Facade Plastering Systems Using a Modified Binder

Number of journal: 11-2022
Autors:

Zhukov A.D.,
Bessonov I.V.,
Kulapin A.V.,
Medvedev A.A.
Demissi B.A.,
Poudel R.S.

DOI: https://doi.org/10.31659/0585-430X-2022-808-11-37-41
УДК: 693.614

 

AbstractAbout AuthorsReferences
Plaster systems applied to facade surfaces using reinforcing meshes can be considered as a kind of textile concrete. This material consisting of a mineral binder (or fine aggregate) and reinforcing components. Similar coatings are used in facade heat-insulating composite systems, as well as on a concrete base (without wall insulation). Can be used on any surface during the reconstruction of building facades. Facade systems and materials must meet the requirements for durability and operational stability under climatic influences: solar radiation, precipitation, alternating and negative temperatures. The aim of the study was to study the properties of reinforced plaster coatings based on a modified binder. The composition of the modified binder included a finely ground mineral additive based on volcanic tuff; the composition of the facade mixture also included modifying additives: cellulose ethers, dispersible powder, blowing agent, thickener, water repellent. It has been established that, regardless of the thermal insulation used (mineral wool facade slabs, or slabs based on foamed plastics), the system of plaster coatings based on mineral plasters reinforced with meshes performs protective functions in relation to the insulating layers. Firstly, it is weather protection, secondly, it is protection against vandalism, and thirdly, it is protection against possible fire impact, which is especially important in the case of combustible thermal insulation. The decrease in adhesion strength (adhesion) after cyclic temperature and humidity exposures was 9–13%. Upon completion of cyclic exposures, no external changes were detected on the front surface of the samples (color, cracks, chips, peeling).
A.D. ZHUKOV1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
I.V. BESSONOV2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.V. KULAPIN3, graduate student;
A.A. MEDVEDEV1, Candidate of Sciences (Engineering), (This email address is being protected from spambots. You need JavaScript enabled to view it.),
B.A. DEMISSI1, graduate student,
R.S. POUDEL1, graduate student

1 National Research Moscow State University of Civil Engineering (26, Yaroslavskoye Highway, Moscow, 129337, Russian Federation)
2 Research Institute of Building Physics, Russian Academy of Architecture and Construction Sciences (21, Lokomotivny Driveway, Moscow, 127238, Russian Federation)
3 St. Petersburg State University of Architecture and Civil Engineering (SPbGASU) (3/6, 3rd Krasnoarmeyskaya Street, St. Petersburg, 190005, Russiaт Federation)

