Width Effect of Composite Material on its Tensile Behavior at Strengthening Reinforced Concrete Structures

Number of journal: 11-2022
Autors:

Denisova A.D.,
Shekhovtsov A.S.,
Kuzhman E.D.

DOI: https://doi.org/10.31659/0585-430X-2022-808-11-26-31
УДК: 691.328.4

 

AbstractAbout AuthorsReferences
The composite material of the external reinforcement system FRP laminate (FRP – fiber reinforced polymer) is considered. The results of tests of the FRP laminate for tensioning of various widths are presented. The influence of the width of the FRP laminate on its tensile performance, including the nature of destruction, is analyzed. The dependence of the FAP resistance to stretching on its width is given. Recommendations are given on taking into account the width factor at the stage of assigning the calculated values of the FRP tensile resistance, as well as at the stage of designing the anchor to absorb the prestress and then transfer it to the concrete of the structure strengthened.
A.D. DENISOVA, Postgraduate Student (Engineer) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.S. SHEKHOVTSOV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
E.D. KUZHMAN, Master’s Student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

St. Petersburg State University of Architectures and Civil Engineering (4, Vtoraya Krasnoarmeiskaya Street, Saint Petersburg, 190005, Russian Federation)

1. Liu Ch., X. Wang, Shi J., Lulu Liu, Wu Zh. Experimental study on the flexural behavior of RC beams strengthened with prestressed BFRP laminates. Engineering Structures. 2021. Vol. 233, pp. 1–14. https://doi.org/10.1016/j.engstruct.2020.111801
2. Deng J., Xiaoda Li, Yi Wang. RC beams strengthened by prestressed CFRP plate subjected to sustained loading and continuous wetting condition: Flexural behavior. Construction and Building Materials. 2021. Vol. 311, pp. 1–14. https://doi.org/10.1016/j.conbuildmat.2021.125290
3. Slaitas J., Valivonis J. Full moment-deflection response and bond stifness reduction of RC elements strengthened with pretressed FRP materials. Composite structures. 2020. Vol. 260, pp. 1–13. https://doi.org/10.1016/j.compstruct.2020.113265
4. Ascione L., Berardi V.P., D’Aponte A. Long-term behavior of PC beams externally plated with prestressed FRP systems: A mechanical model. Composites. Part B: Engineering. 2011. Vol. 42. Iss. 5, pp. 1196–1201. https://doi.org/10.1016/j.compositesb.2011.02.023
5. Huang Zh., Deng W., Li. R. Multi-impact performance of prestressed CFRP-strengthened RC beams using H-typed end anchors. Marine Structures. 2022. Vol. 85. https://doi.org/10.1016/j.marstruc.2022.103264
6. Yang J-Q, Feng P., Liu B. Strengthening RC beams with mid-span supporting prestressed CFRP plates: An experimental investigation. Engineering Structures. 2022. Vol. 272, pp. 1–14. https://doi.org/10.1016/j.engstruct.2022.115022
7. Wu B., Zhou Yu., Yin X. The anti-arch inhibition effect of multispan continuous girder bridge strengthened with prestressed CFRP plates. Structures. 2022. Vol. 35, pp. 845–855. https://doi.org/10.1016/j.istruc.2021.11.055
8. Hurukadli P., Bharti G. Behavior of fiber reinforced polymer laminates strengthening prestressed concrete beams. Materials today: proceedings. 2022. https://doi.org/10.1016/j.matpr.2022.10.036
9. Wei M-W., Xie J-H. , Li J-L. Effect of the chloride environmental exposure on the flexural performance of strengthened RC beams with self-anchored prestressed CFRP plates. Engineering Structures. 2021. Vol. 231, pp. 1–16. https://doi.org/10.1016/j.engstruct.2020.111718
10. Moshiri N., Czaderski Ch., Mostofinejad D. Flexural strengthening of RC slabs with nonprestressed and prestressed CFRP strips using EBROG method. Composites. Part B: Engineering. 2020. Vol. 201, pp. 1–13. https://doi.org/10.1016/j.compositesb.2020.108359
11. Atutis M., Valivonis J., Atutis Ed. Experimental study of concrete beams prestressed with basalt fiber reinforced polymers. Part II: Stress relaxation phenomenon. Composite Structures. 2018. Vol. 202, pp. 344–354. https://doi.org/10.1016/j.compstruct.2018.01.109
12. Mostakhdemin Hosseini M.R., Dias S.J.E., Barros J.A.O. Behavior of one-way RC slabs flexurally strengthened with prestressed NSM CFRP laminates – Assessment of influencing parameters. Composite Structures. 2020. Vol. 245, pp. 1–16. https://doi.org/10.1016/j.compstruct.2020.112259
13. Денисова А.Д., Шеховцов А.С., Апполонова Ю.С. Влияние геометрических характеристик фиброармированного полимера (ФАП) на напряжения на границе раздела «ФАП–бетон» // Жилищное строительство. 2022. № 4. С. 27–39. DOI: https://doi.org/10.31659/0044-4472-2022-4-27-39
13. Denisova A.D., Shekhovtsov A.S., Appolonova Yu.S. Influence of geometric characteristics of fiber reinforced polymer (FRP) on stresses at theFRP–concrete interface. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2022. No. 4, pp. 27–39.(In Russian). DOI: https://doi.org/10.31659/0044-4472-2022-4-27-39

For citation: Denisova A.D., Shekhovtsov A.S., Kuzhman E.D. Width effect of composite material on its tensile behavior at strengthening reinforced concrete structures. Stroitel’nye Materialy [Construction Materials]. 2022. No. 11, pp. 26–31. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-808-11-26-31


Print   Email