymer is 1.87 times higher than when using an encapsulated modifier based on an organic reducing agent.
S.S. INOZEMTSEV1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
E.V. KOROLEV2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
T.Ch. DO1, Engineer (postgraduate student) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)
2 Saint-Petersburg State University of Architecture and Civil Engineering (4, 2nd Krasnoarmeyskaya Street, Saint Petersburg 190005, Russian Federation)

1. Canestrari F., Ingrassia L.P. A review of top-down cracking in asphalt pavements: Causes, models, experimental tools and future challenges. Journal of Traffic and Transportation Engineering. 2020. Vol. 7. Iss. 5, pp. 541–572. DOI: 10.1016/j.jtte.2020.08.002
2. Inozemtsev S.S., Korolev E.V. Increasing the weathering resistance of asphalt by nanomodification. Materials science forum. 2009. Vol. 945, pp. 147–157. DOI: 10.4028/www.scientific.net/MSF.945.147
3. Partl M.N. Introduction. In: Partl M., Porot L., Di Benedetto H., Canestrari F., Marsac P., Tebaldi G. (eds) Testing and characterization of sustainable innovative bituminous materials and systems. RILEM State-of-the-Art Reports. 2018. Vol. 24. https://doi.org/10.1007/978-3-319-71023-5_1
4. Inozemtcev S.S., Korolev E.V. Mineral carriers for nanoscale additives in bituminous concrete. Advanced Materials Research. 2014. Vol. 1040, pp. 80–85. DOI: 10.4028/www.scientific.net/AMR.1040.80
5. Liang B., Lan F., Shi K., Qian G., Liu Zh., Zheng J. Review on the self-healing of asphalt materials: Mechanism, affecting factors, assessments and improvements. Construction and Building Materials. 2021. Vol. 266. Part A. 120453. DOI: 10.1016/j.conbuildmat.2020.120453
6. Inozemtcev S., Korolev E. Review of road materials self-healing: problems and perspective. IOP Conference Series: Materials Science and Engineering. 2020. Vol. 855. 012010. DOI: 10.1088/1757-899X/855/1/012010
7. Xue B., Wang H., Pei J., Li R., Zhang J., Fan Z. Study on self-healing microcapsule containing rejuvenator for asphalt. Construction and Building Materials. 2007. Vol. 135, pp. 641–649. DOI: 10.1016/j.conbuildmat.2016.12.165
8. Королев Е.В., Тарасов Р.В., Макарова Л.В., Самошин А.П., Иноземцев С.С. Обоснование выбора способа наномодифицирования асфальтобетонных смесей. Вестник БГТУ им. В.Г. Шухова. 2012. № 4. С. 40–43.
8. Korolev E.V., Tarasov R.V., Makarova L.V., Samoshin A.P., Inozemtsev S.S. Substantiation of the choice of the method of nanomodification of asphalt concrete mixtures. Vestnik of BSTU named after V.G. Shukhov. 2012. No. 4, pp. 40–43. (In Russian).
9. Inozemtcev S.S., Korolev E.V. Active polymeric reducing agent for self-healing asphalt concrete. IOP Conference Series: Materials Science and Engineering. 2021. Vol. 1030 (1). 012002. DOI: 10.1088/1757-899X/1030/1/012002
10. Qui J., M.F.C. van de Ven, Wu S., Molenaar A.A.A. Investigation the self healing capability of bituminous binders. Road Materials Pavement Design. 2009. Vol. 10. Iss. 1, pp. 81–94. DOI: 10.1080/14680629.2009.9690237
11. Su J.F., Schlangen E., Qiu J. Design and construction of microcapsules containing rejuvenator for asphalt. Powder technology. 2013. Vol. 235, pp. 563–571. DOI: 10.1016/j.powtec.2012.11.013
12. Inozemtcev S., Trong T.D., Korolev E. Thermal and mechanical properties of calcium alginate capsules for self-healing asphalt concrete. Materials Science Forum. 2021. Vol. 1041 MSF, pp. 101–106. DOI: 10.4028/www.scientific.net/MSF.1041.101
13. Bueno M., Kakar M.R., Refaa Z., Wortlitschek J., Stamatiuo A., Partl M.N. Modification of asphalt mixtures for cold regions using microencapsulated phase change materials. Nature Research: Sci Rep 9. 2019. 20342. DOI: 10.1038/s41598-019-56808-x
14. Bekele A, Ryden N, Gudmarsson A, Birgisson B. Effect of Cyclic low temperature conditioning on Stiffness Modulus of Asphalt Concrete based on Non-contact Resonance testing method. Construction and Building Materials. 2019. Vol. 225, pp. 502–509. DOI: 10.1016/j.conbuildmat.2019.07.194
15. Энциклопедия полимеров. Ред. коллегия: В.А. Каргин (гл. ред.) и др. Т. 1. А–К. М.: Советская Энциклопедия, 1972. 1224 с.
15. Encyclopedia of polymers. Ed. collegium: V.A. Kargin (editor-in-chief). Vol. 1 A–K. Moscow: Soviet Encyclopedia. 1972. 1224 p.