1. Теличенко В.И., Орешкин Д.В. Материаловедческие аспекты геоэкологической и экологической безопасности в строительстве // Экология урбанизированных территорий. 2015. № 2. С. 31–33.
1. Telichenko V.I. Oreshkin D.V. Materials science aspects of geoecological and environmental safety in construction. Ekologiya urbanizirovannykh territoriy. 2015. No. 2, pp. 31–33. (In Russian).
2. Gudkov P., Kagan P., Pilipenko A., Zhukova E.Yu., Zinovieva E.A., Ushakov N.A. Usage of thermal isolation systems for low-rise buildings as a component of information models. E3S Web Conf. XXII International Scientific Conference “Construction the Formation of Living Environment” (FORM-2019). Vol. 97. 2019. DOI: https://doi.org/10.1051/e3sconf/20199701039
3. Efimov B., Isachenko S., Kodzoev M.-B., Dosanova G., EkaterinaB. Dispersed reinforcement in concrete technology. E3S Web Conf. International Science Conference SPbWOSCE-2018 “Business Technologies for Sustainable Urban Development”. 2019. Vol. 110. https://doi.org/10.1051/e3sconf/201911001032
4. Gelbrich S. Organisch geformter Hybridwerkstoff aus textil-bewehrtem Beton und glasfaserverstrktem Kunststoff. Leichter bauen – Zukunft formen. TUDALIT. 2012. No. 7, рр. 9.
5. Демиссе Б.А., Жуков А.Д., Поудел Р.С. Мелкозернистый бетон на модифицированном вяжущем // Промышленное и гражданское строительство. 2022. № 3. С. 31–36. DOI: 10.33622/0869-7019.2022.03.31-36
5. Demisse B.A., Zhukov A.D., Poudel R.S. Fine-grained concrete on a modified binder. Promyshlennoye i grazhdanskoye stroitel’stvo. 2022. No. 3, pp. 31–36. (In Russian). DOI: 10.33622/0869-7019.2022.03.31-36
6. Муртазаев С.-А.Ю., Батаев Д.К.-С., Исмаилова З.Х. Мелкозернистые бетоны на основе наполнителей из вторичного сырья. М.: Комтехпринт, 2017. 142 с.
6. Murtazaev S.-A.Yu., Bataev D.K.-S., Ismailova Z.Kh. [Melkozernistye betony na osnove napolnitelej iz vtorichnogo syr’ya [Fine-grained concrete based on fillers from secondary raw materials]. Moscow: Komtekhprint. 2017. 142 p.
7. Davood Mostofinejad, Seyed Mohammad Hosseini, Farzaneh Nosouhian, Togay Ozbakkaloglu, Bahareh Nader Tehrani. Durability of concrete containing recycled concrete coarse and fine aggregates and milled waste glass in magnesium sulfate environment. Journal of Building Engineering. 2020. Vol. 29, pp. 10–15. https://doi.org/10.1016/j.jobe.2020.101182
8. Румянцев Б.М., Жуков А.Д. Эксперимент и моделирование при создании новых изоляционных и отделочных материалов. Электрон. текстовые данные. М.: МГСУ, ЭБС АСВ, 2013. 156 p.
8. Rumyantsev B.M., Zhukov A.D. Eksperiment i modelirovanie pri sozdanii novyh izolyacionnyh i otdelochnyh materialov [Experiment and modeling in the creation of new insulation and finishing materials]. Moscow: MGSU. EBS ASV. 2013. 156 p.
9. Shannag M., Charif A., Naser S., Faisal F., Karim A. Structural behavior of lightweight concrete made with scoria aggregates and mineral admixtures. International Journal of Aerospace and Mechanical Engineering. 2020. Vol. 14. No. 12, pp. 105–109.
10. Мешков П.И., Мокин В.А. Способы оптимизации составов сухих строительных смесей // Строительные материалы. 2000. № 5. С. 12–14.
10. Meshkov P.I., Mokin V.A. Ways to optimize the composition of dry building mixes. Stroitel’nye Materialy [Construction Materials]. 2000. No. 5, pp. 12–14. (In Russian).
11. Almusaed A., Almassad A., Alasadi A. Analytical interpretation of energy efficiency concepts in the housing design process from hot climate. Journal of Building Engineering. 2019. Vol. 21, pp. 254–266. DOI: 10.1016/j.jobe.2018.10.026
12. Жуков А.Д., Боброва Е.Ю., Бессонов И.В., Медведев А.А., Демисси Б.А. Применение статистических методов для решения задач строительного материаловедения // Нанотехнологии в строительстве: научный интернет-журнал. 2020. Т. 12. № 6. С. 313–319. DOI: 10.15828/2075-8545-2020-12-6-313-319
12. Zhukov A.D., Bobrova E.Yu., Bessonov I.V., Medvedev A.A., Demissi B.A. Application of statistical methods for solving problems of building materials science. Nanotechnologii v stroitel’stve: scientific online journal. 2020. Vol. 12. No. 6, pp. 313–319. (In Russian). DOI: 10.15828/2075-8545-2020-12-6-313-319
13. Biao Li, Shaodan Hou, Zhenhua Duan, LongLi, Wei Guo Rheological behavior and compressive strength of concrete made with recycled fine aggregate of different size range. Construction and Building Materials. 2021. Vol. 268, pp. 5–15. https://doi.org/10.1016/j.conbuildmat.2020.121172
14. Velichko E., Shokodko E. Reactive powder concrete based on multicomponent cement systems with multilevel optimization of the disperse composition. MATEC Web of Conferences. 2018. Vol. 251. 01042. https://doi.org/10.1051/matecconf/201825101042
15. Sanchez F., Sobolev K. Nanotechnology in concrete. A review. Construction and Building Materials. 2010. Vol. 24, pp. 2060–2071. DOI: 10.1016/j.conbuildmat.2010.03.014
16. Zhukov A.D., Bessonov I.V., Demissi B.A., Zinove-va E.A. Analytical optimization of the dispersion-reinforced fine-grained concrete composition. CATPID 2020. IOP Conf. Series: Materials Science and Engineering. 2021. Vol. 1083. 012037. doi:10.1088/1757-899X/1083/1/012037

For citation: Zhukov A.D., Bessonov I.V., Kulapin A.V., Medvedev A.A. Demissi B.A., Poudel R.S. Facade plastering systems using a modified binder. Stroitel’nye Materialy [Construction Materials]. 2022. No. 11, pp. 37–41. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-808-11-37-41


Print   Email