Structure and Thermophysical Characteristics of Gas-Filled Polymers

Number of journal: 11-2022
Autors:

Efimov B.A.,
Ushakov A.Yu.,
Tyakina A.M.,
Minaeva A.M.

DOI: https://doi.org/10.31659/0585-430X-2022-808-11-81-85
УДК: 699.86

 

AbstractAbout AuthorsReferences
Thermal resistance and durability of insulation systems of building structures, firstly, provide comfort in insulated rooms and, secondly, provide protection of the building structure entirely from negative atmospheric influences and largely depend on the properties of thermal insulation. Many properties of heat-insulating materials and, in particular, average density, thermal conductivity, water absorption, vapor permeability, thermal conductivity, etc. are determined by the properties of the polymer matrix (type of polymer, method of polymerization and porization), as well as porosity and structure the porosity of these materials. The purpose of the research presented in the article was to study the relationship between the structure of gas-filled polymers and their thermophysical characteristics and to verify the solutions obtained by testing the properties of materials. Based on the position that the thermal resistance and durability of insulation systems of building structures largely depend on the properties of thermal insulation, the requirements for the properties of thermal insulation materials are set out. It is substantiated that the thermophysical characteristics of heat-insulating materials and, in particular, thermal conductivity, are determined by the properties of the polymer matrix (the type of polymer, the method of its polymerization and porization), as well as the porosity and porosity structure of these materials.
B.A. EFIMOV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.Yu. USHAKOV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.M. TYAKINA, Undergraduate, (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.M. MINAEVA, Master student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Ter-Zakaryan K.A., Zhukov A.D., Bobrova E.Yu., Bessonov I.V., Mednikova E.A. Foam polymers in multifunctional insulating coatings. Polymers. 2021. Vol. 13 (21). 3698. https://doi.org/10.3390/polym13213698
2. Semenov V.S., Bessonov, I.V., Zhukov Zh.A., Mednikova E.A., Govryakov I.S. Thermal insulation systems for road bases with foam glass gravel. Magazine of Civil Engineering. 2022. Vol. 110 (2). 11003. DOI: 10.34910/MCE.110.3
3. Pilipenko A., Ter-Zakaryan K., Bobrova E., Zhukov A. Insulation systems for extreme conditions. International Conference on Modern Trends in Manufacturing Technologies and Equipment. 2019. Vol. 19, pp. 1819–2586. https://doi.org/10.1016/j.matpr.2019.08.112
4. Zhukov A., Bessonov I., Medvedev A., Zinovieva E., Mednikova E. Insulation systems for structures on pile supports. E3S Web of Conferences. 2021. Vol. 258 (361). 09088. https://doi.org/10.1051/e3sconf/202125809088
5. Bessonov I.V., Bogomolova L.K., Zhukov A.D., Zinoveva E.A. Building systems based on foamed modified polymers. Key Engineering Materials. 2021. Vol. 887, pp. 446–452. https://doi.org/10.4028/www.scientific.net/kem.887.446
6. Zhukov A., Medvedev A., Poserenin A., Efimov B. Ecological and energy efficiency of insulating systems. E3S Web of Conferences. 2019. Vol. 135. https://doi.org/10.1051/e3sconf/201913503070
7. Nardi L., Perilli S., De Rubeis T., Sfarra S., Ambrosini  D. Influence of insulation defects on the thermal performance of walls an experimental and numerical investigation. Journal of Building Engineering. 2019. Vol. 21, pp. 355–365 DOI: 10.1016/j.jobe.2018.10.029
8. Жуков А.Д., Тер-Закарян К.А., Бессонов И.В., Семёнов В.С, Старостин А.В. Системы строительной изоляции с применением пенополиэтилена // Строительные материалы. 2018. № 9. С. 58–61. DOI: https://doi.org/10.31659/0585-430X-2018-763-9-58-61
8. Zhukov A.D., Ter-Zakaryan K.A., Bessonov I.V., Semenov V.S., Starostin A.V. Systems of construction insulation with the use of foam polyethylene. Stroitel’nye Materialy [Construction Materials]. 2018. No. 9, pp. 58–61. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2018-763-9-58-61
9. Ibrahim O., Younes R. Progress to global strategy for management of energy systems. Journal of Building Engineering. 2018. Vol. 20, pp. 303–316 DOI: 10.1016/j.jobe.2018.07.020
10. Umnyakova N. Heat exchange peculiarities in ventilated facades air cavities due to different wind speed. In book: Advances and Trends in Engineering Sciences and Technologies II. London, UK: CRC Press, Taylor & Francis Group. 2016, рр. 655–660.
11. Gnip I.J., Keršulis V.J., Vaitkus S.J. Predicting the deformability of expanded polystyrene in long-term compression. Mechanics of Composite materials. 2005. Vol. 41 (5), pp. 407–414.
12. Shen X., Li L., Cui W., Feng Y. Coupled heat and moisture transfer in building material with freezing and thawing process. Journal of Building Engineering. 2018. Vol. 20, pp. 609–615. DOI: 10.1016/j.jobe.2018.07.026
13. Жуков A.Д., Бобровa E.Ю., Попов И.И., Демисси Бекеле Арега. Системный анализ технологических процессов // International Journal for Computational Civil and Structural Engineering. 2021. Vol. 17 (4), pp. 73–82. https://doi.org/10.22337/2587-9618-2021-17-4-73-82
13. Zhukov A.D., Bobrova E.Yu., Popov I.I., Arega D.B. System analysis of technological processes. Inter-national Journal for Computational Civil and Structural Engineering. 2021. Vol. 17 (4), pp. 73–82. https://doi.org/10.22337/2587-9618-2021-17-4-73-82
14. Жуков А.Д., Боброва Е.Ю., Бессонов И.В., Медведев А.А., Демисси Бекеле Арега. Приме-нение статистических методов для решения задач строительного материаловедения // Нанотехно-логии в строительстве: научный интернет-журнал. 2020. Т. 12. № 6. С. 313–319. DOI: 10.15828/2075-8545-2020-12-6-313-319
14. Zhukov A.D., Bobrova E.Yu., Bessonov I.V., Medvedev A.A., Arega D.B. Application of statistical methods for solving problems of building materials science. Nanotechnologii v stroitel’stve: scientific online journal. 2020. Vol. 12. No. 6, pp. 313–319. (In Russian). DOI: 10.15828/2075-8545-2020-12-6-313-319
15. Теличенко В.И., Орешкин Д.В. Материаловедче-ские аспекты геоэкологической и экологической безопасности в строительстве // Экология урбанизированных территорий. 2015. № 2. С. 31–33.
15. Telichenko V.I., Oreshkin D.V. Material science aspects of geoecological and ecological safety in construction. Ekologiya urbanizirovannykh territoriy. 2015. No. 2, pp. 31–33. (In Russian).
16. Умнякова Н.П. Взаимосвязь экологического состояния городов и долговечности строительных материалов и конструкций // Жилищное строительство. 2012. № 1. С. 30–33.
16. Umnyakova N.P. The relationship between the ecological state of cities and the durability of building materials and structures. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2012. No. 1, pp. 30–33. (In Russian).

For citation: Efimov B.A., Ushakov A.Yu., Tyakina A.M., Minaeva A.M. Structure and thermophysical characteristics of gas-filled polymers. Stroitel’nye Materialy [Construction Materials]. 2022. No. 11, pp. 81–85. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-808-11-81-85


Print   Email