16. Inozemtcev S.S., Korolev E.V. Sodium alginate emulsions for asphalt concrete modifiers encapsulating: structural rheological properties. Magazine of Civil Engineering. 2021. Vol. 1 (101). 10104. DOI: 10.34910/MCE.101.4
17. Inozemtsev S.S., Korolev E.V. Technological features of production calcium-alginate microcapsules for self-healing asphalt. MATEC Web of Conferences. 2018. Vol. 251. 01008. DOI: 10.1051/matecconf/201825101008
18. Su J.F., Schlangen E., Qiu J. Design and construction of microcapsules containing rejuvenator for asphalt. Powder technology. 2013. Vol. 235, pp. 563–571. DOI: 10.1016/J.POWTEC.2012.11.013
19. Barrasa R.C., López V.B., Montoliu C.M.P., Ibáñez V.C., Pedrajasc J., Santaren J. Addressing durability of asphalt concrete by self-healing mechanism. Procedia – Social and Behavioral Sciences. 2014. Vol. 162, pp. 188–197. DOI: 10.1016/j.sbspro.2014.12.199
20. Su J.F., Schlangen E. Synthesis and physicochemical properties of novel high compact microcapsules containing rejuvenator applied in asphalt. Chemical Engineering Journal. 2012. Vol. 198–199, pp. 289–300. DOI: 10.1016/J.CEJ.2012.05.094
21. Xue B., Wang H., Pei J., Li R., Zhang J., Fan Z. Study on self-healing microcapsule containing rejuvenator for asphalt. Construction and Building Materials. 2007. Vol. 135, pp. 641–649. DOI: 10.1016/J.CONBUILDMAT.2016.12.165
22. Al-Mansooria T., Micaeloabc R., Artamendid I., Norambuena-Contrerasae J., Garcia A. Microcapsules for self-healing of asphalt mixture without compromising mechanical performance. Construction and Building Materials. 2017. Vol. 155, pp. 1091–1100. DOI: 10.1016/J.CONBUILDMAT.2017.08.137
23. Inozemtcev S., Korolev E. Surface modification of mineral filler using nanoparticles for asphalt application. MATEC Web of Conferences. 2018. Vol. 196 (10). 04052. DOI: 10.1051/MATECCONF/201819604052
24. Inozemtcev, S.S., Korolev, E.V., Smirnov, V.A. Nanomodified bitumen composites: Solvation shells and rheology. Advanced Materials, Structures and Mechanical Engineering. 2016. Vol. 83, pp. 393–397. DOI: DOI:10.1201/B19693-85
25. Riccardi C., Cannone Falchetto A., Losa M., Wistuba M. Modeling of the rheological properties of asphalt binder and asphalt mortar containing recycled asphalt material. Transportation Research Procedia. 2016. Vol. 14, pp. 3503–3511. DOI: 10.1617/S11527-015-0779-Z
26. Raheb M., Pär J., Sotirios G. Thermal properties of asphalt concrete: A numerical and experimental study. Construction and Building Materials. 2018. Vol. 158, pp. 774–785. DOI: 10.1016/j.conbuildmat.2017.10.068
27. Daintith J. A Dictionary of Physics (6 ed.). Oxford University Press. 2009. 624 p. DOI: 10.1007/978-1-349-66022-3
28. Окопный Ю.А., Радин В.П., Чирков В.П.Механика материалов и конструкций. М.: Машиностроение, 2001. 408 с.
28. Okopny Yu.A., Radin V.P., Chirkov V.P. Mekhanika materialov i konstruktsiy [Mechanics of materials and structures]. Moscow: Mashinostroenie. 2001. 408 p.
29. Bhasin A., Palvadi S., Little D. Influence of aging and temperature on intrinsic healing of asphalt binders. Transportation Research Record Journal of the Transportation Research Board. 2011. Vol. 2207. Iss. 1, pp. 70–78. DOI: 10.3141/2207-10
30. Сивухин Д.В. Общий курс физики. Термодинамика и молекулярная физика. Т. 2. М.: Наука, 1990. 591 с.
31. Sivukhin D.V. Obshchiy kurs fiziki. Termodinamika i molekulyarnaya fizika. Tom II [General course of physics. Thermodynamics and molecular physics. Vol. II]. Moscow: Nauka. 1990. 591 p.
31. Xu S., Tabakoviс´ A., Liu X., Palin D., Schlangen E. Optimization of the calcium alginate capsules for self-healing asphalt. Materials. 2019. Vol. 12. Iss. 1. 168. DOI: 10.3390/APP9030468
32. Qiu J., Wu S., Molenaar A.A.A. Investigating the self healing capability of bituminous binders. Road Materials and Pavement Design. 2009. Vol. 10, pp. 81–94. DOI: 10.1080/14680629.2009.9690237
33. Tabakoviс´ A., Schuyffel L., Karač A., Schlangen E. An evaluation of the efficiency of compartmented alginate fibres encapsulating a rejuvenator as an asphalt pavement healing system. Applied Sciences. 2017. Vol. 7. Iss. 7. 647. DOI: 10.3390/APP7070647

For citation: Inozemtsev S.S., Korolev E.V., Do T.Ch. Self-healing of asphalt concrete using encapsulated modifier. Stroitel’nye Materialy [Construction Materials]. 2022. No. 11, pp. 58–69. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-808-11-58-69


Print   Email